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Background: Previous studies have demonstrated that naringenin possesses
lipid-lowering effects; however, the underlying mechanisms, particularly its
specific molecular targets, remain uncertain.

Methods:Using bioinformatics, three traditional Chinesemedicine databases and
one human disease database were integrated to establish two naringenin-target-
hyperlipidemia modules: naringenin-oxidative stress (OS) and naringenin-lipid
metabolism (LM). Data on 1,850 proteins from 1,871 genetic instruments were
sourced from seven previous studies. Using Mendelian randomization based on
data from the Integrative Epidemiology Unit genome-wide association study
(case, n = 5,153; control, n = 344,069), we identified potential drug targets that
were subsequently validated in the UK Biobank (396,565 individuals) and FinnGen
(412,181 individuals) cohorts. Using molecular docking and molecular dynamics
simulation to verify the binding ability of naringenin and causal protein.

Results: In plasma, every standard deviation increase in apolipoprotein B (APOB)
was associated with an increased risk of hyperlipidemia (odds ratio [OR] = 9.37,
95% confidence interval [CI], 5.12–17.12; P = 3.58e-13; posterior probability of
hypothesis 4 [PPH4] = 0.997), and the same was observed for proprotein
convertase subtilisin/kexin type 9 (OR = 1.81, 95% CI, 1.51–2.16; P = 6.87e-11;
PPH4 = 1) and neurocan (OR = 2.34, 95% CI, 1.82–3.01; P = 4.09e-11; PPH4 =
0.932). The intersection of two modules and Mendelian randomization result
identified APOB as a key regulatory target of naringenin in the treatment of
hyperlipidemia. The binding energy between naringenin and APOB was
determined to be −7.7 kcal/mol. Additionally, protein-protein interactions and
protein-disease networks were analyzed to uncover potential connections
between proteins and hyperlipidemia.
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Conclusion: This Mendelian randomization-based combined analysis offers a
robust framework for elucidating the pharmacological effects of naringenin and
identifying candidate proteins for further investigation in the context of
hyperlipidemia treatment.
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1 Introduction

Hyperlipidemia is a prevalent condition characterized by
disrupted lipid metabolism (LM) (Natesan and Kim, 2021). It is
defined as elevated levels of total cholesterol, triglycerides, low-
density lipoprotein (LDL), and lipoprotein above the 90th
percentile or high-density lipoprotein levels below the 10th
percentile, relative to the general population (Hill and Bordoni,
2024). Hyperlipidemia is a significant risk factor for numerous
health issues including diabetes mellitus, obesity, hypertension,
cardiovascular disease, cerebrovascular disease, and fatty liver
disease (Karr, 2017). It increases the risk of cardiovascular
disease by approximately two-fold. In recent years, lifestyle and
food safety concerns have contributed to the increasing global
incidence of hyperlipidemia (álvarez et al., 2020; Enani et al.,
2020). The identification of effective intervention strategies
remains a crucial area of clinical focus.

Lipid-lowering drugs, including statins and fibrates, are
important in the management of hyperlipidemia (Last et al.,
2011). However, the limitations of these two classes of drugs
include treatment resistance, intolerance owing to adverse
reactions, and lack of compliance (Wołowiec et al., 2023;
German and Shapiro, 2020). Additionally, strict clinical
indications such as the recommended LDL-cholesterol level limit
the use of these drugs. The treatment of familial
hypercholesterolemia is challenging, and in addition to high-dose
combined statins or other drugs, lomitapide, mipomersen, or LDL-
cholesterol removal is usually required (Versmissen et al., 2008). In
combination therapy, natural herbal medicines are an important
supplement and adjuvant to lipid-lowering drugs that can promote
blood lipid levels to reach their target (Rauf et al., 2022).
Simultaneously, natural medicines can also reduce the adverse
reactions of lipid-lowering drugs and increase patient tolerance
(Mulvihill et al., 2009). Previous studies have shown that
naringenin, a flavonoid extracted from the traditional Chinese
herbal medicine Qingpi (Latin name Citri Reticulatae
Pericarpium Viride), has lipid-lowering and antioxidant
properties, and may improve hyperlipidemia through multiple
pathways (Raja et al., 2019). These effects have been verified in
Traditional Chinese Medicine (TCM) prescriptions and
experimental animal models and are new types of lipid-lowering
and adjuvant therapies with potential (Jung et al., 2003; Yu et al.,
2022). Whether the previously investigated mechanism of action of
naringenin is causally linked to hyperlipidemia remains uncertain.
Current research often relies solely on network pharmacology,
which primarily identifies potential drug targets without
confirming their direct causal effects on diseases (Miao et al.,
2022). This limitation highlights the need for complementary

methods, such as Mendelian randomization (MR), to validate the
functional relevance of these targets in disease contexts.

Human plasma proteins are critical components in various
biological processes, and serve as important drug targets (Rucevic
et al., 2011). Many studies have demonstrated that protein
drug targets supported by genetic associations have a
significantly increased the likelihood of approval (Nelson
et al., 2015). MR analysis has recently gained considerable
attention in drug target development (Birney, 2022; Reay and
Cairns, 2021). Through genetic instrumental variable analysis
using single nucleotide polymorphisms (SNPs) from genome-
wide association study (GWAS) summary level data, MR can
be used to estimate the causal effect of exposure on the
outcome (Birney, 2022; Sanderson et al., 2022). With the
advancement of high-throughput proteomic and genomic
technologies, integrating GWAS and protein quantitative trait
loci (pQTL) data for hyperlipidemia can enhance the accuracy of
drug targets and indication selection through MR studies (Chong
et al., 2019).

Molecular docking (MD) and molecular dynamics simulations
(MDS) are essential tools for predicting the interactions between
small molecules and their target proteins, providing insights into
binding affinities and the stability of these complexes (Alonso
et al., 2006). In our study, MD and MDS were employed to
investigate the interactions between naringenin and its target
proteins at the molecular level. These methods provide detailed
insights into the binding affinities and stability of naringenin-
protein complexes, which are essential for understanding the
potential effects of naringenin on hyperlipidemia. By integrating
these methods with MR analysis, we not only identified potential
drug targets but also confirmed their direct causal impact on
disease outcomes.

The study design is illustrated in Figure 1. First, we integrated
three TCM databases to screen naringenin targets and provide their
biological interpretations (Ru et al., 2014; Kong et al., 2024; Fang
et al., 2021). Second, we identified potential causal proteins of
hyperlipidemia using MR from the Integrative Epidemiology Unit
(IEU) OpenGWAS data and summarized seven pQTL datasets (Sun
et al., 2018; Ferkingstad et al., 2021; Pietzner et al., 2021; Sun et al.,
2023; Suhre et al., 2017; Yao et al., 2018; Folkersen et al., 2017).
Third, we performed sensitivity analyses using the Bayesian co-
localization and reversed causality detection for preliminary
validation and further screening. Fourth, the above results were
explained by protein-protein interaction (PPI) and protein-protein
MR analyses. Fifth, we performed external validation using datasets
from the UK Biobank and FinnGen. Finally, MD and MDS were
employed to evaluate the binding ability of naringenin with the
causal protein.
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2 Materials and methods

2.1 Naringenin potential targets for
hyperlipidemia

Naringenin targets were obtained from the Traditional Chinese
Medicine Systems Pharmacology Database and Analysis Platform
(version 2.3; https://old.tcmsp-e.com/tcmsp.php) (Ru et al., 2014),
HERB (http://herb.ac.cn/) (Fang et al., 2021), and Bioinformatics
Annotation Database for Molecular Mechanism of Traditional
Chinese Medicine (version 2.0; http://bionet.ncpsb.org.cn/
batman-tcm) (Kong et al., 2024). The required oral bioavailability
was >0.3 and drug-likeness was >0.18 (Jin et al., 2022). Drug-target
networks of the three databases were then summarized and
duplicates were removed. In the Human Gene Database
(GeneCards), all the protein targets were searched for “oxidative

stress” and “lipid metabolism” to establish a disease-target network
and remove duplicates (Stelzer et al., 2016). Biological function
analysis of naringenin targets was performed using the Gene
Ontology (GO, https://geneontology.org/) database, and the
results were plotted using the R version 4.4.0 “clusterProfiler”
package. Subsequently, the naringenin-oxidative stress (OS)
module for naringenin and OS and naringenin-LM module for
naringenin and LM were created by taking the intersection of the
drug targets and disease targets.

2.2 Plasma pQTL

We obtained plasma pQTLs from summary data of seven
previously published GWAS studies (Sun et al., 2018; Ferkingstad
et al., 2021; Pietzner et al., 2021; Sun et al., 2023; Suhre et al., 2017;

FIGURE 1
Study design for identification of naringenin targets and causally associated of those targets with hyperlipidemia.
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FIGURE 2
Gene ontology analysis of naringenin targets and primary MR analysis. The vertical axis of Figure (A) shows the top 10 enriched terms, and the
horizontal axis shows the gene ratio (B) shows the correspondence between the top five BP terms sorted by the p-value and naringenin targets. (C) shows
MR analysis with the Wald ratio or inverse variance weighted method of plasma proteins on the risk of hyperlipidemia. The OR for increased risk of
hyperlipidemia was expressed as a 10-fold increase in plasma protein levels. The dashed horizontal black line corresponds to P = 5e-08. MR,
Mendelian randomization; BP, biological process; MF, molecular function; CC, cellular component; p. adjust, p-values multiplied by the number of
comparisons; ln, natural logarithm; OR, odds ratio; PVE, proportion of variance explained.
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Yao et al., 2018; Folkersen et al., 2017) and set pQTL inclusion
criteria as follows: (i) exhibited genome-wide significant associations
(P < 5e−08); (ii) located outside the major histocompatibility
complex region (chr6, 26–34 Mb); (iii) demonstrated
independence (linkage disequilibrium clumping r2 < 0.001); and
(iv) cis-acting pQTLs (Lin et al., 2023). Ultimately, 1,871 cis-pQTLs
for 1,850 proteins were identified.

Data from two previously published plasma pQTL studies were
used for external validation. Additionally, we referenced the
corresponding Genome Reference Consortium Human Build 38
(Nurk et al., 2022) to complete the QTL GWAS data
(Supplementary Table S1).

2.3 GWAS summary statistics of
hyperlipidemia

The IEU OpenGWAS summary statistics (ebi-a-
GCST90104007) were used as primary data source, providing
information on 349,222 participants of European ethnicity,
including 5,153 cases and 344,069 controls (Trinder et al., 2022).
Validation datasets from external sources, including the UK
Biobank (up to 2017) and FinnGen study’s R10 release, which
included 396,565 (Sudlow et al., 2015) and 412,181 participants,
respectively were obtained (Kurki et al., 2023).

2.4 Statistical analysis

2.4.1 MR analysis
We used plasma proteins as the exposure and hyperlipidemia as

the outcome to perform MR analysis using the R package
“TwoSampleMR” (https://github.com/MRCIEU/TwoSampleMR).
Genetic instruments were used to test the increased risk of
hyperlipidemia per standard deviation increase in plasma protein
levels, with a single instrument using the Wald ratio and multiple
instruments using the inverse variance-weighted method, followed
by heterogeneity analysis.

Preliminary MR multiplex tests were performed using
Bonferroni corrections, and proteins prioritized after a threshold
P-value of 5e-08 (P < 5 × 10−8) were subjected to further analyses.
The threshold for external validation was a P-value of 5e-02 (P < 5 ×
10−2). To validate the results, we executed the same variation strategy
using similar SNPs employed by genetic instruments in the
preliminary analyses.

2.4.2 Reverse causality detection
Following the inclusion criteria for pQTL in the preliminary

analysis, 128 hyperlipidemic genetic instruments were identified
from the IEU OpenGWAS for bidirectional MR analysis
(Supplementary Tables S2 and S3). Data from seven previous
studies were used to obtain comprehensive summary statistics
for proteins. Estimates were calculated using five statistical
methods, including (weighted mode, inverse-variance weighted,
weighted median, Egger regression, and simple mode. Steiger
filtering was used to determine the orientation of proteins and
hyperlipidemia (Hemani et al., 2017). Statistical significance was
set at P < 0.05.

2.4.3 Bayesian co-localization analysis
We performed Bayesian co-localization analyses using the R

package “coloc” (https://github.com/chr1swallace/coloc) to assess
the posterior probability that proteins and hyperlipidemia share
similar SNPs. This method was used to assess the posteriori
probabilities for five hypotheses, as previously mentioned
(Lin et al., 2023), regarding whether a single variant was shared
between the two features. In this study, we focused on the
posterior probability of hypothesis 4 (PPH4), which suggests
that both proteins and hyperlipidemia are associated with
this region through covariation. We used coloc. abf to
define >90% of SNP-based PPH4 as evidence of co-localization
(Burgess et al., 2019).

2.5 PPI and protein-hyperlipidemia
association

All PPI and protein-associated disease analyses were
performed using Search Tool for Retrieving Interacting Genes
database, version 11.5 (Szklarczyk et al., 2019), with a minimum
interaction score of 0.7, minimum intensity of 0.5, and false
discovery rate of <0.05. Causal relationships between proteins
analyzed using the Wald ratio method was analyzed using the
Bayesian co-localization algorithm and reviewed manually. We
concluded that a P-value of <0.05 indicates a potential causal role,
while a PPH4 score of >0.9 indicates a potentially strong co-
localization relationship.

2.6 MD analysis of naringenin and APOB

We used semi-flexible docking method to form a stable
complex. Naringenin (PubChem CID: 439246) was molecularly
docked with protein APOB (Uniprot ID: A0A669KB70) using
AutoDock Vina 1.1.2 software (Trott and Olson, 2010). Protein
pre-processing, which involved deleting water molecules and
redundant ligands and adding hydrogen atoms, was performed
using PyMol 2.4 (https://www.pymol.org/). AutoDock Tools 1.5.
6 was utilized to generate PDBQT files for docking simulations.
The docking box for the protein APOB was set with dimensions
of 60 Å × 42 Å × 51 Å and a grid spacing of 1.00 Å. The coordinates
of the docking box were set to x: −1.115, y: 5.462, and z: −1.009.
All other parameters were kept at their default values. The
docking results were configured to output the nine best
docking positions. The docking conformation with the lowest
binding energy and the highest clustering frequency was
considered the most likely binding mode between the ligand
and the protein. Finally, PyMol 2.4 was used to visualize the
docking results.

2.7 MDS analysis of naringenin and APOB

MDS were conducted to evaluate the significance of naringenin
in the molecular docking results using GROMACS (version
2021.2). The force fields AMBER99SB-ILDN and AMBER 14SB
were applied to naringenin and APOB, respectively. The system
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was placed in a dodecahedral box filled with TIP3 water molecules
and neutralized with NaCl counterions. Periodic boundary
conditions were applied. Energy minimization was performed
using the steepest descent algorithm with a cutoff of 1.4 nm for
Coulomb and van der Waals interactions. The system was
equilibrated at 310 K for 100 ps under NVT conditions using a
V-rescale thermostat, followed by 100 ps under NPT conditions at
1.0 bar with a Parrinello Rahman barostat, allowing movement of
solvent and ions while restraining protein backbones (Bussi et al.,
2007). The LINCS algorithm was used for bond constraints, and
the particle mesh Ewald method managed long-range
electrostatics. Following equilibration, the system was simulated
for 100 ns at 310 K and 1.0 bar, with trajectory snapshots recorded
every 10 ns.

2.8 Data availability

The following sources granted access to genome-wide summary-
level statistics: the primary study, IEU OpenGWAS, and the UK
Biobank. The IEU OpenGWAS summary statistics can be found at
https://gwas.mrcieu.ac.uk/, and the UK Biobank GWAS summary
statistics data can be downloaded from https://www.leelabsg.org/.
The FinnGen (R10 release) dataset was downloaded from https://
www.finngen.fi/en/.

3 Results

3.1 Potential drug targets with naringenin for
hyperlipidemia

The results of searching for “naringenin, target” using three TCM
databases showed that after deduplication, there were 30 targets with
oral bioavailability of >0.3 and drug similarity of >0.18
(Supplementary Table S4). Biological function analysis of the

targets was performed using GO analysis, and the enriched
molecular function, cellular component, and biological process
results revealed a multitarget mechanism of naringenin. By
comparing the adjusted P values, we found that the molecular
functions of naringenin were mainly antioxidant activity,
transcription co-regulator binding, naringenin response to OS,
lipid transport, cholesterol metabolism, and in the endoplasmic
reticulum lumen (Figure 2A). The top five biological processes
and targets were enlarged (Figure 2B) and combined with previous
studies, and we proposed that the therapeutic effects of naringenin
are mainly achieved through the regulation of OS and LM. By
comparing 30 drug targets in the GeneCards database with
131 “oxidative stress” and 38 “lipid metabolism” disease targets,
the naringenin-OS module was established, which covers the
intersection of targets with an “oxidative stress” relevance score
of >20 in the GeneCards database and naringenin targets
(Supplementary Table S5). Similarly, the naringenin-LM module
comprises the intersection of naringenin with targets that have
a “lipid metabolism” relevance score of >10 in GeneCards
(Supplementary Table S6), as shown in Supplementary Table S4
and Supplementary Figure S3.

3.2 Screening hyperlipidemia-causing
proteins from the proteome

According to the Bonferroni significance test (P < 5e-08), MR
analysis demonstrated a causal relationship between 11 proteins and
hyperlipidemia (Table 1; Figure 2C), including angiopoietin-related
protein 3 (ANGPTL3), apolipoprotein A-V (APOA5),
apolipoprotein C-III (APOC3), apolipoprotein B (APOB)-100,
basal cell adhesion molecule (BCAM), glucokinase regulatory
protein (GCKR), kallikrein-1 (KLK1), neurocan core protein
(NCAN), protein convertase subtilisin/kexin type 9 (PCSK9),
transgelin (TAGLN), and T-cell immunoglobulin and mucin
domain-containing protein 4 (TIMD4). Specifically, increased

TABLE 1 Preliminary Mendelian randomization results for plasma proteins significantly associated with hyperlipidemia after Bonferroni correction.

Protein UniProt ID SNP Effect allele Or (95% CI) p-Value PVE (%) F Statistics

ANGPTL3 Q9Y5C1 rs11207970 T 2.21 (1.91, 2.57) 3.88E-25 6.82 401.92

APOA5 Q6Q788 rs3135506 C 1.33 (1.27, 1.39) 1.45E-34 34.14 3557.63

APOB P04114 rs563290 G 9.37 (5.12, 17.12) 3.58E-13 0.23 69.57

APOC3 P02656 rs964184 C 10.91 (8.69, 13.70) 4.41E-94 1.02 107.87

BCAM P50895 rs28399654 A 1.86 (1.52, 2.28) 1.65E-09 2.88 994.76

GCKR Q14397 rs1260326 T 0.42 (0.37, 0.47) 3.64E-45 8.73 560.73

KLK1 P06870 rs601338 A 1.15 (1.10, 1.20) 7.15E-10 18.21 22968.89

NCAN O14594 rs2228603 T 2.34 (1.82, 3.01) 4.09E-11 0.76 538.71

PCSK9 Q8NBP7 rs11591147 T 1.81 (1.51, 2.16) 6.87E-11 3.90 1679.87

TAGLN Q01995 rs1871757 A 3.44 (2.33, 5.05) 3.78E-10 0.39 52.1

TIMD4 Q96H15 rs4704826 A 0.60 (0.50, 0.72) 4.43E-08 1.47 898.42

PVE, proportion of variance explained; SNPs, single nucleotide polymorphisms.

All SNPs, used were cis-acting SNPs.

Odds ratios per standard deviation increased in protein levels as hyperlipidemia risk increased. x.
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levels of GCKR (odds ratio [OR] = 0.42, 95% confidence interval
[CI], 0.37–0.47; P = 3.64e-45) and TIMD4 (OR = 0.60, 95% CI,
0.50–0.72; P = 4.43e-08) decreased the risk of hyperlipidemia. In
contrast, incensed levels of ANGPTL3 (OR = 2.21, 95% CI,
1.91–2.57; P = 3.88e-25), APOA5 (OR = 1.33, 95% CI, 1.27–1.39;
P = 1.45e-34), APOB (OR = 9.37, 95% CI, 5.12–17.12; P = 3.58e-13),
APOC3 (OR = 10.91, 95% CI, 8.69–13.70; P = 4.41e-94), BCAM
(OR = 1.86, 95% CI, 1.52–2.28; P = 1.65e-09), KLK1 (OR = 1.15, 95%
CI, 1.10–1.20; P = 7.15e-10), NCAN (OR = 2.34, 95% CI, 1.82–3.01;
P = 4.09e-11), TAGLN (OR = 3.44, 95% CI, 2.33–5.05; P = 3.78e-10),
and PCSK9 (OR = 1.81, 95% CI, 1.51–2.16; P = 6.87e-11) indicated
higher risk of hyperlipidemia.

3.3 Sensitivity analysis for hyperlipidemia
causal proteins

Our initial findings revealed that of the eleven causal proteins, nine
possessed the potential to serve as drug targets for treating
hyperlipidemia. Following the screening of the preliminary analysis
results for bidirectional causality, any MR analysis meeting a p-value
of <0.05 was considered to have reverse causality (Figure 3A). Four
potential therapeutic drug targets were identified: APOB, PCSK9,
BCAM, and NCAN. Steiger filtering ensures directionality, as listed
in Table 2. Bayesian colocalization of three of the four proteins
indicated a common variant for hyperlipidemia (Supplementary

FIGURE 3
Bidirectional MR analysis of hyperlipidemia on the levels of 11 potential causal proteins. Figure (A) shows the results of MR and reverseMR analyses to
assess the bidirectional causal relationships between plasma levels of 11 proteins and hyperlipidemia. Blue dots represent MR estimates, indicating the
effect of protein levels on hyperlipidemia risk, while pink dots represent Reverse MR estimates, indicating the effect of hyperlipidemia on protein levels.
OR are presented per standard deviation increase in plasma protein levels. Error bars represent 95% confidence intervals. Asterisks indicate statistical
significance: *p < 0.05, **p < 0.01, ***p < 0.001. (B) shows the status of 11 proteins through sensitivity analysis.
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Figure S1), specifically, APOB (PPH4) = 0.997, NCAN (PPH4= 0.932),
and PCSK9 ([PPH4 = 1], Figure 3B). Additionally, we performed a co-
localization analysis of each protein, as shown in Supplementary Figure
S2. Notably, PCSK9 shares the same variant as APOB (rs11541192).

3.4 Potential drug targets interaction

PPI network generation using the Search Tool for Retrieving
Interacting Genes database (interaction score threshold of 0.7)
revealed a strong interaction score between APOB and PCSK9. The
results revealed an interaction score of 0.987 for APOB with PCSK9,
and the presence of a proven interaction (automated_textmining =
0.985). Interestingly, both APOB and PCSK9 showed strong physical
interactions with LDL receptor (LDLR), suggesting that these three
proteins are in close proximity to one another, although they may not
be in direct contact (Supplementary Figure S4 and Supplementary
Table S7). We also established diseases associated with these three
proteins using target-disease (strength >0.5; false discovery rate <0.05)
analyses, which showed a significant correlation with LM disorders.
We hypothesized that APOB and PCSK9 affect lipid levels via multiple
pathways (Supplementary Table S8). Additionally, as shown in
Supplementary Table S9, we conducted an MR analysis of
PCSK9 and APOB and unexpectedly discovered a unidirectional
causal relationship (OR = 1.23; 95% CI, 1.05–1.44; P = 8.42e-03).

3.5 External validation for hyperlipidemia
potential drug targets

Validating the primary results by using the same significant
variant strategies across different datasets, we observed that NCAN
was associated with hyperlipidemia in two external datasets.
Similarly, PCSK9 and APOB were associated with hyperlipidemia
in the UK Biobank. For example, using the SNPs reported in seven
studies as genetic instrumental variables, the risk of hyperlipidemia
was augmented by increased APOB (OR = 3.28; 95% CI, 1.78–6.04;
P = 1.44e-04), NCAN (OR = 1.41; 95% CI, 1.16–1.71; P = 4.73e-04),
and PCSK9 (OR = 1.39; 95% CI, 1.25–1.54; P = 1.00e-09).
Additionally, NCAN showed weakly significant causality for
hyperlipidemia in the FinnGen cohort (Supplementary Table S10).

3.6 Naringenin and causal proteins
validation

The Venn diagram analysis of naringenin-related OS and LMusing
MR identified a common target, APOB, as shown in Figure 4A.MDwas

employed to explore the optimal bindingmode between naringenin and
APOB, revealing a binding energy of −7.7 kcal/mol (Supplementary
Table S11). An interaction analysis indicated that naringenin formed
van derWaals interactions with several nearby amino acids (Figure 4B).
The active binding pocket of APOB is composed of amino acid residues
including Arg, Cys, Ser, Glu, Phe, Val, Ala, and Gln. The binding
pockets of naringenin and APOB exhibit hydrogen bonding and π-π
interactions, which stabilize the complex and suggest a high specificity
of the interaction. Notably, naringenin also binds to the aromatic amino
acid residue Phe, indicating a potential influence on the fluorescence
quenching effect of APOB.

To assess the equilibrium time of each naringenin-APOB complex
during the MDS, the root mean square deviation (RMSD) of the
protein backbone was calculated. RMSD is crucial for estimating
molecular conformational changes and determining how long it
takes for a system to reach structural equilibrium. Initially, the
RMSD values of the simulated complexes (including the reference)
typically increase sharply due to the rigidity of the protein in the crystal
structure and the restoration of its dynamic motion upon solvation in
the water box. As shown in Figure 4C, the x-axis represents time, while
the y-axis shows RMSD values. At the beginning of the simulation, the
RMSD of the protein-ligand complexes fluctuated significantly.
However, after about 20 ns, the RMSD values stabilized, indicating
that the systems reached equilibrium. Specifically, naringenin and
APOB complexes stabilized around 0.25 nm and 0.05 nm,
respectively, suggesting high stability. A higher RMSD indicates a
less stable complex; hence, the lower RMSD values for the naringenin-
APOB complex reflect its stability under simulated conditions.

To further explore the stability of specific regions within the
complexes, root mean square fluctuation (RMSF) analysis was
performed. Higher RMSF values indicate regions of higher
volatility and less stability. Figure 4D shows that the tail region of
naringenin exhibited higher RMSF values, likely due to the presence of
tightly coiled structures, such as α-helices and β-sheets. In contrast,
lower RMSF values may indicate the loss of corresponding structures
within the complex.

Additionally, hydrogen bonds were analyzed to understand their
role in naringenin-APOB binding. Hydrogen bonds contribute to
binding affinity, with more hydrogen bonds generally indicating
stronger binding. As illustrated in Figure 4E, naringenin formed an
average of 2 hydrogen bonds with APOB, supporting the stable
binding of the complex.

4 Discussion

TCM has multi-target effects related to the blood-entry
components of its extracts (Zhu et al., 2023; Wu et al., 2022).

TABLE 2 Summary of reverse causality detection, Bayesian co-localization analysis and on three potential causal proteins.

Protein UniprotID SNP Bidirectional (MR-IVW) Steiger filtering Co-localization PPH4

APOB P04114 rs1065853 0.97 (0.95, 1.00) Passed 0.997

NCAN O14594 rs2228603 0.99 (0.97, 1.00) Passed 0.932

PCSK9 Q8NBP7 rs11591147 0.99 (0.97, 1.01) Passed 1

MR-IVW, Mendelian randomization inverse variance-weighted method.
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Therefore, by using multiple databases to summarize the targets and
structures of naringenin and setting uniform criteria (oral
bioavailability >30%; drug-likeness >0.18), we can more
accurately elucidate its mechanism of action (Zhang et al., 2023;
Sorokina and Steinbeck, 2020). Through the biological
interpretation of GO analyses, we found that naringenin has
representative regulatory roles in LM, OS, and other pathways
(Figures 2A, B), which is consistent with the results of many
previous studies (Zaidun et al., 2018; Ji et al., 2022; Xu et al.,
2023). This result was confirmed by establishing target-disease
modules using the GeneCards datasets (Supplementary
Tables S2 and S3).

An imbalance between oxidants and antioxidants results in OS,
leading to the disruption of redox signaling regulation and cellular
and molecular damage (Sies, 2015). Lipid peroxidation is a direct
effect of OS on LM(Masenga et al., 2023). Reactive oxygen species
(ROS), including superoxide and hypochlorous acid, react with
polyunsaturated fatty acids (Barrera, 2012). The products of lipid
peroxidation decomposition have long half-lives and are readily
diffusible (Gentile et al., 2017). The final product of lipid
peroxidation, 4-hydroxynonenal, is involved in metabolic
regulation, aggravates cell membrane damage, and is considered
the secondary messenger of OS(Ayala et al., 2014; Shoeb et al., 2014).
Metabolic disorders, such as type 2 diabetes mellitus and obesity,

FIGURE 4
Validation of naringenin targets in treatment of hyperlipidemia (A) shows Venn diagram of causal proteins and naringenin-OS and naringenin-LM
modules (B) shows Docking complexes with the lowest binding energy: naringenin-apolipoprotein (B). Molecular dynamics simulations. The RMSD
(C) plot, RMSF (D) and hydrogen bond numbers (E) of naringenin-apolipoprotein (B). RMSD, represents the root mean square deviation; RMSF, root mean
square fluctuation.
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frequently exhibit dysregulated LM, persistent inflammation, and
OS in the adipose tissue (Galicia-Garcia et al., 2020).
Malondialdehyde, a factor that can affect LM, modified proteins
and alters the rate of fatty acid synthesis (Ayala et al., 2014). OS can
also affect LM by modulating several signaling pathways such as
adenosine 5′-monophosphate (AMP)-activated protein kinase,
which is a central regulator of cellular energy metabolism (Fang
et al., 2022). However, AMP-activated protein kinase is activated by
sustained OS, thereby promoting fatty acid oxidation. Additionally,
OS can affect cholesterol and triglyceride metabolism by regulating
transcription factors, such as sterol regulatory element-binding
protein and peroxisome proliferator-activated receptors (Colak
and Pap, 2021). The dysregulation of OS and LM often coexist in
metabolic diseases (Manzoor et al., 2022). One of the mechanisms by
which lipids accumulate in the vasculature and form emboli is
related to ROS over-synthesis, which leads to OS in vascular wall
cells and adipocytes. Excessive lipid deposition within vessel walls
impedes normal blood flow and causes organ damage (Keeter et al.,
2022). Thus, the regulation of OS is one way to intervene in
hyperlipidemia.

Naringenin has been reported to treat various OS disorders by
improving the activity of superoxide dismutase, catalase, and
glutathione and lowering the levels of ROS through various
mechanisms (Zaidun et al., 2018; Ji et al., 2022; Xu et al., 2023).
Antioxidant activity was validated using various experimental
models. However, the underlying mechanisms have not been
completely elucidated. To further understand the potential targets
of naringenin, we determined that its antioxidant properties were
likely attributable to its regulation of OS (Supplementary Table S1).
B-cell leukemia/lymphoma 2 protein, alpha serine/threonine-
protein kinase, mitogen-activated protein kinase 1, and caspase-3
(Zhang et al., 2019; Huo et al., 2015; Larson-Casey et al., 2016) and
the generation of excess ROS in OS mechanisms have been
extensively studied. Naringenin inhibited the AMP-activated
protein kinase/nicotinamide adenine dinucleotide phosphate
oxidase 2/mitogen-activated protein kinase pathway and
improved the myocardial hypertrophy caused by OS(Li et al.,
2023). Podder et al. showed that naringenin reduced ROS
production and upregulated the expression of antioxidant-related
genes (Podder et al., 2014). Additionally, naringenin upregulated the
antioxidant genes nuclear factor erythroid 2-related factor 2 and
heme oxygenase 1, and alleviated OS-induced osteoarthritis (Pan
et al., 2022). Several in vitro and in vivo studies have revealed novel
mechanisms for the lipid-lowering effects of naringenin, including
modulation of lipid digestion, reversal of cholesterol transport, and
LDLR expression (Namkhah et al., 2021; Burke et al., 2018). Our
findings (Supplementary Table S2), which are similar to those of
previous studies (Mulvihill et al., 2009; Allister et al., 2008), suggest
that genetic variants of APOB, microsomal triglyceride transfer
protein, LDLR, and 3-hydroxy-3-methylglutaryl-CoA reductase in
naringenin-LM are associated with the development of
hyperlipidemia (Supplementary Figure S3 and Supplementary
Table S3). More interestingly, our study is consistent with a
recent study showing that naringenin downregulated the mRNA
expression of peroxisome proliferator-activated receptor α in rats
(Burke et al., 2018). Among them, naringenin inhibited 3-hydroxy-
3-methylglutaryl-CoA reductase and reduced the triglyceride
content in adipocytes (Dayarathne et al., 2021). Additionally, it

has been demonstrated that OS-induced inflammatory response and
high lipid levels can be effectively attenuated by modulating the
APOB/sortilin-mediated immune microenvironment (Wu et al.,
2024). In summary, we tentatively conclude that the effects of
naringenin on OS and LM can be attributed to the regulation of
these target proteins.

The “causality” identified byMRmay be horizontally pleiotropic
or contain reverse causality and genetic confounding. Therefore,
proteins with reverse causality were excluded using bidirectional
MR, and the results of the Steiger filtering supported our primary
findings. We eliminated the bias of horizontal pleiotropy as much as
possible using only cis-pQTL as an instrumental variable (Chong
et al., 2019). Additionally, by applying a Bayesian co-localization
threshold of 0.9 for posterior probability, the bias resulting from
genetic confounders was successfully mitigated. As shown in
Supplementary Figure S1 and Supplementary Table S6, the three
proteins identified by co-localization (PCSK9, APOB, and NCAN)
may share the same variant. To identify whether naringenin targets
are the causal proteins of hyperlipidemia, we integrated results from
network pharmacology analyses (naringenin-OS and naringenin-
LM modules) with MR findings (Figure 4A).

To the best of our knowledge, this is the first study to reveal a
causal relationship between naringenin and hyperlipidemia using a
compound-target-disease network and MR. Herein, we report three
potential drug-targeting proteins for hyperlipidemia: PCSK9,
APOB, and NCAN (Table 2). Among these proteins, the
association between APOB and hyperlipidemia was validated
using external datasets, which made the results more reliable.
Consistent with our findings, previous studies have shown that
SNPs in APOB are associated with hyperlipidemia in Chinese and
Finnish populations (Lu et al., 2016; Junna et al., 2023). Interestingly,
APOB was also a naringenin target (Supplementary Table S4).
Consistent with our hypothesis, by establishing a naringenin-
target-hyperlipidemia network and inferring a positive causal
relationship determined by genetics, we concluded that
naringenin can affect LM and treat hyperlipidemia through
APOB regulation, and this regulation is likely to have an
inhibitory effect. Human APOB is the major protein component
of LDL (APOB-100), chylomicron (APOB-48), and very-low-
density lipoprotein (APOB-100), and it plays a crucial role in
maintaining healthy cholesterol levels. Plasma APOB is equal to
the total number of APOB-48 and APOB-100 particles and
chylomicrons (Feingold, 2022). Lipid particles that contribute to
hyperlipidemia are typically determined by the level of APOB
present in blood vessels. Thus, LDL particles with higher
cholesterol content are more likely to deposit cholesterol and
increase the risk of cardiovascular disease (Behbodikhah et al.,
2021). In our study, we observed a significant interaction
between APOB and LDLR, which led us to propose that the
effects of naringenin may be due to the co-regulation of these
two proteins (Supplementary Figure S4 and Supplementary Table
S7). Studies have shown that naringenin inhibits APOB secretion in
oleic acid-stimulated human hepatocytes and selectively increases
rapid APOB degradation (Borradaile et al., 2002).

The results of the combined MR analyses indicate that PCSK9 is
a promising therapeutic target (Table 2), as its inhibitor, alirocumab,
has been approved by the Food and Drug Administration
(Markham, 2015). Additionally, the feasibility of targeting
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PCSK9 was demonstrated using the newly approved
hypercholesterolemic nucleic acid lipid-lowering drug, inclisiran
(German and Shapiro, 2020; Wołowiec et al., 2023). According to
our results, naringenin did not directly target PCSK9, but it has been
reported that it stimulated LDLR (an interacting protein of PCSK9)
expression by increasing the phosphorylation of
phosphatidylinositol-3 kinase and extracellular signal-regulated
protein kinase 1/2, thereby effectively reducing the mortality and
morbidity rate of coronary heart disease (Bawazeer et al., 2017). As
shown by the results of the MR and PPI analyses between
PCSK9 and APOB (Supplementary Tables S7 and S9),
PCSK9 and APOB have co-expressed biological patterns and
causal relationship. Previous studies have shown that
PCSK9 inhibition reduces OS and inflammation in macrophages
treated with oxidized LDL (Ding et al., 2018; Cammisotto et al.,
2021). Additionally, PCSK9 inhibition can reduce lipid deposition
and plaque lesion area and improve vascular OS in patients with
high cardiovascular risk (Yang et al., 2023). These findings support
our hypothesis that the therapeutic effect of naringenin is reflected
in the regulation of the co-expression of proteins related to OS and
LM. Although the PPI results showed that NCAN is an isolated
node, it is also worth noting that the interaction between NCAN and
the environment has been linked to hyperlipidemia, and these
studies further support the results of our study (Deng et al., 2020).

MDS indicated that naringenin binds to APOB with a binding
affinity of −7.7 kcal/mol (Supplementary Table S11). The stability of
this binding was further confirmed throughMDS, which highlighted
hydrogen bonding as a crucial factor in maintaining the complex’s
stability (Figures 4B–E). Our study suggests that naringenin binds
stably to APOB, potentially contributing to its therapeutic effects in
treating hyperlipidemia.

5 Limitations

This study has several limitations. First, there may have been
bias arising from the pQTL data sourced from seven different
studies. Second, the circulating protein GWAS data were based
on aptamers known for their high specificity and stability in binding
to target molecules (Song et al., 2022). Cis-pQTLs were chosen, and
only one SNP was considered, whereas some trans-pQTLs were not
assessed, which limits the applicability of alternative MR,
multiplicity testing, and heterogeneity detection. However, the
SNPs utilized in our study were established as strong
instrumental variables with F-statistic values > 10, which lends
credibility to our statistical analysis (Staiger and Stock, 1997).
Third, the data samples employed in our study were derived
from European populations, making it challenging to generalize
our findings to other populations. Further investigation using more
individual data is needed for effective clinical translation of
naringenin in the treatment of hyperlipidemia. We also
confirmed a causal relationship between APOB, PCSK9, and
NCAN and hyperlipidemia in the external dataset
(Supplementary Table S10). Further studies among non-
European populations are required. Although the PPI findings
are encouraging, they should be regarded as suggestive rather
than definitive. MD analysis did not capture the interactions with
other proteins in vivo, but the molecular-level analysis in this study

provided a reference and guidance for further exploring the
mechanism of naringenin in treating hyperlipidemia.

6 Conclusion

This study aimed to investigate whether naringenin exerts
therapeutic effects on hyperlipidemia by targeting specific
proteins. By integrating network pharmacology, MR analysis,
MD, and MDS, our findings suggest that APOB is a key target of
naringenin in the treatment of hyperlipidemia. While these results
provide valuable insights into the potential mechanisms by which
naringeninmay influence LM andOS, the exact role of naringenin in
modulating APOB remains to be fully elucidated. Therefore, further
research is required to clarify the precise molecular pathways
involved and to better understand the broader effects of
naringenin on LM and OS.
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