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Edible fungus polysaccharides have garnered significant attention from scholars
due to their safety and potential anti-inflammatory activity. However,
comprehensive summaries of their anti-inflammatory properties are still rare.
This paper provides a detailed overview of the anti-inflammatory effects and
mechanisms of these polysaccharides, as well as their impact on inflammation-
related diseases. Additionally, the relationship between their structure and anti-
inflammatory activity is discussed. It is believed that this review will greatly
enhance the understanding of the application of edible fungus
polysaccharides in anti-inflammatory treatments, thereby significantly
promoting the development and utilization of edible fungi.
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1 Introduction

Inflammation, as the initial response of the immune system, is a physiological reaction
of the body to injury, infection, and stress (Medzhitov, 2008). Generally, inflammation is a
natural protective response that plays a central role in the host defense system by secreting
nitric oxide (NO) and pro-inflammatory cytokines. However, uncontrolled long-term or
chronic inflammation can be detrimental, leading to tissue damage and numerous diseases,
including fever, asthma, rheumatoid arthritis, chronic inflammatory bowel diseases, obesity,
diabetes, and cancer (Varela et al., 2018; Barbu et al., 2022; Solier et al., 2023). Currently, the
treatment of inflammation primarily involves chemical drugs, including non-steroidal and
steroidal anti-inflammatory drugs, which are associated with numerous side effects, such as
allergies, osteoporosis, hepatotoxicity, and immunosuppression (Wang and Zeng, 2019; Yu
et al., 2019).

Given the critical importance of prebiotics in altering the human gut microbiota and
improving host health, edible fungi are gaining attention as one of the healthiest low-calorie
foods to promote overall wellbeing (Panda et al., 2024). While not widely used as food
sources due to their unique and subtle taste, edible fungi are recognized for their potential in
preventing or treating inflammation, cancer, diabetes, and other diseases (Chen H. Y. et al.,
2023; Shamim et al., 2023). In fact, they have become very popular health foods because of
their rich nutritional contents and low calories. To date, a variety of bioactive components
have been extracted from edible fungi, including dietary fibers, polysaccharides, sterols,
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alkaloids, and terpenoids, which exhibit anti-inflammatory,
hypoglycemic, immune-enhancing, and other beneficial activities
(Du et al., 2018; Chopra et al., 2021; Yin et al., 2021; Mustafa
et al., 2022).

As secondary metabolites, polysaccharides are among the most
attractive bioactive components extracted from edible fungi. Maity
et al. (2021) and Sun et al. (2022) have reviewed the structure,
biological activity, and structure-activity relationship of these
polysaccharides, highlighting their immunomodulatory,
antibacterial, antioxidant, anti-inflammatory, and anti-tumor
activities. As bioactive macromolecules, polysaccharides cannot
directly enter cells. However, they can recognize pattern
recognition receptors, such as β-glucan receptors and toll-like
receptors (TLRs), and activate macrophages, which in turn affect
the classical MAPK and NF-κ B signaling pathways, regulate the
secretion of related factors, and exert anti-inflammatory effects.
Additionally, due to the lack of enzymes capable of decomposing
polysaccharides, they are generally considered difficult to digest and
absorb in the gastrointestinal tract. Their activity primarily
manifests through fermentation reactions by intestinal
microorganisms.

The anti-inflammatory activities of edible fungi polysaccharides
have been attracting increasing attention. To date, their potential
anti-inflammatory properties have rarely been reviewed. In this
work, we provide a comprehensive review of the existing anti-

inflammatory activities of edible fungi polysaccharides and
analyze their structure-activity relationships to elucidate the
potential of edible fungi in the prevention and treatment of
inflammation. We believe this review will enhance the
understanding of the anti-inflammatory activities of edible fungi
polysaccharides and provide valuable guidance for the development
and application of new anti-inflammatory drugs. The biological
activities of various polysaccharides isolated from edible fungi, such
as Pleurotus ostreatus, and medicinal edible fungi, such as
Ganoderma lucidum, are summarized and listed in Figure 1;
Supplementary Table S1.

2 Anti-inflammation mechanisms of
polysaccharides

2.1 Effects of polysaccharides on cytokines
and other related molecules

Inflammatory cells produce various inflammatory mediators,
such as NO, interleukin (IL)-1, IL-6, monocyte chemoattractant
protein (MCP)-1 and tumor necrosis factor-α (TNF-α). TNF-α and
IL-6 are known to play crucial roles in inflammation, apoptosis,
angiogenesis, cell adhesion and transformation (Andaluz et al.,
2016). NO is involved in the inflammatory response to tissue

FIGURE 1
Schematic diagram of anti-inflammatory activity of polysaccharides from edible fungi.
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injury (Huang et al., 2011). Edible fungi polysaccharides exhibit
anti-inflammatory effects by regulating cytokine secretion in
inflammatory cells, including those polysaccharides from
Armillaria mellea, Cordyceps cicadae, Poria cocos, G. lucidum,
and Auricularia auricula-judae. For instance, a xylosyl 1,3-
galactofucan (AMPS-III, 500 μg/mL) isolated from A. mellea
significantly suppressed the release of TNF-α and MCP-1 in
RAW264.7 macrophages and EAhy926 inducted
lipopolysaccharide (LPS) and TNF-α (Chang et al., 2018). Water-
soluble indigestible polysaccharides (NDPs, 40, 80, 160 μg/mL) from
C. cicadae inhibited the secretion of NO, IL-1β and TNF-α in LPS-
stimulated RAW264.7 macrophages (Yang C. H. et al., 2019). An
alkali-soluble and carboxymethyl polysaccharide CMP33 from P.
cocos (31.25–1,000 μg/mL) and a water-soluble β-1,3-D-glucan with
β-1,6-D-glucosyl branches polysaccharide GLP-2 (25–100 μg/mL)
from G. lucidum inhibited LPS-stimulated overproduction of NO,
IL-6, TNF-α and IL-1β in RAW264.7 cells (Liu et al., 2019; Jia et al.,
2022). A glucuronoxylogalactoglucomannan ME-2 (0.05–1.0 mg/
mL) isolated from A. auricula-judae demonstrated anti-
inflammation effects by decreasing the mRNA levels of IL-1β,
INF-γ and TNF-α in a dose-dependent manner in LPS-
stimulated THP-1 cells (Liang et al., 2023). Additionally,
GLP1(1.25 g/L) from G. lucidum strain inhibited the expression
of IL-1α in LPS-induced HaCaT inflammation model (Zhang J. C.
et al., 2022). These examples illustrate that polysaccharides from
edible fungi exhibit anti-inflammatory activity by regulating the
secretion of inflammatory factors.

2.2 Effects on inflammatory related
signaling pathway

Studies have shown that the secretion of inflammatory cytokines
was regulated by mitogen-activated protein kinase (MAPK), nuclear
factor kappa B (NF-κB) and Janus kinase-signal transducer and
activator of transcription (JAK-STAT) signal pathways. As a key
transcription factor, NF-κB signal pathway is associated with pro-
inflammatory cytokines and related enzymes, regulating
inflammation, immune response, cell division and apoptosis, and
playing a crucial role in host defense (Hu et al., 2015; Oh et al., 2019).
The MAPK pathway, composed of ERΚ, p38 and JNΚ proteins, is
another important signaling pathway that participates in the
regulation of inflammatory process through pro-inflammatory
mediators and cytokines (Xu J. et al., 2021). JAK-STAT signaling
pathway also plays a significant role in regulating the inflammatory
response (Schindler et al., 2007). The anti-inflammatory effects of
edible fungi polysaccharides are closely related to these signaling
pathway. For instance, a proteoglycan LEPS1 (100, 200, 400 μg/mL)
from Lentinus edodes inhibited the secretion of factors (NO, IL-1β,
IL-6 and TNF-α) by acting on p38 MAPK (p38MAPK) and JAK-
STAT1 signaling pathways in LPS-induced RAW264.7 cells (Zhang
et al., 2023). WPEP and NPEP from P. eryngii significantly inhibited
LPS-induced inflammation in RAW264.7 macrophages by
regulating the production of NO, prostaglandin E2 (PGE-2), IL-
1β, TNF-α and IL-6, which was related to MAPK and NF-κB
signaling pathways (Ma et al., 2020). A exopolysaccharide EPS
produced by the medicinal fungus Cordyceps sinensis Cs-HK1
significantly inhibited the secretion of NO, TNF-α and IL-1β in

LPS-induced THP-1 and RAW264.7 cells, likely related to the
inhibition of NF-kB signaling pathway. EPS also effectively
inhibited the expression of TNF-α, IL-1β, IL-10 and inducible
nitric oxide synthase (iNOS) in LPS-induced acute intestinal
injury in mice, alleviating intestinal injury (Li L. Q. et al., 2020).

Immunocyte-involved inflammation is thought to regulate the
damage associated with various diseases. Oxidative stress, initiated
by oxidants such as LPS and reactive oxygen species (ROS), is closely
related to chronic inflammation. Additionally, NF-κB signaling
pathway and NOD-like receptor thermal protein domain
associated protein 3 (NLRP3) inflammasome activation are key
mechanisms that regulate the expression of inflammatory
cytokines (Du et al., 2019; Hung et al., 2019). A polysaccharide
fraction from Craterellus cornucopioides (CCPP-1) inhibited LPS-
induced accumulation of ROS and NO, reduced the production of
TNF-α, IL-1β and IL-18, and the expression of iNOS. The
mechanism was related to its inhibition of the NF-κB signaling
pathway and the activation of NLRP3 inflammasome (Xu
J. J. et al., 2021).

Polysacchadrides FVP and FFVP from Fermented Flammulina
velutipes inhibited the secretion and expression of IL-1β, IL-6, IL-18
and TNF-β in colon tissue, and significantly decreased the
expression of NLRP3, ASC, Caspase-1 and IL-1β protein in LPS-
induced mice model, indicating the anti-inflammatory activity was
related to inbibition of the NLRP3 signaling pathway (Ma et al.,
2022). Polysaccharide from P. citrinopileatus (PCPS) inhibited the
secretion of pro-inflammatory cytokines and chemokines by
macrophages activated by LPS/INF-γ, and promoted the
expression of anti-inflammatory cytokine IL-10. The anti-
inflammatory effect was related to Dectin-1 and TLR2 receptors
(Minato et al., 2019). There is growing evidence that certain
miRNAs play key regulatory roles in macrophage activation and
inflammation. miR-155 is closely related to the activation of NF-κB
in macrophages, playing an important role in atherosclerosis by
inhibiting B cells and promoting the activation of NF-κB in
macrophages (Elton et al., 2013; Mann et al., 2017). Tremella
fuciformis polysaccharides (TFPS) inhibited the inflammatory
response of LPS-induced macrophages by inhibiting the
expression of miR155 and the activation of NF-κB (Ruan et al.,
2018). Figure 2 summarized the MAPK, NF-κB and JAK-STAT
signaling pathways involved in the anti-inflammatory activity of
edible fungi polysaccharides.

2.3 Effects on in inflammatory bowel disease

Inflammatory bowel disease (IBD) is a chronic recurrent
inflammatory disease, including crohn disease (CD) and
ulcerative colitis (UC). Whlie the pathogenesis of IBD remains
unclear, possible pathological mechanisms include immune
response disorders, abnormal production of cellular inflammatory
factors, impaired intestinal epithelial barrier function and
disturbances of intestinal flora (Bisgaard et al., 2022). Edible
fungi polysaccharides have been found to relieve intestinal
inflammation by regulating the intestinal mucosal barrier. Both
intestinal epithelial barrier function and inflammation play
crucial roles in the occurrence and development of IBD. The
barrier function of intestinal epithelium depends on the integrity
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of intestinal epithelial cells. Excessive apoptosis of these cells can
compromise the barrier, allowing bacteria from the lumen to
penetrate the intestinal wall and even bloodstream, potentially

leading to septicemia and an inflammatory cascade (Chang,
2020). The intestinal mucosal barrier consists mainly of
mechanical, biological, immune and chemical barriers, with the

FIGURE 2
The signal pathways of anti-inflammatory activity of edible fungi polysaccharides.

FIGURE 3
Effect of edible fungi polysaccharides on inflammatory bowel disease.
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first three barriers being key components of intestinal mucosal
immunity. The mechanical barrier is essential for maintaining
the integrity of the intestinal mucosal barrier. The intestinal
immune barrier involves complex interactions between immune
cells and cytokines. The human gastrointestinal tract is colonized by
rich and diverse microbial communities that form gut biological
barrier and significantly influence the host’s physiology and health
(Martínez et al., 2015; Gong et al., 2016). The effect of
polysaccharides from edible fungi on inflammatory bowel disease
was illustrated in Figure 3.

2.3.1 Effect on intestinal mechanical barrier
Intestinal epithelial cells (IECs) serve as physical and external

barriers. Under specific conditions, IECs produce signal molecules
such as cytokines to prevent pathogenic microorganisms from
entering the intestinal tract. Research has demonstrated that LPS
activate Toll-like receptors on IECs, thereby triggering the NF-κB
transcription factor pathway, and leading to excessive production of
TNF-α, IL-6 and IL-8, which can damage IECs (Omonijo et al., 2019;
Kayama et al., 2020). Edible fungi polysaccharides exhibit protective
effects on intestinal barrier. Polysaccharide from G. lucidum spores
have been shown to mitigate paclitaxel-induced intestinal barrier
injury by reversing microtubule polymerization and inhibiting
apoptosis (Li D. et al., 2020). Furthermore, a water-soluble
polysaccharide (GLSP) from G. lucidum demonstrated potent anti-
inflammatory activity by inhibiting the excessive production of NO,
IL-6 and IL-1β in IEC-6 cells induced by LPS, suggesting the potential
of GLSP in protecting the gut barrier (Wen et al., 2022).

2.3.2 Effect on gut immunity
The host immune system also plays a crucial role in the

development of IBD. Previous studies have shown that EP-1
effectively alleviates symptoms in acetic acid-induced UC rats by
reducing IL-1 and IL-6 levels, increasing superoxide dismutase
(SOD) levels and decreasing malondialdehyde (MDA) levels. It
also lowers complement 3 (C3) and IgM levels, demonstrating
anti-inflammatory, antioxidant and immune-enhancing activities
(Shao et al., 2019). WPEP has been found to significantly reverse
symptoms of colitis induced by dextran sulfate sodium (DSS) in
mice. It reduces the concentration of pro-inflammatory cytokines
and the expression of pro-inflammatory proteins, increases colon
length, improves histology. These effects are associated with reduced
accumulation of CD45+ immune cells, CD45+F4/80 + macrophages
and CD45+ Gr1+ neutrophils (Ma et al., 2021). Studies have proved
that Foxp3+T cells can inhibit inflammation and the production of
IgA. T. fuciformis polysaccharides (TPs) have shown a protective
effect against DSS-induced colitis in mice by regulating immune
system. This effect involves reducing the Foxp3+T cells and IgA-
coated bacteria, decreasing pro-inflammatory cytokines, and
enhancing anti-inflammatory cytokines (Xu Y. et al., 2021).

2.3.3 Effect on intestinal microbiota-related IBD
Due to the absence of carbohydrate-active enzymes, most

polysaccharides cannot be directly digested or absorbed by the
body. Instead, their primary activity occurs through the
fermentation by intestinal microorganisms (Kong et al., 2016; Ma
et al., 2017). Abnormal changes in intestinal microflora can induce
inflammation and exacerbate various inflammatory diseases

(Schippa and Conte, 2014; Zuo and Ng, 2018). Edible fungi
polysaccharides have been shown to regulate intestinal health by
modulating intestinal microorganisms. For example, Scorias
spongiosa polysaccharides SSPs have demonstrated a capacity to
decrease the levels of IL-1β, IL-6 and TNF-α, while increasing IL-10
level to enhance anti-inflammation abilitiy. They also alter microbial
community and composition by increasing the abundances of
Firmicutes, Campilobacterota, Desulfobacterota, Proteobacteria,
Actinobacteria, and Fusobacteria, Bacteroidetes, and
Verrucomicrobia, while decreasing Verrucomicrobiota,
Bacteroidota, Patescibacteria, and Synergistota in C57BL/6J mice
(Xu Y. et al., 2022). Lentinan have been observed to inhibit the
expression of cytokines (TGF-β, TNF-α, IL-1β, IL-6 and IL-8),
attenuate IκBα degradation in LPS-induced inflammatory
response in juvenile taimen intestine. Additionally, Lentinan
increase the relative abundance of beneficial bacteria such as
Lactobacillaceae, Lachnospiraceae and Ruminococcaceae while
reducing harmful bacteria like Enterobacteriaceae,
Fusobacteriaceae and Flavobacteriaceae. These effects suggest that
the anti-inflammatory properties may correlate with NF-κB
signaling pathway and improvement of intestinal microflora (Ren
et al., 2019). The inhibitory effect of WPEP on DSS-induced colitis
in mice is closely associated with intestinal microflora imbalance. It
partially reverses this imbalance by decreasing the abundance of
Ackermanella myxophilus and Clostridium cocleatum, while
increasing Bifidobacterium pseudocolon, Lactobacillus,
Lactobacillus saliva and Bromotococcus abundance (Ma et al.,
2021). Similarly, TPS has shown significant ability to increase
intestinal community diversity and restore the relative abundance
of Lactobacillus, Odoribacter, Helicobacter, Ruminococcaceae, and
Marinifilaceae in DSS-induced colitis in mice (Xu Y. et al., 2021).

Polysaccharides serve as an energy source for intestinal
microorganisms, promote their proliferating and the production
of beneficial compounds. The metabolization of polysaccharides by
intestinal flora generates short-chain fatty acids (SCFAs), which
possess immunomodulatory and anti-inflammatory activities
critical for maintaining intestinal homeostasis, regulating immune
function, and mitigating intestinal inflammation (Venegas et al.,
2019). SCFAs help maintain a low pH environment that inhibits
pathogen growth and stimulates the growth of butyric acid-
producing bacteria, thereby reinforcing intestinal immune
barriers (Gonçalves and Martel, 2016). For example, G. lucidum
polysaccharide (GLP) have shown potential in alleviating DSS-
induced colitis in mice by increasing SCFAs-producing bacteria,
reducing pathogens in the small intestine and cecum, and enhancing
SCFAs production (acetic acid, propionic acid and butyric acid).
GLP also regulated the expression of genes involved in six
inflammation-related KEGG pathways, thereby enhancing
immunity, reducing inflammatory response and potentially
lowering the risk of colon cancer (Xie et al., 2019). Similarly, the
starch-free β-type glycosidic polysaccharide FVP from F. velutipes
exerted protective effects in DSS-induced UC mice. FVP regulated
the relative mRNA expression of cytokines (TNF-α, IFN-γ, IL-1β,
IL-6, MCP-1 and MIP-1α) and tight junction proteins (caludin-1,
occluding and zonulae occludens-1), modified intestinal microflora,
and increased levels of acetic acid, propionic acid and n-butyric acid
(Zhao et al., 2020). Administration of FVP (50 mg/kg and
100 mg/kg) reduced inflammatory response in DSS-induced
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colitis, significantly inhibited myeloperoxidase (MPO) activity,
decreased levels of DAO and NO, and effectively restored the
metabolic balance of intestinal microorganisms, especially
promoting butyric acid production. These actions contribute to
down-regulating the Toll-like receptor 4 (TLR4)/NF-κB
inflammatory signaling pathway, thus improving colitis
symptoms (Zhang et al., 2020).

SCFAs exert their immunomodulatory and anti-inflammatory
effects by inhibiting histone deacetylases and activating G protein-
coupled receptors (Gpr) such as Gpr43 and Gpr109a on the surface
of intestinal epithelial cells and immune cells (Kim, 2018). These
actions are crucial for maintaining intestinal homeostasis and
controlling inflammation. For example, EP-1 has been shown to
effectively alleviate acetic acid-induced UC in rats by regulating
intestinal microflora. EP-1 also increased the relative proportions of
acetic acid and butyric acid in feces and inhibited the expression of
Gpr41 and Gpr43 (Shao et al., 2019). Similarly, the
heteropolysaccharide FVP from F. velutipes demonstrated anti-
inflammatory properties by inhibiting intestinal inflammation,
regulating intestinal permeability, and reducing intestinal injury.
FVP also prevented the downregulation of tight junction genes
(Occludin and Claudin-1) and Gpr43 and Gpr109a induced by
Cd. Moreover, PVP altered intestinal flora composition, and
enhanced SCFAs production. These mechanisms collectively
contributed to FVP’s ability to mitigate CdCl2-induced intestinal
toxicity and damage by modulating SCFA-mediated intestinal
inflammation and energy metabolism related to intestinal
microbiota (Hao et al., 2023).

2.3.4 Other effect on IBD
A caspase-independent form programmed cell death known as

necroptosis has been identified as playing a significant role in in the
pathogenesis of IBD (Rosenbaum et al., 2010). Polysaccharides
extracted from L. edodes have shown dose-dependent inhibition of
DSS-induced colitis in mice and have been observed to suppress
necrotic cell death in Caco-2 cells. Notably, these polysaccharides
exerted pronounced inhibitory effect on the necroptosis signaling
cascade involving receptor-interacting protein kinase receptor-
interacting protein kinase 1/receptor-interacting protein kinase 3/
mixed kinase-region-like proteins (RIPK1-RIPK3-MLKL), resulting
in decreased levels of phosphorylated MLKL in colitis mice. This
inhibition of necroptotic cell death in the colon might contribute to
the anti-inflammatory effects of L. edodes polysaccharides (Alagbaos
and Mizuno, 2021). Furthermore, L. edodes polysaccharides have been
shown to mitigate weight loss and reduce the expression of pro-
inflammatory cytokines such as TNF-α, IL-6, IL-1β and IFN-γ in
DSS-induced colitis in mice, suggesting their potential therapeutic
efficacy in colitis treatment. Additionlly, evidence indicated that
necroptosis might be linked to the expression of pro-inflammatory
cytokines, further underscoring the anti-inflammatory mechanisms
(Alagbaoso and Mizuno, 2022).

2.4 Effects on inflammation related diseases

2.4.1 Effect on inflammation of liver injury
The Liver, a crucial organ in the human body, is susceptible to

damage from toxic substances and drugs (Asrani et al., 2019). In recent

years, chemical-induced liver injury has become increasingly significant
in term of its impact on human health (Meng et al., 2018b). Studies have
consistently shown that acute liver injury is often involved excessive
oxidative stress and inflammatory responses (Dai et al., 2021; Yan et al.,
2023). Tetrachloromethane (CCl4) is well-known environmental toxin
widely used to induce experimental liver damage due to its ability to
induce oxidative stress and inflammation (Liu et al., 2017; Wang et al.,
2022). Edible fungi polysaccharides have demonstrated protective
effects against CCl4-induced liver injury. For example, Morchella
importuna polysaccharides (Mw 35.54 kDa) and F. velutipes
polysaccharides (FVPs) have shown to mitigate CCl4-induced liver
injury by enhancing antioxidant defenses and reducing inflammatory
(Xu et al., 2021; Xu Y. et al., 2022; Xu et al., 2022 Y. Y.). P. ostreatus
polysaccharide POP has exhibited hepatoprotective effects against CCl4-
induced acute lung injury (ALI), attributed to its antioxidant properties
that regulate metabolic pathway disorders and mitigate liver
mitochondrial apoptosis (Zhu et al., 2019). Additionally,
phosphorylated POP (PPOP) has shown stronger protective effects
compared to POP, possibly through scavenging free radicals, preventing
lipid peroxidation, and enhancing the endogenous antioxidant defense
system (Duan et al., 2020). Abnormal activation of the
NLRP3 inflammasome, leading to the release of pro-inflammatory
cytokines, played a significant role in various types of ALI (Shao
et al., 2020; Yu et al., 2023). G. lucidum polysaccharides (GLPS)
have also demonstrated anti-inflammatory and hepatoprotective
effects against CCl4-induced liver injury by inhibiting the inhibiting
of NLRP3 activation, reducing inflammation, and inhibiting lipid
peroxidation induced by free radicals (Chen et al., 2019).

Certainly, various factors such as alcohol, DSS and LPS can cause
liver injury, with oxidative stress and inflammation being pathological
mechanisms. For example, a heteropolysaccharide (EPS) from P.
geesteranus has been shown to protect against alcohol-induced liver
injury. The protective effect is likely achieved through enhancing
antioxidant defenses and reducing anti-inflammatoion (Song et al.,
2018). Similarly, a hepatoprotective polysaccharide PSP-1b1 (80 and
160 mg/kg/day) from Coriolus versicolor demonstrated protective
effects against alcohol-induced liver injury by mitigating oxidative
stress and modulating immune responses (Wang et al., 2019). M.
esculenta polysaccharides have also bene studied for their protective
effects against DSS-induced liver injury, primarily attributed to their
ability to reduce oxidative stress, inhibit inflammation and enhance the
activity of liver antioxidant enzymes (Chen S. T. et al., 2023).
Additionally, GFP has shown efficacy in reducing liver injury
induced by LPS/D-galactosamine (D-GalN) in mice. Its protective
mechanism involved antioxidant defense and anti-inflammatory
effects, likely mediated through inhibition of the miR-122/nuclear
factor erythroid 2-related factor 2 (Nrf2)/anti-oxidative response
element (ARE) pathway (Meng et al., 2021).

Dysregulation of gut microbes can compromise the integrity of
intestinal barrier, allowing translocated bacteria and intestinal by
products to enter the liver through the portal vein. This process
increases oxidative stress and inflammation in the liver, posing a
threat to live health and function. Increasing evidence suggests that
gut microbes play a crucial role in protective effects of natural
products on liver health (Meng et al., 2018a). For example, FVPs
has been shown to alter the composition of intestinal microflora. It
regulated bacterial pathways involved in fatty acid biosynthesis,
tryptophan metabolism and exogenous metabolism via cytochrome
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P450, thereby protecting the liver from the toxic effects of CCl4 (Xu Y.
Y. et al., 2022). Similarly, Coprinus comatus polysaccharide (CCP) has
demonstrated the ability to modify the structure of intestinal flora. It
inhibited the proliferation of Clostridium perfringens,
Enterobacteriaceae and Enterococcus, while promoting the growth
of Lactobacillus and Bifidobacterium in the gut of ALD mice. This
modulation contributed to its anti-alcoholic liver injury effects (Yu
et al., 2024). The relevant hepatoprotective effect was shown
in Figure 4.

2.4.2 Effect on inflammation of pneumonia
Since the outbreak of COVID-19 in 2019, there have been more

than 500 million clinically confirmed cases worldwide. The outbreak of
COVID-19 has led to significant increase in the number of acute
pneumonia cases (Song P. P. et al., 2020). Acute pneumonia is a
respiratory disease characterized by diffuse inflammatory lung injury,
which can be caused by lung tissue contusion, bacterial, or virus
infections. Activation of immune cells and excessive release of pro-
inflammatory mediators are fundamental aspects of its pathogenesis
(Bakowitz et al., 2012; He et al., 2021). LPS, as an endotoxin, is used to
induce acute lung injury, triggering robust inflammation and immune
response. Polysaccharides of edible fungi have shown protective effects
against LPS-induced lung injury. For instance, G. lucidum
polysaccharides (GLP, 25, 50 and 100 mg/kg/d) inhibited
inflammatory cells infiltration, reduced the release of granulocyte
macrophage-colony stimulating factor (GM-CSF) and IL-6, and
decreased gene expression of IL-1β, IL-6, TNF-α and serum amyloid
A3 (Saa3). Additionally, GLP inhibited neuropilin-1 (Nrp1) activation,
upregulated B-cell lymphoma-2/Bcl-2-associated X protein (Bcl2/Bax)
and Lc3 levels, and downregulated C-Caspase3/Caspase3 and
p62 expression. These actions suggested that GLP protected against
pneumonia by blocking inflammatory cells infiltration, suppressing
cytokines secretion, inhibiting Nrp1 activation, regulating alveolar cell
apoptosis, andmodulating autophagy (Zhang X. L. et al., 2022). Residue
polysaccharides (RPS) from L. edodes residue powder and its
hydrolysates, acidic-RPS (ARPS) and enzymatic-RPS (ERPS), also

showed lung protective effects in LPS-induced lung injured in mice.
ERPS showed superior effects by reducing lung wet-to-dry weight ratio,
inflammatory factors (TNF-α, IL-6, and IL-1β), complement C3 (C3)
and high-sensitivity C-reactive protein (hs-CRP), while mitigating
oxidative stress (Ren et al., 2018). L. edodes polysaccharides (PLE),
primarily composed of Glc, Gal, GlcA, and Man, protected lung tissue
by reducing hs-CRP and C3 levels, inhibiting gamma-
glutamyltransferase (GGT) activity, decreasing TNF-α, IL-1β and IL-
6 levels, and enhancing antioxidant enzymes SOD and catalase (CAT)
activities (Zhang Y. W. et al., 2022).

Inhalation of fine particulate matter (PM2.5) can induce
systemic inflammation, thereby increasing the risk of lung
injury (Yan et al., 2017). Alveolar macrophages, upon
encountering PM2.5 particles in the lungs, become activated and
release cytokines and chemokines that recruit inflammatory cells
to the lung, leading to inflammation (Bekki et al., 2016). NF-κB is a
key transcription factor dimer that regulates the expression of pro-
inflammatory cytokines such as TNF-α and IL-1β, and it is central
to the pathogenesis of PM2.5-induced lung disease (Li et al., 2018).
Sulfated polysaccharide from M. esculenta (SFMP-1) has shown
protective effects against cell death, apoptosis, production of TNF-
α and IL-1β in rat alveolar macrophages (NR8383 cells) induced by
PM2.5, Its mechanism was involved inhibition of NF-κB activation
(Li et al., 2019). PM2.5 exposure also induces antioxidant damage.
Trametes orientalis polysaccharide (TOP-2) attenuated PM2.5-
induced lung injury in mice through its antioxidant and anti-
inflammatory effects, partly mediated by activating Nrf2/Heme
oxygenase-1 (HO-1) pathway and inhibiting
NLRP3 inflammasome (Zheng et al., 2019). The relevant
protective effect was shown in Figure 5.

2.4.3 Effect on inflammation of obesity
Obesity is characterized by chronic low-grade inflammation, and

the relationship between chronic inflammation and obesity has been
extensively studied. Two polysaccharides (CPA-1 and CPB-2) isolated
from C. cicadae have been found to possess protective effects on HFD/

FIGURE 4
The hepatoprotective effect of edible fungi polysaccharides.
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HF-induced insulin resistance, metabolic abnormalities, hepatic
oxidative stress (MDA, GSH-Px, SOD and CAT) and inflammatory
response (TNF-α、IL-1β and IL-6) (Zhang et al., 2021). In mice fed a
high-fat diet, water-soluble glucan from Grifola frondosa (GFPA) has
demonstrated the ability to mitigate liver steatosis and inflammation,
along with promoting significant weight loss. These beneficial effects
were attributed its inhibition of chronic inflammation through the
TLR4/NF-kB signaling pathway (Jiang et al., 2022).

Intestinal microflora plays a crucial role in the onset and
progression of obesity by influencing host energy metabolism,
substrate metabolism, and inflammation. Dictyophora indusiata
polysaccharides have been shown to exert anti-obesogenic and
anti-inflammatory effects by modulating the intestinal
microbiome and inflammatory pathways in mice HFD-fed diet
(Kanwal et al., 2020). Polysaccharide extracted from the
sporoderm-broken spores of G. lucidum (BSGLP) has
demonstrated significant reduction in fat accumulation, liver
steatosis, inflammation, and hyperlipidemia in high-fat diet-fed
mice. Its effects were believed to involve regulation of the
intestinal microflora, enhancement of intestinal barrier function,
promotion of SCFAs production, activation of GPR43 and
inhibition of TLR4/myeloid differentiation factor 88 (MYD88)/
NF-κB signaling pathway (Sang et al., 2021). Polysaccharide from
Agrocybe cylindracea (ACP) has been found to ameliorate obesity in
high-fat diet-induced obese mice by significantly reducing the levels
of obesity-related TNF-α and IL-6. This effect partly results from
decreasing the abundance of Desulfovibrio and increasing the
abundance of Parabacteroides, along with related changes in
solaventivone levels (Zhu et al., 2022).

2.4.4 Effects of inflammation on other diseases
Edible fungi polysaccharides have demonstrated potential in

inhibiting periodontal inflammation, asthma, and providing renal
protection. For instance, crude polysaccharides (CGLPs) from G.

lucidum sourced from Changbai Mountain were found to regulate
the expression of IL-1β, TNF-α and IL-10 in a concentration-dependent
manner, effectively inhibiting alveolar bone loss caused by periodontitis
(Chen Z. et al., 2023). In the context of allergic asthma, C. militaris
polysaccharide CMPhas been shown by Song et al. tomitigate oxidative
stress and inflammation in mice with allergic asthma. The effect was
achieved through the activating of NRF2/HO-1 signaling pathway and
inhibiting of NF-κB signaling pathway. Importantly, these mechanisms
were closely linked to maintaining the stability of intestinal microflora,
highlighting the multifaceted protective roles of polysaccharides from
edible fungi (Song et al., 2023).

ASMCP extracted from spent mushroom compost of L. edodes
has been shown to decrease the levels of TNF-α, IL-6 and IL-1β,
demonstrating potential anti-inflammatory activity on LPS-induced
renal injury in mice (Song et al., 2020b). C. cicadae polysaccharide
CCP has been reported to alleviate renal injury and tubulointerstitial
fibrosis in rats with high-fat diet and STZ-induced diabetic
nephropathy. This effect was achieved by CCP inhibiting the
TLR4/NF-κB and TGF-β1/Smad signaling pathways, thereby
reducing inflammatory reactions and modulating intestinal
microflora (Yang et al., 2020). Additionally, crude
polysaccharides from Floccularia luteovirens (FLPs) have shown
effectiveness in improving renal tissue injury induced by high
glucose. They targeted and regulated phosphorylated glycogen
synthase kinase3β (GSK-3β), and inhibited the accumulation of
inflammatory factors, highlighting their potential in renal protection
(Wang et al., 2023).

3 Structure-anti-inflammatory activity
relationship

The biological activities of polysaccharides are decisively
influenced by their structures and physicochemical properties.

FIGURE 5
The protective effect of edible fungi polysaccharides on lung injury.
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Key factors include molecular weight, monosaccharide
composition, type of linkage, degree of branching, conformation
and solubility, all of which contribute to their anti-inflammatory
activities. These structural attributes determine how
polysaccharides interact with biological systems, influencing
their efficacy in modulating immune responses and
inflammatory processes. Understanding these structural features
are crucial for elucidating and optimizing the therapeutic potential
of polysaccharides in various health applications.

Research indicates that the specific glucans’ recognition and
binding by immune cells can lead to subsequent
immunomodulatory and anti-inflammatory activities (Camilli
et al., 2018; Nakashima et al., 2018). Factors such as molecular
weight and connection mode of polysaccharides are crucial in
determining their receptor binding properties and anti-
inflammatory activities. For example, the high molecular
weight fraction of G. frondosa (GF70-F1, 1,260 kDa) has been
shown to inhibit TNF-α and IL-6 production, along with NF-κB
activation in LPS-induced RAW264.7 cells. This activity was
likely mediated through interaction with TLR2 receptors
rather than Dectin-1 or CR3 receptors due to its (1→6)-
branched (1→4)-β-D-glucan structure (Su et al., 2020). In
another study, polysaccharides (wHEP-1, wHEP-2 and wHEP-
3) isolated from the mycelium of Hericium erinaceus
demonstrated varied anti-inflammatory activities, with the
high molecular weight wHEP-1 exhibiting the most potent
effects in LPS-induced Caco-2 cells and a rat model (Wang
et al., 2021). Similarly, β-Glucan H6PC20 (2,390 kDa) and α-
heteropolysaccharide HPB-3 (15 kDa) isolated from H. erinaceus
showed protective effects against alcoholic gastric ulcer in rats,
with HPB-3 focusing specifically on anti-inflammation actions
(Chen et al., 2020). Furthermore, Ma et al. (2020) have
highlighted that low molecular weight FFVP (15,702 Da)
exhibited was higher anti-inflammatory ability than that of
high molecular weight FVP (15,961 Da). These findings
underscore the importance of polysaccharide structural
characteristics in influencing their biological activities,
particularly in modulating inflammation through various
receptor interactions.

The conformations of polysaccharides play significant roles in
their anti-inflammatory activities. Yang et al., confirmed this by
studying water-soluble indigestible polysaccharide NDPs (24.4 kDa)
from C. cicadae. They found that NDPs laking a triple helix
conformation strongly inhibited the production of NO, IL-1β and
TNF-α by LPS-stimulated RAW264.7 macrophages compared to the
crude polysaccharide CP (3.1 kDa, 21.5 kDa, 678.2 kDa) that
possessed a triple helix conformation (Yang C. H. et al., 2019).
This suggests that the absence of a triple helix conformation in
NDPs enhances their anti-inflammatory effectiveness, highlighting
the importance of polysaccharide conformation in influencing their
biological activities.

The monosaccharide composition of polysaccharides indeed
plays a significant role in their anti-inflammatory activities. For
example, in the case of polysaccharides derived from the residue of
L. edodes (RPS, ARPS, and ERPS), they have shown notable
pulmonary protective effects. Among these, ERPS demonstrated
superior efficacy, with Rha presumed to be essential for its lung
protective activity (Ren et al., 2018). This highlights the importance

of specific monosaccharide compositions in influencing the
biological properties and therapeutic potential of polysaccharides.

Chemical modification and the addition of new chemical groups
can indeed enhance the activities of polysaccharides or impart themwith
new therapeutic properties. For example, in studies on polysaccharides
fromM. angusticeps Peck, phosphorylation (PMEP) and three acetylated
polysaccharides Ac-PMEP1-3 were employed to modify their structures.
Among these, Ac-PMEP3, with a highly branched structure,
demonstrated stronger anti-inflammatory effects by inhibiting the
excessive production of NO and TNF-α in LPS-induced
RAW264.7 cells (Yang Y. X. et al., 2019). Similarly, acetylated
polysaccharide AcPPS from P. ostreatus exhibited lung protective
effects in zymosan-induced acute lung injury mice, with the
mechanism linked to the NF-κB signaling pathway (Song et al.,
2020c). Phosphorylated polysaccharides PMPS from P. djamor
mycelia showed antioxidant, anti-inflammatory, and anti-fibrotic
effects in adenine-induced chronic renal failure (CRF) mice,
highlighting phosphorylation as an effective modification method (Li
et al., 2021). Additionally, sulfated polysaccharide from L. edodes (SPLE),
characterized by sulfation of its β-glucan structure, demonstrated anti-
inflammatory effects in zymosan-induced multiple organ dysfunction
syndrome in mice (Sun et al., 2021). These examples underscore how
chemical modifications can enhance or alter the biological activities of
polysaccharides, expanding their therapeutic potential in various
disease contexts.

4 Conclusion and further perspective

Polysaccharides derived from edible fungi have garnered significant
scholarly interest due to their safety profile and promising biological
activities. This paper comprehensively reviews their anti-inflammatory
activities, mechanism of action, and the effects on related inflammatory
diseases. Special emphasis is placed on exploring the relationship
between polysaccharide structure and anti-inflammatory activity. By
synthesizing current knowledge, this review aims to deepen our
understanding of how edible fungi polysaccharides can be applied in
inflammation-related contexts. Ultimately, this research is expected to
catalyze advancements in the development and utilization of edible
fungi for therapeutic purposes.

Edible fungi polysaccharides exert their anti-inflammatory effects by
inhibiting the release of relevant factors through interactions with
membrane receptors and suppression of specific signaling pathways.
Additionally, they can mitigate inflammation by enhancing intestinal
mechanical and intestinal immune barriers, as well as modulating
intestinal microorganisms. These polysaccharides have shown
potential in addressing inflammation-related conditions such as liver
injury, obesity, asthma, glomerulonephritis, and periodontitis. However,
most research on their anti-inflammatory activities has been conducted
in cell cultures or animal models, whichmay not fully reflect their effects
in humans. Therefore, further clinical studies are needed to validate their
therapeutic potential in human applications. The precise mechanisms
underlying the anti-inflammatory actions of edible fungi polysaccharides
remain incompletely understood. It is anticipated that future research
will uncover additional signaling pathways and molecular targets
relevant to inflammation. Structure-activity relationship analyses
indicate that the structural characteristics of polysaccharides
significantly influence their anti-inflammatory activities. Additionally,
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anti-inflammatory activities of polysaccharides also depend on the
degradation, absorption and utilization processes. The complex
structure of polysaccharides allows them to evade the action of
human digestive enzymes, thereby forming a specific digestive
pattern. Therefore, understanding the metabolic process of
polysaccharides is of great significance for exploring the benefits and
scientific applications of polysaccharides on host health. However, the
complexity of polysaccharide structures presents challenges in fully
elucidating these relationships. Therefore, there is a critical need for
continued investigation into the structure-function dynamics of
polysaccharides, with a focus on structural modifications to optimize
their therapeutic efficacy. This approach holds promise for maximizing
the beneficial effects of edible fungi polysaccharides in combating
inflammation and advancing their clinical applications.
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