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Gastric cancer (GC) is a prevalent form of cancer worldwide and has a high death
rate, with less than 40% of patients surviving for 5 years. GC demonstrates a vital
characteristic of evading regulatory cell death (RCD). However, the extent to
which RCD patterns are clinically significant in GC has not been well investigated.
The study created a regulatory cell death index (RCDI) signature by employing
101 machine-learning algorithms. These algorithms were based on the
expression files of 1292 GC patients from 6 multicenter cohorts. RCDI is a
reliable and robust determinant of the likelihood of surviving in general.
Furthermore, the precision of RCDI surpasses that of the 20 signatures that
have been previously disclosed. The presence of RCDI signature is closely linked
to immunological characteristics, such as the infiltration of immune cells, the
presence of immunotherapy markers, and the activation of immune-related
functions. This suggests that there is a higher level of immune activity in cases
with RCDI signature. Collectively, the use of RCDI has the potential to be a strong
and encouraging method for enhancing the clinical results of individual
individuals with GC.
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1 Introduction

Gastric cancer (GC) is a widespread malignancy with a rapidly increasing incidence
each year (Thrift and El-Serag, 2020). GC is the fifth most common cancer worldwide in
terms of new cases and the fourth leading cause of death globally, according to the
2020 Global Cancer Epidemiology statistics. In China, GC is the thirdmost prevalent type of
cancer, with approximately 480,000 new cases. It is responsible for 12.4% of all cancer-
related fatalities in the country (Sung et al., 2021). This is directly associated with the high
prevalence of GC patients in China and the significant variability in tumor biology and
clinical characteristics. Forecasting the outcome of GC poses a significant obstacle in the
current clinical approach to GC treatment.

Escape from cell death is a crucial trait exhibited by tumors (Tan et al., 2021).
Regulatory cell death (RCD) is a form of cell death that happens when signal
transduction modules are triggered to maintain the stability of the internal environment
(Tang et al., 2019). Studies have found that numerous pathways involved in regulatory cell
death signaling play a role in the development and advancement of GC. Studying these
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pathways will help to progress the development of diagnostic and
treatment methods for GC.

Rayes et al. (2019) verified that the process of neutrophil-
induced NETosis contributed to facilitating the spread of GC
cells. Hao et al. (2017) reported that suppressing the expression
of cysteine dioxygenase 1 in GC cells can replenish the level of
glutathione (GSH), enhance the activity of glutathione peroxidase 4
(GPX4), hinder the generation of reactive oxygen species (ROS), and
impede iron-induced cell death. Moreover, elevated concentrations
of arachidonic acid and adrenic acid in GC facilitate the production
of polyunsaturated fatty acids (PUFA), which trigger lipid
peroxidation and accelerate iron-mediated cell death (Lee et al.,
2020). Guo et al. (2019) found that celastrol, which has anticancer
properties, elevated the levels of phosphorylation of RIP1 and RIP3.
This resulted in the necrotic death of GC cells. The studies
collectively indicate that RCD plays a crucial role in both the
formation and advancement of GC.

However, the majority of the previously mentioned research
solely examines the influence of a specific RCD mode on GC.
Currently, there is a lack of extensive understanding of the
interactions among RCD patterns in GC. Additionally, there is a
limited quantity of particular studies on the functional aspects of
these processes in GC. To tackle these regions of low
comprehension, we have developed a new metric called the
regulatory cell death index (RCDI). This metric is specifically
formulated to predict the efficacy and prognosis of treatment
strategies for GC. We identified heterogeneity in patients with

GC and assessed their clinical prospects based on the RCDI
signature, which provides valuable guidance for selecting the
most effective treatment. The specific process of the study is
shown in Figure 1.

2 Materials and methods

2.1 Data acquisition and processing

The gene expression data, consisting of 375 GC samples and
32 samples of para-cancer tissue, along with the clinical data of GC
patients, were obtained from the TCGA database (https://www.tcga.
org) (Cancer Genome Atlas Research Network, 2014). The bulk-seq
datasets including GSE84437 (Yoon et al., 2020), GSE13861 (Cho
et al., 2011), GSE15459 (Tao et al., 2011), GSE26253 (Oh et al.,
2018), GSE26901 (Oh et al., 2018), and GSE57303 dataset (Qian
et al., 2014) as well as scRNA-seq GSE183904 dataset (Kumar et al.,
2022) were obtained from the Gene Expression Omnibus (GEO)
database (http://www.ncbi.nlm.nih.gov/geo/).

Ultimately, the study encompassed 6 unique cohorts of patients,
totaling 1,292 individuals diagnosed with GC, in order to establish
the prognostic signature. The criteria for inclusion were as follows:
1) The individuals were diagnosed with GC. 2) The patients possess
comprehensive survival statistics (Refer to Supplementary Table S1
for comprehensive clinical parameters). The GSE84437 cohort is
designated as the training cohort. The validation cohort consists of

FIGURE 1
The study’s flowchart diagram.
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the following datasets: GSE13861, GSE15459, GSE26253, GSE26901,
and GSE57303 cohort.

PRJEB25780 dataset including the immunotherapy information
and RNAseq data of 78 GC patients was obtained from a published
study (Kim et al., 2018) (Refer to Supplementary Table S2
for details).

2.2 Functional enrichment analysis

Gene Ontology (GO) enrichment analysis is a widely used
method for conducting large-scale investigations on the
functional enrichment of biological processes (BPs), molecular
functions (MFs), and cell components (CCs). KEGG enrichment
analysis, a widely used bioinformatics technique, is employed to
examine gene pathways and functional enrichment in a certain gene
set. The above enrichment analysis was performed based on the
“clusterProfiler” R package.

2.3 Consensus clustering

The “ConsensusClusterPlus” R package (Wilkerson and Hayes,
2010) was employed to find the cluster of RCD-related genes based
on the expression data of RCD-related genes in the
GSE84437 cohort and all samples. Subsequently, the optimal
number of clusters was determined using the consensus score
matrix, CDF curve, PAC score, and Nbclust.

2.4 Integration of machine learning
algorithms

To enhance the precision and consistency of the RCDI signature,
the study incorporated ten machine-learning algorithms into our
analysis. These algorithms encompass Lasso (Friedman et al., 2010),
CoxBoost (Binder et al., 2009), random survival forest (RSF)
(Rigatti, 2017), elastic network (Enet) (Friedman et al., 2010),
Ridge (Friedman et al., 2010), Stepwise Cox (Núñez et al., 2011),
partial least squares regression for Cox (plsRcox) (Lê Cao et al.,
2011), supervised principal components (SuperPC) (Bair and
Tibshirani, 2004), generalized boosted regression modeling
(GBM) (Guo and Chang, 2022), and survival support vector
machine (survival-SVM) (Van Belle et al., 2011). Among these
algorithms, Lasso, stepwise Cox, CoxBoost, and RSF have shown
feature selection capabilities. Therefore, we integrated these
algorithms to produce a consensus model. A total of
101 algorithm combinations were performed to construct
prediction models using the 10-fold cross-validation technique.

2.5 Collection of biomarkers in cancer
immunotherapy

The relationship between the RCDI signature and immune cell
infiltration in tumor immune microenvironment (TIME) was
investigated based on the TIMER algorithm (Li et al., 2017),
CIBERSORT algorithm (Newman et al., 2019), quantiseq

algorithm (Finotello and Trajanoski, 2018), MCPcounter
algorithm (Becht et al., 2016), and EPIC algorithm (Racle
et al., 2017).

Furthermore, seven published immunotherapeutic biomarkers
were enrolled. The “easier” package (Lapuente-Santana et al., 2021)
was used to calculate Cytotoxic activity (CYT) (Rooney et al., 2015),
IFNy signature (IFNy) (Ayers et al., 2017), Roh immune score (Roh_
IS) (Roh et al., 2017), chemokine signature (chemokines) (Messina
et al., 2012), Davoli immune signature (Davoli_IS) (Cabrita et al.,
2020), extended immune signature (Ayers_expIS) (Ayers et al.,
2017). TIDE scores were retrieved from the TIDE database
(http://tide.dfci.harvard.edu/).

2.6 Drug sensitivity analysis

The “pRRophetic” R package was applied to predict the
therapeutic response of GC patients to common drugs, and the
value of the RCDI signature in guiding the selection of drugs for GC
patients was assessed based on the IC50 values in different RCDI
score groupings.

2.7 Single-cell analysis

The scRNA-seq data of GSE183904 were analyzed using the R
package “Seurat” (4.0.3). Cells with <300 genes, or >20%
mitochondrial genes were excluded. Subsequently, this study
performed Principal Component Analysis (PCA) using the first
1,500 highly variable genes. The first 15 principal components were
then chosen to construct the t-Distributed Stochastic Neighbor
Embedding (t-SNE) plot. Clustree graphically represents the
Seurat resolution concerning cluster clusters, providing guidance
on the number of cell clusters and selecting the most suitable level of
resolution. The “FindAllMarkers” function retrieves the hallmark
genes associated with each cell cluster.

Cell clusters were annotated using reference data from theHuman
Cell Atlas and were subsequently refined based on specific cell
biomarkers including Epithelial cells (EPCAM, KRT18, and
MUC1) Endothelial cells (VWF) Fibroblasts (LUM) Plasma cells
(MZB1) NK/T cells (CD2 and NKG7) B cells (CD79A and
MS4A1) Macro/Mono (CD14 and CD68) and Mast cells (MS4A2).

The “infercnv” R package was utilized to analyze the copy
number variation (CNV) of epithelial cells. Predictions were
made about the existence of malignant epithelial cells and
normal epithelial cells based on the CNV score. The “irGSEA” R
package was employed to conduct gene set enrichment analysis
(GSEA) on the scRNAseq dataset using the “AUCell”, “UCell”,
“singscore”, and “ssgsea” algorithms.

2.8 The protein expressions of
prognostic genes

The protein expression of the prognostic hub genes between GC
and normal tissues was validated using immunohistochemistry
(IHC) provided by the Human Protein Atlas database (HPA,
https://www.proteinatlas.org/).
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FIGURE 2
Variant landscape of RCD-related genes in GC patients. (A) The upset plot displaying diverse RCD patterns and key regulatory genes. (B) Volcano plot
of the RCD-related DEGs. Points with labels are obvious DEGs which adjusted. p-value < 0.05 and |log2FC| > 1. (C)GO enrichment analyses based on the
DEGs. (D) KEGG enrichment analyses based on the DEGs. (E) An oncoplot of RCD-related genes in the TCGA-STAD cohort. (F) CNV values of RCD-
related genes in the TCGA-STAD cohort.
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2.9 Statistical analysis

The R package “limma” was employed to extract differentially
expressed genes (DEGs). Statistical differences between groups were
determined by Student’s t-test for normally distributed variables,
and for non-normally distributed variables, statistical differences
between groups were determined by the Wilcoxon test. The
statistical studies were conducted using the R project (version 4.3.3).

3 Results

3.1 Variant landscape of RCD-related genes
in GC patients

In this study, we collected a total of 20 RCD patterns and 2013 key
regulatory genes (Refer to Supplementary Table S3 for details) from the
existing published articles (Qin et al., 2023; Liu et al., 2023a; Liu et al.,
2023b), MSigDB Database (http://software.broadinstitute.org/gsea/
msigdb/index.jsp), KEGG database (https://www.genome.jp/kegg),
and Gene cards database (https://www.genecards.org/). We removed
449 duplicate gene symbols, resulting in 1564 RCD-related genes for
subsequent analysis. (Figure 2A).

A total of 285 genes with significant differential expression
(adjusted p-value < 0.05 and |log2FC| > 1) were identified in the

TCGA-STAD cohort (Figure 2B). Furthermore, the DEGs are
associated with many cell death pathways and signal transduction
pathways linked to cancer, as demonstrated by the KEGG and GO
enrichment studies (Figures 2C,D). The TCGA-STAD cohort was
used to assess the variation in RCD-related genes.

The findings indicated that approximately 85.14% (361 out of
424) of individuals with GC exhibited genetic alterations. Figure 2E
displayed the top 20 mutations in RCD-related genes, with
TP53 exhibiting the highest mutation frequency at 46%. The
examination of CNV status revealed frequent alterations in RCD-
related genes. Analysis revealed that WWOX had the highest degree
of CNV deletion, whereas MYC displayed the most pronounced
CNV amplification (Figure 2F).

3.2 Identification of RCD-related genes
associated with GC

The “ConsensusClusterPlus” R package was employed to
conduct consensus cluster analysis on a set of 1,564 RCD-related
genes. This study utilized a uniform clustering approach to divide
the GC data into k clusters, with k ranging from 2 to 7. The
cumulative distribution function (CDF) curve of the consensus
score matrix and the proportion of ambiguous clustering (PAC)
statistics for the fuzzy clustering ratio suggest that the optimal

FIGURE 3
Identification of RCD-related genes associated with GC. (A) Consensus clustering model with cumulative distribution function (CDF) for k = 2–7 (k
means cluster count). (B) Relative change in the area under the CDF curve for k = 2–7. (C) The consensus score matrix of all samples when k = 2. A higher
consensus score between two samples indicates they are more likely to be grouped into the same cluster in different iterations. (D) The heatmap
displaying the heterogeneity in RCD-related pathway activity between two clusters based on the ssGSEA algorithm. (E) The volcano plot of the RCD-
related DEGs. Points with labels are obvious DEGs with adjusted. p-value < 0.05.
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FIGURE 4
Construction and validation of the RCDI signature. (A) A total of 101 combinations of machine learning algorithms for the RCDI signatures via a 10-
fold cross-validation framework based on the GSE84437 cohort. The C-index of each model was calculated across validation datasets, including
GSE13861, GSE15459, GSE26253, GSE26901, and GSE57303 cohort. (B) The coefficients of the most useful prognostic genes based on the lasso
algorithm in the GSE84437 cohort. (C) The importance of the 17 most valuable genes based on the RSF algorithm in the GSE84437 cohort. (D)
Kaplan-Meier survival curve ofOS between patients in high-RCDI score group and low-RCDI score group in GSE13861, GSE15459, GSE26253, GSE26901,
GSE57303, and GSE84437 cohort. (E) ROC analysis of RCDI in GSE13861, GSE15459, GSE26253, GSE26901, GSE57303, and GSE84437 cohort.
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FIGURE 5
The relationship between RCDI signature and TIME characteristics. (A)Heatmap displaying the correlation between the RCDI signature and immune
infiltrating cells. (B) Box plot displaying the correlation between the RCDI signature and immunotherapy response in the immunotherapy cohort. (C) ROC
curves of the RCDI signature to predict the benefits of immunotherapy in the immunotherapy cohort. (D) Box plot displaying the correlation between the
RCDI signature and immune modulators. (E) Heatmap displaying the correlation between the RCDI signature and 13 immune-related processes.
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number of clusters is attained when k = 2 (Figures 3A,B). Two
distinct subcategories of RCD, namely, Cluster A and Cluster B,
were identified, (Figure 3C). Figure 3D illustrates the heterogeneity
in RCD-related pathway activity between two clusters based on the
ssGSEA algorithm. A total of 859 RCD-related genes that showed
differential expression were identified when comparing the two
RCD subtypes (p-value < 0.05) (Figure 3E).

3.3 Construction and validation of the
RCDI signature

The best-performing predictive signature was determined as the
signature with the greatest mean C-index in five external validation
cohorts, due to overfitting in the training cohort (Figure 4A). The
findings indicated that the Lasso + RSF algorithm combination
demonstrated the highest average C-index (0.647), making it the
optimal combination of algorithms for developing the
RCDI signature.

Lasso algorithm was used to screen out the most valuable genes
(Figure 4B). RSF algorithm was further used to filtrate the most
reliable model (Figure 4C). Log-rank score test for splitting survival
trees was conducted. First, the x-variable x was assumed to be
ordered as x1 ≤ x2...≤ xn. Then, the “ranks” for each survival time
Tj(j ϵ [1, ..., n]) were computed. The obtained equation is as follows:

aj � δj −∑Γj
k�1

δk
n − Γk + 1

where Γk � #[t: Tt ≤Tk] and Γj represents the index of the order for
Tj. The log-rank score test came as follows:

RCDI signature � S x, c( ) � ∑xk ≤ c aj − nl�a( )��������
nl 1 − nl

n( )√
S2a

where �a and S2a represent the sample mean and sample variance of
[aj: j � 1, ..., n], respectively. The measure of node separation is
determined using log-rank score splitting by |S(x, c)|. The best
split is reached by maximizing this value over x and c.

Afterwards, the RCDI score for each sample was calculated.
Kaplan-Meier analysis and assessment of prognostic performance
were conducted. Demonstrating a substantial difference in survival
time between the low-RCDI score and high-RCDI score groups in all
six cohorts (Figure 4D). The accuracy and reliability of the RCDI
signature predicting 1-, 2-, 3-, 4- and 5-year survival of GC patients
was supported by empirical evidence that the area under the curve
(AUC) values exceeded 0.65 in multiple distinct cohorts (Figure 4E).

3.4 The relationship between RCDI signature
and TIME characteristics

To assess the role of RCDI signature in GC TIME, we assessed the
relationship between RCDI signature and immune infiltrating cells
(Figure 5A). Based on the TIMER algorithm, CIBERSORT algorithm,
quantiseq algorithm, MCPcounter, and EPIC algorithm, the RCDI
signature was correlated with the majority of tumor immune
infiltrating cells. The immune heterogeneity between the high-
RCDI score group and the low-RCDI score group was demonstrated.

We also evaluated the predictive value of RCDI signature in
immunotherapy using immunotherapy-related datasets. We found
that in the PRJEB25780 cohort, The RCDI score of responders was
significantly lower than that of non-responders (Figure 5B). The
receiver operating characteristic (ROC) analysis showed that the
RCDI signature exhibited a superior ability to predict the efficacy of
immunotherapy-based treatment (Figure 5C).

In addition, the study also evaluated the relationship between RCDI
signature and known immunemodulators (CYT, IFNy, Davoli_IS, Roh_
IS, Ayers_expIS, chemokines, and TIDE) (Figure 5D). The values of
most of the immunemodulators (CYT, IFNy,Davoli_IS, Roh_IS, Ayers_
expIS, and chemokines) were significantly higher in the lowRCDI scores
group. Meanwhile, the TIDE score was significantly lower in the low
RCDI scores group. A low TIDE score indicates less likelihood of
immune escape and a better response to immunotherapy. Based on
the ssGSEA algorithm, the RCDI signature was significantly correlated
with most immune-related processes (Figure 5E).

These findings indicated that GC patients with lower RCDI
scores may experience more favorable outcomes from
immunotherapy treatment.

3.5 Assessment and clinical application of
the RCDI signature

Subsequently, we further performed univariate Cox regression
for each characteristic of all cohorts. The results suggest that the
RCDI signature may be utilized as an independent prognostic
indication of unfavorable outcomes (Figure 6A).

Machine learning-based gene expression analysis can be utilized to
forecast the onset of diseases, aiding in the early detection of diseases
and facilitating research on novel treatments. Over the past few years,
there has been a proliferation of disease prediction models related to
GC.We searched literature about GC that focused on disease prediction
models. After excluding papers that had an unclear formula for the
prediction model and lacked gene expression data in both the training
and validation groups, a total of 19 prediction models for GC-related
diseases were collected (Supplementary Table S4). These traits
encompass a range of metabolic and cell death mechanisms, such as
cuproptosis, ferroptosis, and autophagy. The C-index of each signature
in both the training cohort and the validation cohorts is computed and
then compared with the C-index of the RCDI signature. The superiority
of the RCDI signature is evident in comparison to the majority of
signatures in each cohort (Figure 6B).

In addition, the drug sensitivity analysis revealed that GC
patients with high RCDI scores saw a significant increase in their
sensitivity to commonly used chemotherapeutic medicines for GC
(Figure 6C). It is suggested that the RCDI signature has a potential
guiding effect on the treatment of GC patients. Ultimately, to
facilitate clinical application, a nomogram was created,
integrating the factors of age, gender, and RCDI score (Figure 6D).

3.6 Dissection of tumor microenvironment
based on RCD patterns

To identify the optimal resolution for unsupervised
clustering, the effectiveness of 15 distinct resolution values
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FIGURE 6
Assessment and clinical application of the RCDI signature. (A) Forest plot displaying associations between RCDI signature and other clinical features
and the prognosis of GC based on univariate Cox regression analysis. (B) C-index comparison of RCDI signature and 20 previously published signatures.
(C) Box plot displaying the correlation between the RCDI signature and chemotherapy drugs. (D) A nomogramwas established to predict the prognostic
of GC patients based on age, gender, and RCDI score.
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was assessed by employing “clustree” R package
(Supplementary Figure S1A). The authors selected a
resolution of 0.5 for the initial distinction of cell kinds, as
indicated by the pre-assigned notes. The tSNE plot identified
17 separate cell clusters, with each cluster being assigned a
unique color (Supplementary Figure S1B). A total of 8 known
cell types were identified based on specific cell marker genes
(Supplementary Figures S1C,D).

Then, epithelial cells were isolated and subsequently
reaggregated into 14 clusters using the “Seurat” and “clustree” R
packages (Supplementary Figures S2A,B). In order to identify
malignant epithelial cells in GC, the “infercnv” R package was
employed to analyze the CNV in each epithelial cell on a wide
scale and quantify it as the CNV score, with fibroblasts and
endothelial cells as reference (Supplementary Figure S2C). The
results showed that the CNV scores of clusters 0, 1, 3–6, 8–9,
and 12–13 were significantly higher than the reference cells and
there was no significant difference in CNV scores between clusters 2,
7, 10, and 11 with reference cells (Supplementary Figure S2D).
Therefore, clusters 0, 1, 3–6, 8–9, and 12–13 are categorized as
malignant epithelial cells, whereas clusters 2, 7, 10, and 11 are
categorized as normal epithelial cells (Supplementary Figure S2E).

To summarize, a total of 9 unique cell types were effectively
recognized and recorded (Figure 7A).

Furthermore, we explored the detailed distribution of RCDI
scores in GC patients using single-cell RNA transcriptome data. We
consistently found that malignant cells had a higher RCDI score
than other cells (Figure 7B). This further explains why the higher
RCDI score group had a worse prognosis.

Ultimately, the study preliminarily described the differences in
RCD-related pathway activity of various cell subtypes in the GC
microenvironment (Figures 7C,D).

4 Discussion

GC is a highly aggressive tumor characterized by a high rate of
invasion, recurrence, and a bleak prognosis. In order to enhance the
survival rate, it is necessary to conduct early screening of the factors
associated with poor prognosis and provide tailored individual
treatment. However, to achieve this, there is a need for more
sensitive and accurate biomarkers. The current categorization of
GC primarily relies on the histological features of tumor cells.
Furthermore, numerous studies have demonstrated that

FIGURE 7
Heterogeneity of multiple RCD patterns in cell subsets in GC patients. (A) The t-SNE plot displaying the composition of cells in the
microenvironment of GC. (B) The boxplot displaying the RCDI score in different cell types. (C) Histogram displaying the number of RCD patterns in
different cell types. (D) The heatmap displaying the RCD patterns in different cell types.
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molecular markers can also uncover clinical significance and
predictive worth. As our knowledge of GC biology grows,
researchers are exploring emerging prognostic criteria and novel
molecular markers to improve prognosis accuracy and tailor
treatment strategies.

The study employed scRNAseq and bulk-RNAseq to
characterize the pathway activity profiling of RCD patterns in
GC patients. In addition, 101 distinct machine-learning algorithm
combinations were utilized to develop a stable RCDI signature,
which was derived by analyzing comprehensive bulk-RNAseq
datasets. The stability and reliability of the RCDI signature are
ensured by utilizing the advantages of each algorithm and adopting
the set learning technique. By conducting validation on several
datasets, the signature demonstrated exceptional performance in
forecasting the prognosis of GC patients.

Furthermore, the majority of genes enrolled in the RCDI
signature have been confirmed to be involved in the progression
of GC. The research of Yanrong et al. (Cui et al. 2020a) study
suggested that NOTCH3 is a prognostic factor correlating with
immune tolerance in GC. Furthermore, as a crucial target of
miR-491-5p/miR-875-5p, NOTCH3 has been shown to promote
gastric carcinogenesis by upregulating PHLDB2 expression and
activating the Akt pathway (Kang et al., 2021). Song and Zhou
(2021) discovered that HOXA10 facilitates the process of
epithelial-mesenchymal transition, which contributes to the
spread of GC. This is achieved, in part, through the
regulation of the TGFB2/Smad/METTL3 signal transduction
pathway. Zhang et al. (2022a) verified that the increased
expression of PDK4 promoted the proliferation, migration,
and invasion capacity of GC cells. Besides, Buckley et al.
(2022) discovered that individuals with recessive mutations in
the BRCA2 gene have a higher likelihood of developing GC. This
finding suggests that GC could be considered part of the whole
spectrum of cancer risks associated with the BRCA1/2 genes.
Tang et al. (Buckley et al. 2022) reported that NOX4-driven ROS
formation regulates the proliferation and apoptosis of GC cells
through the GLI1 pathway. Furthermore, Tu et al. (2023)
demonstrated that HTR2B Regulates Lipid Metabolism to
Inhibit Ferroptosis in GC. Wang et al. (2022) reported that
APAF1-binding long noncoding RNA promotes tumor growth
and multidrug resistance in GC by blocking apoptosome
assembly. Kwon et al. (2011) reported the frequent
upregulation of LAMC2 in GC due to promoter
demethylation. Similarly, Ii et al. (2011) discussed the co-
expression of Laminin [β3 and γ2] chains and the epigenetic
inactivation of the Laminin [α3] chain in GC. Peng et al.
(37016377) reported FYN/TOPK/HSPB1 axis facilitates the
proliferation and metastasis of GC. The research of Xu et al.
(2020) suggested the downregulation of GLS2 has been linked to
its role as a tumor suppressor gene in GC. In conclusion, these
studies suggest that programmed cell death plays a critical role in
the development and progression of GC, and RCDI signature
could serve as a biomarker for assessing GC. Moreover, multiple
studies have demonstrated that measuring the levels of
TUBB3 in the serum can assist in determining the
appropriate chemotherapy drugs for patients with advanced
gastric cancer (Yu et al., 2012; Luo et al., 2015; Huang et al.,
2013; Di Bartolomeo et al., 2021). TICAM1, also known as TRIF,

is a protein involved in the TRIF-IFN-I pathway, which plays a
role in Helicobacter-induced gastric cancer (Bali et al., 2024).
Additionally, TICAM1 has been identified as a promising target
for immune therapy in gastric cancer (Cui et al., 2020b). Zhang
et al. (2022b) demonstrated that CD19+ CD24hi CD38hi

regulatory B cells were higher significantly in patients with
gastric cancer than in the healthy group. Ci et al. (2024)
reported that AP1G1 has been shown to promote gastric
cancer stem cell (GCSC) characteristics, indicating its
involvement in shaping the properties of these cancer cells.
Additionally, AP1G1 has been implicated in the inhibition of
gastric cancer growth and tumor development, suggesting its
potential as a therapeutic target for gastric cancer treatment (Ma
et al., 2021). Furthermore, the downregulation of
AP1G1 expression has been associated with the suppression
of apoptosis in gastric cancer cells, further emphasizing the
significance of AP1G1 in gastric cancer progression (Ci et al.,
2024). Moreover, microRNAs have been implicated in gastric
cancer, with studies showing the expression of ELL3 was
associated with exosomal and non-exosomal microRNAs
(Feng et al., 2019). Chen et al. (2020) demonstrated that
PTPN22 was associated with the T stage and pathological
grade of STAD. Zhang et al. (2003) delved into the roles of
TPA, also known as PLAT, in the apoptosis of gastric cancer
cells. They found that TPA inhibits PKB activity and causes its
degradation, leading to apoptosis in gastric cancer cells.

Furthermore, it has been verified that NOX4 (Tang et al., 2018)
and TGFB2 (Zhang and Li, 2016) exhibit elevated expression levels
in tumor tissues relative to normal tissues. Furthermore, we
obtained immunohistochemistry (IHC) staining images from GC
and healthy stomach tissue associated with remaining RCD genes
from the HPA database. The results indicated that there were
variations in the protein expression levels of the remaining RCD
genes between GC and healthy stomach tissues (Supplementary
Figure S3; Supplementary Table S5).

The tumor immune microenvironment is a critical factor in
predicting the responsiveness of GC to immunotherapy and
evaluating its prognosis. The study conducted a comprehensive
examination of immune infiltration and discovered that GC
patients in the high-RCDI score cohort displayed a notable
abundance of immune cells, such as NK cells, macrophages, and
dendritic cells. Moreover, the association between immunotherapy
indicators and immunotherapy datasets, along with the RCDI
signature, suggests that persons with lower RCDI scores in GC
are likely to have better immunotherapy outcomes. Our research
findings suggest that RCDI has the potential to be a valuable
biomarker for predicting genomic patterns and evaluating the
efficacy of immunotherapy in patients with GC.

A significant limitation of this study is the lack of in vitro or in
vivo experiments to directly confirm our results. Although
bioinformatics analysis and computational methodologies are
widely used, experimental validation remains an essential
aspect of scientific research. By performing experiments, we
can get valuable insights into the functional implications of
observed patterns and improve the trustworthiness of our
findings. Therefore, future research must give priority to
conducting targeted experiments to verify and build upon the
results of RCDI.
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5 Conclusion

In general, our findings suggest that the RCDI signature can
serve as a valuable tool for guiding treatment decisions and
improving patient outcomes.
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