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Background: Intervertebral disc degeneration (IDD) can lead to disc herniation
and spinal instability, sometimes requiring surgical intervention. Currently,
estrogen has a potential protective effect on IDD, and estrogen is associated
with an increased risk of some cancers, such as breast and endometrial cancer.
Therefore, it is important to identify natural compounds that estrogen analogues
treat IDD while reducing the risk of tumor development.

Objective: This study aims to explore a natural metabolic treatment strategy by
targeting CRISP2 with the natural compound Hesperidin to mimic the protective
effects of estrogen on IDD and reduce the risk of tumor development.

Methods: Microarray data from healthy volunteers and IDD patients were
extracted from the Gene Expression Omnibus (GEO) database, and RNA
sequencing and clinical data from various cancer types were analyzed.
Differentially expressed genes (DEGs) were identified using the Bioconductor
Limma package, followed by principal component analysis, volcano plot, and
heatmap visualization. Additionally, GeneOntology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) analyses, CIBERSORT and ssGSEA immune cell
infiltration assessments, survival analysis, metabolite enrichment analysis, and
molecular docking were performed. Hesperidin’s interaction with CRISP2 was
further validated through molecular docking and experimental studies.

Results: Hesperidin significantly reduced the expression of CRISP2, iNOS, and
COX2 in IDD models, decreased reactive oxygen species (ROS) and apoptosis,
and diminished inflammatorymarkers. CIBERSORT and ssGSEA analyses revealed
a correlation between CRISP2 and immune cell infiltration. Survival analysis
demonstrated that CRISP2 expression levels were associated with patient
survival across various cancer types. Hesperidin was found to mimic
estrogen’s effects on IDD and reduce tumor progression. Cell culture and
experimental validation confirmed Hesperidin’s protective effects on nucleus
pulposus cells (NPCs).

Conclusion: Hesperidin, as a potential natural metabolic regulator, not only has
therapeutic effects on IDD but may also synergize with estrogen therapy to
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promote spinal health without increasing cancer risk. This study presents a new
clinical approach for IDD treatment and lays the foundation for further drug
development and experimental research.
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natural metabolic treatment

Highlights

• Discovery of Hesperidin as a natural metabolic regulator
targeting CRISP2 to mimic estrogen’s protective effects on
Intervertebral Disc Degeneration (IDD) while reducing tumor
progression risk.

• Comprehensive bioinformatics analysis reveals Hesperidin’s
anti-inflammatory and antioxidative properties, reducing
CRISP2, iNOS, COX2 expression, and reactive oxygen
species (ROS) in IDD models.

• Experimental validation confirms Hesperidin’s protective
effects on nucleus pulposus cells (NPCs), highlighting its
potential as a safer alternative to estrogen therapy for
spinal health.

Background

Intervertebral Disc Degeneration (IDD) is a significant
pathological condition characterized by the deterioration of disc

GRAPHICAL ABSTRACT
The graphic abstract illustrates a study investigating the therapeutic potential of Hesperidin in targeting the CRISP2 gene to treat intervertebral disc
degeneration (IDD) while mitigating cancer risks associated with estrogen. The workflow begins with differential gene expression and enriched pathway
analysis in IDD, breast cancer (BRCA), and estrogen receptor (ER) pathways. An intersection analysis reveals overlapping genes, highlighting CRISP2 as a
significant target. Hesperidin emerges as a promising natural metabolic regulator for treating IDD and potentially collaborating with estrogen
therapy to improve spinal health while minimizing cancer risks, paving the way for innovative therapeutic approaches.
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structure and function, often resulting in lower back pain and nerve
root compression (Ravalli and Musumeci, 2021; Ravalli and
Musumeci, 2022). Globally, about 80% of people experience
lower back pain during their lifetime, with IDD being a major
contributor (Schochat and Jäckel, 1998; Hoy et al., 2010). Despite its
prevalence, the etiology and pathomechanisms of IDD remain
incompletely understood, underscoring the need for in-depth
resreach to advance clinical treatments (Oichi et al., 2020; Iwase
et al., 2017). The degenerative process of IDD includes the
destruction of the extracellular matrix, loss of disc height, and
inflammation, often leading to disc herniation and spinal
instability, sometimes necessitating surgical intervention (Yao
et al., 2023; Kos et al., 2019).

Current treatment options for IDD are primarily symptomatic
and lack efficacy in halting or reversing the degenerative process
(Krut et al., 2021). Thus, there is a pressing need for novel
therapeutic approaches that address the underlying molecular
mechanisms of IDD (Kamali et al., 2021; Fuertes et al., 2019).
Understanding the mechanisms of inflammation and its
regulation could provide insights into potential therapeutic
strategies for IDD (Liu Z. et al., 2023; Morsi et al., 2015). The
systemic immune inflammation index has been shown to predict
adverse cardiovascular outcomes, highlighting the critical role of
inflammation in disease progression (Yang et al., 2020; Moriya,
2019). Estrogen supplementation has been recognized for its
potential protective effects against IDD (Christianson et al., 2015;
Howard and Rossouw, 2013). Estrogen’s interaction with specific
receptors is thought to play a crucial role in maintaining disc
integrity (Song et al., 2017; Sheng et al., 2018). However, the use
of estrogen is associated with increased risks of certain cancers, such
as breast and endometrial cancers, presenting a significant challenge
in therapeutic approaches involving estrogen. This paradox
necessitates finding alternative solutions that provide the
protective benefits of estrogen while mitigating the associated
cancer risks (Mueck and Seeger, 2015).

A promising approach lies in identifying natural compounds
that could mimic the protective effects of estrogen on IDD while
reducing the risk of tumor development (Asare et al., 2017).
Human metabolites, as endogenous compounds, offer a potential
avenue for such interventions (Descamps et al., 2019; Gonzalez-
Covarrubias et al., 2022). Several studies have investigated the
relationship between estrogen, gene expression in IDD, and
cancer risks (Tanaka et al., 2007). However, comprehensive
research exploring human metabolites that could serve both
protective and anti-tumor roles is lacking. Previous research
has primarily focused on singular aspects of estrogen’s effects,
either on IDD or cancer, without a holistic approach considering
both outcomes.

Cancer is a complex disease involving multiple processes,
including epithelial-mesenchymal transition (EMT) (Zhang and
Weinberg, 2018). Insights into the mechanism and dynamic
regulation of EMT in ovarian cancer (Prayudi et al., 2023) may
help us understand the increased cancer risk associated with
estrogen therapy. This understanding is crucial for developing
further therapeutic strategies (Fan et al., 2020). Long non-coding
RNAs (lncRNAs) have emerged as promising therapeutic targets
and biomarkers for ischemic stroke, with potential implications for
cancer therapy (Fan et al., 2020; Zhong et al., 2023).

Recent advances in disc biology have highlighted the role of
metabolic dysregulation in IDD pathogenesis (Zhu et al., 2024; Che
et al., 2022). Metabolic regulators can restore the balance between
anabolic and catabolic activities within disc cells, potentially serving
as therapeutic agents (Byrnes et al., 2022). Natural compounds are
particularly noteworthy for their safety and multi-target effects.
Recent studies have emphasized the potential of natural
compounds in treating various diseases. However, specific
metabolic regulators that effectively combat disc degeneration
remain to be fully elucidated (Diederich, 2020).

Emerging research suggests that certain natural metabolic
modulators can mimic estrogen’s effects, offering dual benefits in
treating IDD and reducing cancer risk (Jordan and O’Malley, 2007).
Nevertheless, the specific mechanisms by which these modulators
impact disc health and tumor progression are not fully understood
(Heggli et al., 2024; Borza and Pozzi, 2014). Additionally, there is a
lack of comprehensive bioinformatics analysis in the current
literature to identify and validate these modulators (Cox, 2015).
Therefore, identifying natural compounds that can mimic estrogen’s
therapeutic effects on IDD while minimizing its oncogenic potential
is of significant clinical importance.

Bioinformatics and multi-omics approaches play an increasingly
vital role in disease treatment research, providing tools to uncover
genetic and epigenetic modifications involved in disease progression
(Dar et al., 2023; Lu et al., 2015; Sun and Hu, 2016). Through big
data analysis and biomarker identification, researchers can gain
deeper insights into disease mechanisms and innovate new
therapeutic approaches (Liu, 2024; Berger et al., 2023). Studies on
predictive factors for empty follicle syndrome in infertile patients
undergoing assisted reproductive technology highlight the relevance
of bioinformatics in disease risk prediction (Ali et al., 2022). The
genome-wide identification and expression analysis of ARF and
AUX/IAA gene families in soybeans offer insights into gene
expression regulation, relevant to gene expression analysis and
multi-omics studies (Ali et al., 2022; Liu et al., 2021).
Furthermore, transcriptomic analyses are crucial for
understanding the immune microenvironment’s role in the
diagnosis and prognosis of various diseases (Martio et al., 2023;
Zhou et al., 2023; Mei et al., 2024). Additionally, transcriptomic
evaluation in uncovering the role of immune microenvironment is
vital for diagnosing and prognosticating multiple diseases (Martio
et al., 2023; Wu et al., 2023; Huang et al., 2013). Recent research has
demonstrated that through precise biomolecular regulation and the
application pf specific compounds, significant biological responses
can be achieved, providing potential therapeutic targets and
strategies (Du and Liu, 2024; Yao et al., 2021; Biasutto et al.,
2019). Traditional drug formulations have also shown promise in
improving diagnostics and health management through extensive
data analysis and bioinformatics (Yao et al., 2024; Qian et al., 2019).
Bioinformatics plays a crucial role in analyzing gene expression and
regulatory mechanisms, providing essential insights into biological
processes (Du and Liu, 2024; Yan et al., 2022; Jin and Qu, 2017). In
conclusion, this research not only deepens the understanding of
molecular mechanisms but also provides a crucial foundation for
developing novel therapeutic strategies (Liang et al., 2023;Wan et al.,
2024; Liu P. et al., 2023; Chen et al., 2022).

The development of novel targeted therapeutic strategies is
expected to enhance treatment effectiveness and minimize side
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FIGURE 1
Comprehensive Evaluation of Differential Gene Expression and Enriched Pathways in Intervertebral Disc Degeneration (IDD). (A) Principal
Component Analysis (PCA) Plot: This plot demonstrates dimensionality reduction of high-dimensional expression data to highlight differences among
samples. The x-axis represents the first principal component (PC1), and the y-axis represents the second principal component (PC2). The percentages in
parentheses indicate the proportion of variance explained by each principal component. Different sample groups are represented by distinct colors
and shapes, allowing for clear visualization of group separations. (B) Volcano Plot: This visualization shows the results of differential expression analysis
performed using the limma software package. It highlights genes with significant changes in expression levels, showing 30 highly expressed genes
(upregulated, red dots) and 30 lowly expressed genes (downregulated, blue dots). The x-axis represents the log2 fold change in gene expression, and the
y-axis represents the -log10 adjusted p-value, with a threshold for significance indicated by a horizontal line. (C) Heatmap: This heatmap illustrates the
expression levels of differentially expressed genes across all samples. Each row corresponds to a gene, and each column corresponds to a sample. The
color intensity gradient from blue (indicating low expression) to red (indicating high expression) reflects the level of gene expression. The dendrogram on
the left side of the heatmap shows the hierarchical clustering of genes based their expression patterns, which helps to identify groups of geneswith similar
expression profiles. (D) GO/KEGG Enrichment Analysis of Upregulated Genes in IDD: This network visualization presents the results of Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis for genes that are upregulated in IDD. Nodes in the network
represent enriched GO terms or KEGG pathways. The size of each node indicates the number of genes involved, and the color intensity reflects the
significance of enrichment (p-value). Connections between nodes indicate shared genes or functional similarities, providing insights into the biological
processes and pathways that are activated in IDD. (E) GO/KEGG Enrichment Analysis of Downregulated Genes in IDD: Similar to panel (D), this network

(Continued )
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effects, thereby advancing precision medicine (Wang and Wang,
2024; Guan et al., 2024; Hu et al., 2024; Watanabe and Seki, 2024).
The current study aims to address these gaps by using
bioinformatics techniques to identify natural metabolic
modulators that can mimic estrogen’s therapeutic effects on IDD
while reducing tumor progression (Liao et al., 2022). Specifically, we
will analyze gene expression profiles and metabolic pathways
involved in IDD, estrogen therapy, and cancer to identify
candidate compounds (Deng et al., 2022; Boehme et al., 2009).
Subsequent experimental validation will assess the therapeutic
potential and safety of these compounds (Blass, 2015). We have
identified the compound hesperidin and key regulatory factor
Cysteine-Rich Secretory Protein 2 (CRISP2). Hesperidin is a
bioflavonoid found predominantly in citrus fruits, known for its
antioxidant and anti-inflammatory properties. Recent studies have
suggested its potential in modulating various pathological
conditions, including those involving oxidative stress and
inflammation. In the context of IDD, Hesperidin’s ability to
reduce oxidative damage and inflammatory responses could
provide a therapeutic advantage. CRISP2 is involved in cellular
processes such as proliferation, apoptosis, and extracellular matrix
maintenance. Emerging evidence suggests that CRISP2 plays a role
in maintaining disc cell integrity. Dysregulation of
CRISP2 expression has been implicated in disc degeneration,
highlighting its potential as a biomarker and therapeutic
target for IDD.

This study aims to explore the effects of Hesperidin on IDD by
examining its impact on oxidative stress and inflammation, and its
interaction with CRISP2. By elucidating these mechanisms, we seek
to establish a basis for the therapeutic potential of Hesperidin in
managing IDD and improving patient outcomes. By achieving these
objectives, this study aims to deepen the understanding of IDD
treatment and propose new therapeutic strategies that maximize
efficacy while minimizing adverse effects. The study’s findings can
inform clinical practice and policy-making, promoting the
development of more effective and safer IDD treatment modalities.

Materials and methods

Data acquisition and differential analysis

For this study, microarray data were extracted from the Gene
Expression Omnibus (GEO) database (GSE124272), comprising
samples from eight healthy volunteers and eight patients with
IDD. Additionally, RNA sequencing and clinical data from
33 different cancer types were analyzed, sourced from the BRCA-
TCGA database. Using the Bioconductor Limma package, we
identified differentially expressed genes (DEGs) from GSE124272,

applying a selection criterion of p < 0.05 and |log2 (fold change) | >
1.5. Principal component analysis (PCA) was performed to explore
the variations among the samples, and the heatmap package was
used to generate volcano and heat maps for visualizing the DEGs.

Functional and pathway correlation analysis

To comprehensively analyze the functions of the DEGs, we used
the clusterProfiler package for Gene Ontology (GO) analysis and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis. In the GO analysis, both the p-value and q-value
thresholds were set to less than 0.05. For the KEGG pathway
analysis, results were considered significantly enriched if the
q-value was below 1.00.

CIBERSORT and ssGSEA immune cell
infiltration assessment

We employed the CIBERSORT deconvolution algorithm to
estimate the abundance of 22 unique immune cell types,
assessing the proportion of various immune cells across the
16 samples in the GSE124272 dataset. Differences in immune cell
proportions between IDD and control samples were also evaluated.
Visualization was accomplished using the “corrplot” and “vioplot”
packages to create stacked bar charts, with an adjusted P-value
threshold of less than 0.05. Additionally, we calculated the Pearson
correlation coefficients between CRISP2 and various immune cell
types using the CIBERSORT method to elucidate the strength and
direction of these relationships.

Furthermore, we applied single-sample Gene Set Enrichment
Analysis (ssGSEA) to evaluate the correlation between
CRISP2 expression and different immune cell types. GSEA is a
computational approach used to assess the expression status of
specific gene sets within a sample. We first defined gene sets specific
to various immune cell types using markers from public databases
such as ImPort. Then, we calculated enrichment scores for these
gene sets in each sample using the ssGSEA algorithm, determining
the Pearson correlation coefficients between CRISP2 expression and
the enrichment scores of different immune cell types.

Survival analysis and evaluation of diagnostic
value for key genes

We utilized Kaplan-Meier survival analysis to examine the
relationship between overall survival (OS) in patients across
33 different cancer types and the expression levels of key mRNA.

FIGURE 1 (Continued)

visualization shows the enriched GO terms and KEGG pathways for genes that are downregulated in IDD. The network provides insights into the
functional implications and biological processes affected by the downregulation of genes in IDD, highlighting the pathways and functions that may be
compromised.
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FIGURE 2
Intersection Analysis and Gene Expression Profiling in IDD and Breast Cancer Subtypes. This figure integrates data extracted from the Gene
Expression Omnibus (GEO) database (GSE124272) and RNA sequencing, alongside clinical data from 33 different cancer types obtained from the BRCA-
TCGA database. (A) VennDiagram: The Venn diagram illustrates the intersection of differentially expressed genes (DEGs) among IDD, Estrogen Receptor-
positive (ER+) breast cancer, and general breast cancer gene lists. The diagram highlights both unique and shared DEGs among these conditions,
emphasizing potential molecular links between IDD and breast cancer. (B) Boxplot Analysis: The boxplot shows the expression levels of selected DEGs in
individuals above and below 60 years of age. This analysis highlights age-associated varieties in gene expression, which may contribute to the
pathophysiology of IDD and breast cancer. (C) Expression Level Comparison: This panel compares the expression levels of various DEGs in normal versus
tumor samples. Statistical significance of the differences is demonstrated, providing insights into the potential roles of these genes in tumor biology. (D)
Subtype Expression Profile: The expression of selected DEGs is depicted across Estrogen Receptor-negative (ER−) and Estrogen Receptor-positive (ER+)
breast cancer subtypes. This comparison highlights subtype-specific gene expression patterns that may inform targeted therapeutic strategies. (E)
Survival Analysis: Kaplan-Meier survival curves show the association between the expression levels of selected DEGs and patient survival, stratified by high
and low expression groups. This analysis is crucial for understanding the prognostic value of these genes in cancer. (F)Correlation Plot: This plot presents
the Pearson correlation coefficients for selected DEGs with therapeutic outcomes, providing a statistical measure of their potential predictive power in
clinical scenarios. (G) Enrichment Analysis of Genes Negatively Correlated with CRISP2: This panel displays the enriched biological processes and
pathways associated with gene sets negatively correlated with CRISP2 expression. The analysis reveals insights into the biological processes and
pathways that these genesmay influence, using GO and KEGG enrichmentmethods. (H) Enrichment Analysis of Genes Positively Correlated with CRISP2:
Similar to panel (G), this panel shows the enriched biological processes and pathways associated with gene sets positively correlated with

(Continued )
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To assess the ability of key genes to differentiate between IDD and
control samples within the GSE124272 dataset, we applied the
pROC R package to determine their diagnostic value.

Metabolite enrichment analysis via
MetaboAnalyst

This module accepts a list of compound names, concentration
data, or a concentration table. The analysis utilizes 15 libraries
containing around 13,000 biologically relevant metabolite sets,
primarily sourced from human studies and including over
1,500 chemical categories. The process begins by creating a
concentration-based analysis data object within the
MetaboAnalyst platform. Compounds are mapped to the
database using the MapData and CrossReferencing functions.
The CreateMappingResultTable function is then used to compile
the mapping results. The metabolome filter is set to include all
detected metabolites. The pathway library is configured using the
SetCurrentMsetLib function with the “ramp_path” setting. Finally,
the CalculateHyperScore function calculates enrichment scores for
the identified pathways.

Molecular docking

Compound libraries are essential tools for drug screening and
significantly influence the speed and quality of small molecule drug
development. The metabolite data for this study were sourced from
MedChemExpress LLC, and all these small molecules underwent
molecular docking and virtual screening. The analysis included
metabolite set enrichment analysis (MSEA) using MetaboAnalyst
6.0, incorporating human, mammalian, and chemical class
metabolite sets. The structure for docking CRISP2 was obtained
from the RCSB database, while the three-dimensional structures of
small molecules were downloaded from the PubChem database.
Molecular docking was performed using AutoDock Vina
1.1.2 software. Prior to docking, all receptor proteins were
prepared using the academic open-source version of PyMol. The
processed protein and small molecule PDBQT files were then input
into Vina for docking. Finally, the docking results were visualized
using PyMol academic open-source version, and detailed
visualization was performed using PLIP, an automated protein-
ligand interaction profiler (Salentin et al., 2015).

Pan-cancer expression landscape of CRISP2

In this study, we employed the Wilcoxon rank-sum test to
evaluate the significance of gene expression differences between

tumor and normal tissue samples. Data were sourced from the
TCGA project and standardized using the PanCanAtlas database.
The specific dataset, EBPlusPlusAdjustPANCAN_
IlluminaHiSeq_RNASeqV2.geneExp.tsv, was generated by the
Firehose analysis pipeline utilizing MapSplice and RSEM
algorithms. To ensure data comparability, raw data were
normalized with the upper quartile set to 1,000, and Z-Scores
were calculated to transform the data into dimensionless
standardized scores for improved uniformity. The study also
integrated data from the HPA and GTEx projects to create an
RNA consensus tissue gene expression database, encompassing
gene expression levels across 50 different tissues, quantified using
nTPM values. For multi-subtissue structures like the brain,
lymph, and intestines, the highest expression value among the
subtissues was used. The foundational data included HPA
version 23.0 and Ensembl version 109, along with protein
localization information from immunofluorescence staining.
The resulting dataset, in tab-delimited format, contained gene
identifiers, names, reliability scores, localization data, cell cycle
dependency, and GO cellular component term identifiers.
Records with null values were removed to ensure accuracy.
Additionally, gene expression was analyzed across 81 cell
types in 31 datasets from the HPA database, with a focus on
18 cell types and PBMC expression. This analysis summarized
gene expression patterns in 28 cancer types, highlighting changes
in gene expression during cancer progression.

Clinical prognostic significance of
CRISP2 in BRCA

This study investigates significant gene expression differences
between tumor and normal tissues using two datasets from the
UCSC Xena database: “tcga_RSEM_gene_tpm,” representing TPM
expression levels in TCGA tumor samples, and “gtex_RSEM_gene_
tpm,” representing TPM expression levels in normal samples from
the GTEx project. The data were standardized using Z-Score
normalization to eliminate dimensional differences and enhance
comparability. Outliers with absolute Z-Score values greater than
3.0 were excluded during preprocessing to minimize their impact on
the analysis results. We employed the Wilcoxon rank-sum test, a
non-parametric statistical method suitable for non-normally
distributed data, to evaluate the statistical differences in gene
expression between tumor and normal tissues. Additionally, the
“pROC” package was used to conduct ROC analysis, assessing the
diagnostic efficacy of specific gene expression levels by calculating
the 95% confidence interval (CI), Area Under the Curve (AUC), and
plotting the ROC curve to quantify the gene expression’s
effectiveness in distinguishing between tumor and normal tissues.
Tumor samples were categorized into high and low expression

FIGURE 2 (Continued)

CRISP2 expression. Nodes represent specific GO terms or KEGG pathways, and the network visualization indicates the significance and extent of
enrichment. (I) Immune Cell Correlation: The panel correlates the expression of CRISP2 with various immune cell types, using the CIBERSORT algorithm
to assess the cell-type composition. This analysis provides insights into the immune landscape and its potential interactions with gene expression in IDD
patients. (J) Receiver Operating Characteristic (ROC) Curve: The ROC curve depicts the diagnostic potential of CRISP2 expression in distinguishing
between normal and IDD samples. The Area Under the Curve (AUC) provides a quantitative measure of the gene’s discriminative ability.

Frontiers in Pharmacology frontiersin.org07

Zhang et al. 10.3389/fphar.2024.1447152

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1447152


FIGURE 3
Drug Screening andMetabolite Analysis via Molecular Docking and Enrichment. (A) Energy Profile of Metabolites: This panel displays the free energy
landscape of metabolites from the MedChemExpress LLC database. Each blue point represents the binding affinity of a small molecule metabolite. The
black line overlaid on the plot represents the statistical distribution of these affinities, providing a comprehensive view of the energy profiles. (B)
Distribution of Binding Affinities: This histogram shows the frequency distribution of the binding affinities among the small molecule metabolites.
The plot highlights which binding affinities are most common among the screened metabolites, focusing on those with the most favorable interactions.
(C) Affinity of Metabolites to CRISP2: In this ranking, selectedmetabolites are ordered based on their docking affinity to CRISP2 protein, as obtained from
the RCSB Protein Data Bank. Higher rankings indicate stronger binding affinities. This analysis identifies potential candidates for further drug development,
suggesting which metabolites might effectively target CRISP2. (D) Enrichment Analysis Results: This summary highlights the results of the Metabolite Set
Enrichment Analysis (MSEA) performed using MetaboAnalyst 6.0. The analysis identifies significant biological pathways impacted by the metabolites
under study. (E) CRISP2-Hesperidin Complex: This panel visualizes the molecular docking result of Hesperidin with CRISP2, including a detailed
interaction map that showcases hydrogen bonds and hydrophobic interactions, processed by PLIP, an automated visualization web service.
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groups based on the median gene expression value. The distribution
proportions of these groups across different molecular subtypes
were analyzed using the chi-square test to determine the statistical
significance of distribution differences. Furthermore, a Kruskal-
Wallis rank-sum test was performed to assess variations in
CRISP2 gene expression among various molecular immune
subtypes within the BRCA dataset.

CRISP2 survival analysis

In this study, we investigated the impact of gene expression
levels on patient survival using Kaplan-Meier survival analysis.
Detailed survival data were analyzed with the “survival” package
in R, while the “survminer” package was employed to determine
optimal cut-off values for high and low expression groups, ensuring

FIGURE 4
The Landscape of CRISP2 Expression Across Cancers and Tissues (A) Differential Expression of CRISP2 Across Various Cancer Types: This plot
highlights the significant downregulation of CRISP2 expression in tumors compared to normal tissues across different cancer types. Each plot contrasts
CRISP2 expression (z-score normalized) between normal (blue boxplots) and tumor (red boxplots) samples. The x-axis represents different cancer types,
while the y-axis shows the z-score normalized expression levels. Statistical significance is indicated by p-values on top of each plot. (B)
CRISP2 Expression in ImmuneCells from theHuman Protein Atlas (HPA) Database: This plot displays the normalized transcript permillion (TPM) values for
CRISP2 across various immune cell types. The x-axis lists the immune cell types, and the y-axis represents the TPM values. (C) CRISP2 Expression in
Different Tissues from the HPA Database: This plot presents the nTPM (normalized TPM) values for CRISP2 across diverse tissue types. The x-axis lists the
tissue types, while the y-axis shows the TPM values. (D) CRISP2 Expression in Various Cell Types from the HPA Database: This plot illustrates the nTPM
values for CRISP2 across different cell types. The x-axis represents the cell types, and the y-axis demonstrates the nTPM values.
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FIGURE 5
Clinical Prognostic Significance of CRISP2 in BRCA (A) Expression Levels of CRISP2 in Normal and Tumor Tissues: This panel presents the expression
levels of the CRISP2 gene in normal tissues and BRCA tumor tissues. The data are represented as violin plots with superimposed box plots. Statistical
analysis was performed using the t-test, with the significance level indicated (P < 0.001). (B) Receiver Operating Characteristic (ROC) Curve: This ROC
curve evaluates the diagnostic efficacy of CRISP2 expression in distinguishing between tumor and normal groups. The area under the curve (AUC) is
0.706, with a 95% confidence interval (CI) of 0.675–0.736, indicating moderate diagnostic accuracy. (C) Distribution of CRISP2 Expression Across
Different Immune Subtypes in the TCGA Cohort: This figure shows the distribution of patients (n = 1,083) in high and low CRISP2 expression groups
across six immune subtypes (C1 to C6). A Chi-square test was used to determine the statistical significance of differences among subtypes (P = 0.004). (D)
Expression of CRISP2 Gene in Different Molecular Subtypes of BRCA: This panel displays the expression levels of the CRISP2 gene across different

(Continued )
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that each group included at least 30% of the sample size to enhance
statistical power. Additionally, we utilized the inverse variance
method to perform a meta-analysis of univariate Cox
proportional hazards models, synthesizing results from multiple
studies. The hazard ratio (HR) was used as the primary effect
measure, categorized into HR < 1 and HR > 1 groups to
represent potential tumor-suppressive and tumor-promotive
effects, respectively, thereby simplifying the complex relationship
between gene expression and biological mechanisms. Statistical
analysis and visualization were conducted using the ‘meta’
package in R version 4.3.2, which includes features for generating
forest plots and funnel plots to display combined effect sizes and
assess publication bias.

Single-gene GSVA enrichment analysis
for CRISP2

In this examination, we used a stratified technique to categorize
samples into high and low expression groups, defining the top 30% of
samples in terms of expression as the high expression group and the
bottom 30% as the low expression group. This method helps in
identifying significant changes in gene expression under disease
conditions and exploring their biological implications. We applied
the “limma” package, a widely used tool in R for differential
expression analysis, to calculate the log2 fold change (log2FC) for
each gene and rank them to identify significantly altered genes. Further,
we implemented the z-score algorithm proposed by Lee et al. to assess
the activity of biological pathways by integrating the expression of
specific gene sets. Using the z-score algorithm within the “GSVA”
package in R, we analyzed 14 functional state gene sets, converting their
expression values into z-scores. To delve deeper into the relationship
between gene expression and functional states, we performed a Pearson
correlation analysis to evaluate the statistical correlation between gene
expression and gene set z-scores. Additionally, we employed the “gsva”
function within the GSVA package to score 73metabolic gene sets from
the KEGG database and used the “limma” package to compare the
metabolic pathway activities between high and low expression groups,
aiming to reveal the roles of these pathways in disease progression. For
clinical variable analysis, patients were divided into high and low
expression groups based on the median expression value, and age
groups were determined using themedian age as the threshold. The chi-
square test was used to examine the distribution differences of various
clinical variables between the two expression groups.

CRISP2 immune infiltration analysis

This study utilized immune infiltration data from the TIMER
2.0 database, which compiles records from the TCGA project.
TIMER 2.0 is an integrated platform employing multiple

algorithms to evaluate the composition of immune cells within
the tumor microenvironment and their correlation with gene
expression. This approach ensured data accuracy and
consistency, allowing for a comprehensive assessment of the
relationship between immune cells and gene expression. We
visualized the correlation coefficients between different immune
cell types and gene expression using bar scatter plots, clearly
illustrating these relationships.

We used the Spearman rank correlation coefficient to assess the
correlation between transcription factor expression and ATAC peaks, a
non-parametricmethod suitable for evaluatingmonotonic relationships
between variables without assuming a specific distribution. The analysis
focused on peaks within 3,000 base pairs upstream and downstream of
the target gene promoter region. For each transcription factor, we
calculated correlations with all peaks, selecting results with significant
correlations (p < 0.01, cor > 0).

Additionally, protein expression data from the TCPA database
were used to calculate activity scores for 10 cancer-related pathways
based on existing literature. Using the “cor.test” function in R, we
computed the Spearman correlation coefficients and p-values
between the target gene expression and these pathway activity
scores, further exploring the relationship between gene expression
and pathway activity.

CRISP2 gene mutation analysis

In this study, we used CRISPR screening data from the DepMap
portal to analyze dependency scores for approximately 17,000 candidate
genes using the CERES algorithm. The pan-cancer mutation landscape
of the CRISP2 gene was visualized using the “plotmafSummary”
function from the “maftools” package in R. To assess the
independence between gene expression levels and specific gene
mutation types, we employed the “independence_test” function from
the “coin” package in R, which utilizes permutation tests to estimate the
distribution of the test statistic by randomly rearranging data labels.We
evaluated the significance of the relationship between gene mutation
types and expression levels using p-values. A significant association was
identified when the mutation rate exceeded 10% and the p-value was
less than 0.01, followed by visualization. For the TCGA-BRCA project,
tumor copy number profiles were analyzed using a GISTIC score-based
method. Data from 451 samples were processed to generate a
comprehensive CNV profile, with color-coded bar charts illustrating
chromosomal copy number changes. Quantitative metrics such as FGA
(Fraction of Genome Altered), FGG (Fraction of Genome Gained), and
FGL (Fraction of Genome Lost) were defined to measure the total
amount of genomic alterations and the extent of gains or losses in clonal
regions. To analyze differences among specific gene expression
subgroups, we used the ANOVA method, followed by multiple
comparisons with the “TukeyHSD” method if ANOVA indicated
significance. Scatter plots combined with Spearman rank correlation

FIGURE 5 (Continued)

molecular subtypes of BRCA (Basal, Her2, LumA, LumB) and normal-like tissues. The data are presented as violin plots with box plots. Statistical
analysis was performed using ANOVA (P < 0.001). (E)Median Expression Levels of CRISP2 Gene Across Different Stages of BRCA: This line graph depicts
themedian expression levels of the CRISP2 gene across different stages of BRCA (Stage I to IV). The trend indicates an increase in CRISP2 expression with
advancing stages.
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analysis were used to investigate the correlation between copy number
variation (CNV) scores and gene expression levels. The Spearman rank
correlation coefficient, a non-parametric method, assesses the
monotonic relationship between two variables without assuming a
specific data distribution. The experimental data for copy number
profiles were obtained from the TCGA Genome Characterization
Center through whole-genome microarray measurements. Gene-level
copy number estimates were derived using the TCGA FIREHOSE
pipeline and the GISTIC2 method. Gene expression differences among
various copy number types (−2 to 2) were compared using the Kruskal-
Wallis test, a non-parametric method suitable for multiple sample
comparisons without assuming a specific data distribution.

Cell culture and collection of macrophage
conditioned medium

RAW 264.7 macrophages (CL-0190) and mouse nucleus pulposus
cells (mNPCs) (CP-M146) were obtained from Procell (Wuhan,
China). mNPCs were cultured in a specialized medium at 37°C with
5% CO2. RAW 264.7 macrophages were maintained in Dulbecco’s
Modified Eagle Medium (DMEM) supplemented with 100 U/mL
penicillin, 100 mg/mL streptomycin, and 10% fetal bovine serum.
To induce a degeneration model, mNPCs were treated with LPS
(1 μg/mL), while RAW 264.7 macrophages were polarized into
M1 or M2 phenotypes using LPS (1 μg/mL) and interleukin-4 (IL-
4) (20 ng/mL), respectively. Various concentrations of Hesperidin (20,
50, and 100 µM) were administered to the experimental groups for
24 and 48 h. When the cell density of RAW 264.7 macrophages or
mNPCs reached 60%, LPS or IL-4 was added to the culture medium
according to the group requirements, with or without Hesperidin
pretreatment. After 24 h, the medium containing LPS, IL-4, or
Hesperidin (50 μM) was discarded. Macrophages were then treated
with fresh medium for another 24 h. The conditioned medium (CM)
was collected by centrifugation at 1,000 g and used for subsequent
experiments. mNPCs were cultured under normal or LPS-stimulated
conditions in a mixed medium (50% specialized medium and 50% CM
from different macrophage groups) to conduct additional experiments.

Cell viability assessment

To evaluate cell viability, NPCs were cultured in 96-well plates.
At specified time points, the initial medium was replaced with a 10%
Cell Counting Kit-8 (CCK-8) solution. Absorbance was measured at
450 nm to determine cell viability.

FIGURE 6
CRISP2 Survival Analysis (A–D) Kaplan-Meier Survival Analysis for
Four Different Survival Metrics: (A)Overall Survival (OS) with p-value =
0.759. The plot compares the survival probabilities over time for
patients with mutant (n = 1) and wild-type (n = 1,011) CRISP2. (B)
Progression-Free Interval (PFI) with p-value = 0.737. The plot shows
the progression-free probabilities over time for mutant (n = 1) and
wild-type (n = 1,011) CRISP2. (C) Disease-Free Interval (DFI) with
p-value = 0.793. The plot illustrates the disease-free probabilities over
time for mutant (n = 1) and wild-type (n = 877) CRISP2. (D) Disease-
Specific Survival (DSS) with p-value = 0.796. The plot shows the
disease-specific survival probabilities over time for mutant (n = 1) and
wild-type (n = 991) CRISP2. (E–H) Univariate survival analysis for the
same four survival periods: (E) Hazard ratios (HR) and 95% confidence
intervals (CI) for Overall Survival (OS) across various cancer types. The
plot indicates the HRs for mutant versus wild-type CRISP2. (F) Hazard
ratios (HR) and 95% confidence intervals (CI) for Progression-Free

(Continued )

FIGURE 6 (Continued)

Interval (PFI) across various cancer types. The plot illustrates the
HRs for mutant versus wild-type CRISP2. (G) Hazard ratios (HR) and
95% confidence intervals (CI) for Disease-Free Interval (DFI) across
various cancer types. The plot shows the HRs for mutant versus
wild-type CRISP2. (H)Hazard ratios (HR) and 95% confidence intervals
(CI) for Disease-Specific Survival (DSS) across various cancer types.
The plot indicates the HRs for mutant versus wild-type CRISP2. The
data points on the plots represent the hazard ratios, while the error
bars indicate their 95% confidence intervals. The survival analyses
were conducted using patient datasets, with statistical significance
assessed using the log-rank test.
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FIGURE 7
CRISP2 Single Gene GSEA/GSVA Enrichment Analysis (A)Gene Set Enrichment Analysis (GSEA): Multiple GSEA were conducted comparing high and
low CRISP2 expression groups using the clusterProfiler package. The scatter plots display the correlation between oncogenic scores and various
biological processes such as angiogenesis, apoptosis, cell cycle, differentiation, DNA damage, DNA repair, and EMT. Each plot shows the R and p-values
indicating the strength and significance of the correlation. (B) Chi-square Analysis of CRISP2 Expression and Clinical Traits: Chi-square tests were
conducted to analyze the association between CRISP2 expression levels (high vs. low) and various clinical traits. The circular heatmap illustrates the
relationship between CRISP2 expression and factors such as gender (sex), PAM50 subtypes, tumor stage, age, ER status, PR status, HER2 status, and
treatment types (including margins, positive lymph nodes, radiation, and chemotherapy). Each ring represents a clinical factor with color coding for
significance levels. (C) Survival Curve Analysis: The survival curve illustrates the relationship between CRISP2 expression and patient survival status (alive
vs. dead). The scatter plot at the bottom shows the distribution of overall survival times for patients with different CRISP2 expression levels, highlighting
the potential impact of CRISP2 on survival outcomes. (D) Quartile Analysis of Survival Status: Chi-square test results comparing the proportion of alive
versus dead patients across quartiles (Q1, Q2, Q3) of CRISP2 expression in breast cancer (BRCA) survival. The bar chart indicates that there is no significant
difference in survival status across different CRISP2 expression quartiles (p = 0.93).
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FIGURE 8
CRISP2 Immune Infiltration Analysis (A) Immune Response and Genome State: Heatmap illustrating the correlation between various immune
response parameters and genome state. The x-axis represents different immune and genomic features, while the y-axis categorizes the data into
quartiles (Q1-Q4) based on the correlation coefficient ranging from −1 to 1. (B) CRISP2 Expression in Immunostimulators: Heatmaps showing the
expression levels of CRISP2 over diverse immunostimulatory qualities. The three columns speak to distinctive datasets or conditions. Each push
compares to a particular quality, and the color scale demonstrates the level of expression or movement, with blue speaking to moo levels and ruddy
speaking to all levels. (C) Complex Heatmap of Immunomodulators in BRCA: A nitty gritty heatmap appearing the expression and tweak of different
immunomodulatory qualities in Breast Cancer (BRCA). Columns speak to diverse qualities categorized into useful bunches (e.g., Co-stim, Lipid, Receptor,
Cell Grip). Columns speak to distinctive datasets or test conditions, with the color scale demonstrating the degree of expression, methylation,

(Continued )
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FIGURE 8 (Continued)

intensification recurrence, or erasure recurrence. (D) Spearman Correlation Analysis between ATAC-Peak and Translation Variables: Heatmap
illustrating the Spearman relationship coefficients between ATAC-Peak districts and different translation variables. Each cell within the heatmap speaks to
the relationship esteem, with noteworthiness demonstrated by bullets (*p < 0.05, **p < 0.01, ***p < 0.001). The color scale ranges from negative (blue) to
positive (red) correlations. (E) Types of ATAC-Peak - Visualization with a 3-Venn Pie Chart: Pie chart visualizing the distribution of ATAC-Peak types.
Different segments of the chart represent various genomic regions where ATAC-Peaks are located, including genic, intergenic, intron, exon, upstream,
downstream, and distal intergenic regions.

FIGURE 9
Analysis of CRISP2 Gene Mutation (A) CRISP2 Gene Essentiality in Cancer Cell Lines: This panel visualizes the top 200 cell lines from the DepMap
database based on CERES scores obtained from a genome-wide CRISPR-Cas9 screen assessing gene essentiality across various cancer cell lines. The bar
graph represents the essentiality scores for CRISP2 in different cell lines, highlighting those where CRISP2 is critical for cell survival. (B) Copy Number
Alterations in Breast Cancer: This graph shows the copy number alterations (CNAs) in breast cancer (BRCA) from the TCGA database, represented as
GISTIC2 scores for 1,080 samples. The green areas represent regions of significant amplification, while the blue areas indicate deletions across different
chromosomes (chr1 to chrX). (C)Correlation Between CRISP2 Expression and Protein Quantification: The circular plot illustrates the correlation between
CRISP2 gene expression and functional protein quantification at the pathway level using TCPA-RPPA sequencing data. The connections illustrate
significant correlations, with the color intensity representing the strength of the correlation. (D) Correlation Between Copy Number Variation and Gene
Expression: This scatter plot depicts the Spearman correlation between copy number variation (CNV) scores and CRISP2 gene expression levels. Each
point represents an individual sample. Each point represents an individual sample, with a significant positive correlation (p < 0.001) observed. (E)
CRISP2 Expression Across Different Copy Number Variation Types: Violin plots compare CRISP2 gene expression across different types of copy number
variations: deep deletion, shallow deletion, normal, gain, and amplification. The statistical significance of differences in expression levels among the
groups is indicated (P = 0.005).
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Flow cytometry analysis

ROS was detected using the fluorescent probe DCFH-DA. The
intensity of green fluorescence is directly proportional to the level of ROS.

Detect intracellular ROS levels by measuring fluorescence intensity using
flow cytometry. Collected RAW 264.7 cells in logarithmic growth phase
from passaging culture and inoculated them into a 6-well plate at a
density of 2 × 104 cells. After 24 h, treat with 20 μM, 50 μM, and 100 μM

FIGURE 10
Hesperidin Effects on CRISP2, iNOS, and COX2 in IDD, Decreases ROS and Apoptosis, and InflammatoryMarkers (A) FlowCytometry Analysis of ROS
Levels: This panel shows flow cytometry analysis of reactive oxygen species (ROS) levels in RAW 264.7 cells treated under different conditions: control,
LPS, and Hesperidin at concentrations of 20 μM, 50 μM, and 100 μM. The ROS levels are significantly increased in the LPS group compared to the control,
and treatment with Hesperidin at different concentrations reduces ROS levels in a dose-dependentmanner. (B)Cell Viability Assay (CCK-8): The cell
viability assay demonstrates the effects of Hesperidin. Hesperidin treatment significantly improves cell viability compared to the LPS group, indicating a
protective effect against LPS-induced cytotoxicity. (C–F) Relative mRNA Expression Levels of CRISP2, iNOS, COX2, and IL-6: These panels present the
relative mRNA expression levels of CRISP2, iNOS, COX2, and IL-6 in nucleus pulposus cells (NPCs) measured by qRT-PCR. LPS treatment increases the
expression of these inflammatory markers, while Hesperidin treatment significantly reduces their expression levels, indicating its anti-inflammatory
effects. (G) Immunofluorescence Staining of IL-6: This panel shows immunofluorescence staining of IL-6 in Crude 264.7 cells. The cells are recolored for
IL-6 (ruddy) and DAPI (blue) for atomic recoloring. The blended pictures appear that IL-6 expression is expanded within the LPS gathered and diminished
after Hesperidin treatment. (H) Immunofluorescence Staining of iNOS: This panel displays immunofluorescence staining of iNOS in Crude 264.7 cells.
The cells are recolored for iNOS (ruddy) and DAPI (blue). The merged images outline that iNOS expression is lifted within the LPS gather and altogether
diminished after Hesperidin treatment.
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hesperidin and LPS, while setting up a blank control group. Continue to
culture the 6-well plate in a 37°C, 5%CO2 cell incubator for 72 h, remove
the cell culture medium, collect the cells in a flow cytometer, wash twice
with cold PBS, add a fluorescent probe DCFH-DA with a final
concentration of 10 μmol/L, and incubate for 30 min in a 37°C, 5%
CO2 cell incubator. Wash the cells twice with cold PBS, resuspend them
in 500 µL PBS, and detect them using flow cytometry.

Reverse transcription-quantitative
polymerase chain reaction (RT-qPCR)

For the RT-qPCR analysis, RAW 264.7 macrophages and
mNPCs were lysed in Trizol (Invitrogen, CA, United States) to
extract total RNA. The RNA was then reverse-transcribed into
cDNA using the PrimeScript RT Reagent Kit (TaKaRa Bio, Otsu,
Japan). RT-qPCR was conducted using SYBR Green Master Mix
(Vazyme, Nanjing, China) along with specific forward and reverse
primers to quantify the mRNA expression of target genes. The
Gapdh gene served as an internal control, and relative expression
levels were determined using the 2−ΔΔCt method.

Immunofluorescence staining

RAW264.7macrophages andNPCs were treated with LPS, IL-4, or
Hesperidin in 24-well plates. Cells were fixed with 5% formaldehyde for
15min and permeabilized with 0.1% Triton X-100 for 10min. Blocking
was carried out with 1% BSA at 37°C for 1 h. Following this, cells were
incubated with primary antibodies at 37°C for 4 h, then with Alexa
Fluor-594 or Alexa Fluor-488 conjugated secondary antibodies
(Abcam) or phalloidin (Beyotime) in the dark at 37°C for 1 h.
Nuclei were stained with 4′,6-diamidino-2-phenylindole (DAPI) for
3 min. Images were captured using a fluorescence microscope.

Statistical analysis

Statistical analyses were performed using R or Python. Each
experiment was conducted independently at least three times.
Continuous variables are reported as mean ± standard deviation (SD),
while categorical variables are represented as proportions. The two-tailed
Student’s t-test orMann-Whitney U test was used to compare themeans
or distributions of continuous variables. For comparisons involving three
or more groups, one-way ANOVAwas employed. Statistical significance
was set at a p-value of less than 0.05. Categorical variables were analyzed
using the χ2 test or Fisher’s exact test, depending on the context, with a
p-value <0.05 considered significant.

Results

Differential gene expression and pathway
enrichment in intervertebral disc
degeneration

In our comprehensive analysis of genes associated with IDD, we
employed a multilayered bioinformatics approach to elucidate the

molecular underpinnings of this condition. Principal Component
Analysis (PCA) effectively reduced the dimensionality of high-
throughput expression data, revealing distinct sample clusters
based on gene expression profiles; the first two principal
components accounted for 23.3% and 12.3% of the total variance,
respectively (Figure 1A). The differential gene expression analysis,
visualized through a volcano plot, identified significantly
upregulated and downregulated genes, providing targets for
further investigation (Figure 1B). This was complemented by a
heatmap, which illustrated the expression patterns across samples
with a color gradient, effectively summarizing the data’s complexity
(Figure 1C). Further, the biological significance of these expression
changes was interrogated using Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analyses.
The upregulated genes in IDD were primarily enriched in immune
response and lysosomal pathways, suggesting a potential role in
inflammatory processes and cellular waste management
(Figure 1D). Conversely, downregulated genes were associated
with memory, cognition, and cellular defense mechanisms,
indicating a possible link to decreased neural plasticity and
altered cellular protection in IDD (Figure 1E). These findings,
depicted through GO/KEGG-EMAP visualizations, provided a
holistic view of the genetic panorama in IDD, highlighting the
complex interplay among various biological processes. Our
findings underscore the complexity of IDD pathophysiology and
pave the way for targeted therapeutic strategies.

Gene expression and intersecting pathways
in IDD and breast cancer

Our study conducted an in-depth intersection analysis and gene
expression profiling for IDD and various breast cancer subtypes, We
integrated microarray data from eight healthy volunteers and eight
IDD patients from the GEO database (GSE124272), alongside RNA
sequencing and clinical data from 33 different cancer types in the
BRCA-TCGA database. The Venn diagram (Figure 2A) revealed a
significant overlap of differentially expressed genes (DEGs) between
IDD, Estrogen Receptor-positive (ER+) breast cancer, and general
breast cancer gene lists. This overlap suggests molecular parallels
that could shed light on the underlying mechanisms of these
diseases. Age-stratified boxplot analyses (Figure 2B) revealed
significant differences in the expression levels of selected DEGs,
highlighting the influence of age on gene expression dynamics in
these conditions. Additionally, we observed distinct expression
patterns of specific DEGs when comparing normal to tumor
samples, indicating statistically significant discrepancies that may
play roles in tumorigenesis (Figure 2C). Our subtype expression
profile analysis (Figure 2D) have detailed DEG expression in ER-
negative and ER-positive breast cancer subtypes, showcasing
subtype-specific gene expression patterns that could inform
therapeutic strategies. Kaplan-Meier survival analyses (Figure 2E)
established correlations between DEG expression levels and patient
survival, emphasizing the prognostic significance of these genes in
cancer contexts. Correlation plots (Figure 2F) illustrated Pearson
correlation coefficients, suggesting the predictive potential of
selected DEGs in relation to clinical outcomes. Enrichment
analyses provided a deeper understanding of the biological
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processes and pathways influenced by gene sets negatively
(Figure 2G) and positively (Figure 2H) correlated with CRISP2.
Furthermore, the expression of CRISP2 was correlated with various
immune cell types (Figure 2I) using the CIBERSORT algorithm to
predict cell-type composition, offering insights into the immune
response dynamics in IDD patients. Finally, the diagnostic capability
of CRISP2 expression in distinguishing between normal and IDD
samples was quantified by the Receiver Operating Characteristic
(ROC) curve (Figure 2J), with the Area Under the Curve (AUC)
providing a robust statistical measure of discriminative
performance. These comprehensive analyses reinforce the
intricate relationship between gene expression and the
pathophysiology of both IDD and breast cancer, while also
identifying potential biomarkers for diagnosis and prognosis.

Comprehensive results of metabolite
efficacy and interaction analysis

In our study, we analyzed a suite of small molecule
metabolites for their therapeutic potential. The energy profile
(Figure 3A) showed a broad range of binding affinities, with some
molecules exhibiting significant binding energy, indicative of
potential efficacy. The distribution of these affinities
(Figure 3B) highlighted a subset of metabolites with
particularly favorable interactions, suggesting strong binding
capabilities. Ranking these molecules (Figure 3C) identified
several high-affinity candidates for CRISP2, a protein
implicated in numerous biological functions, which could be
promising leads for drug development. Our metabolite set
enrichment analysis (Figure 3D) with MetaboAnalyst
6.0 uncovered key pathways influenced by these metabolites,
underscoring their biological relevance. Notably, the molecular
docking visualization of the CRISP2-Hesperidin complex
(Figure 3E) elucidated the specific interactions at the atomic
level, validating our computational approach. These findings,
derived from comprehensive computational analyses, inform the
next steps in therapeutic exploration and development.

CRISP2 expression and prognostic
significance across various cancers

The analysis of CRISP2 expression across various cancer types
revealed significant downregulation in tumors compared to normal
tissues, as demonstrated in Figure 4A. The expression levels of
CRISP2 (z-score normalized) were consistently lower in tumor
samples (red boxplots) than in normal samples (blue boxplots)
across multiple cancer types, with statistical significance indicated by
p-values. Further exploration of CRISP2 expression in immune cells,
tissues, and cell types from the Human Protein Atlas (HPA)
database (Figures 4B–D) showed distinct expression patterns,
highlighting its differential expression landscape in the human
body. In breast cancer (BRCA), CRISP2 expression was
significantly lower in tumor tissues compared to normal tissues
(Figure 5A), with diagnostic efficacy indicated by a Receiver
Operating Characteristic (ROC) curve showing an AUC of 0.706
(Figure 5B). The distribution of CRISP2 expression across different

immune subtypes in the TCGA cohort (n = 1,083 patients) is
statistically significant (P = 0.004) (Figure 5C), and its expression
varies across BRCAmolecular subtypes (P < 0.001) (Figure 5D). The
median expression levels of CRISP2 increased with advancing BRCA
stages (Figure 5E). Kaplan-Meier survival analyses for Overall
Survival (OS), Progression-Free Interval (PFI), Disease-Free
Interval (DFI), and Disease-Specific Survival (DSS) showed no
significant difference between mutant and wild-type
CRISP2 groups (Figures 6A–D). Univariate survival analyses
across various cancer types (Figures 6E–H) indicated hazard
ratios for mutant versus wild-type CRISP2, underscoring the
prognostic relevance of CRISP2 expression. This comprehensive
analysis highlights CRISP2’s potential as a diagnostic and prognostic
biomarker, warranting further investigation into its functional
mechanisms and therapeutic implications.

Comprehensive analysis of CRISP2 expression
in breast cancer

In this study, we conducted a comprehensive analysis of
CRISP2 expression in relation to various biological processes and
clinical traits in breast cancer (BRCA) patients. The Gene Set
Enrichment Analysis (GSEA) and Gene Set Variation Analysis
(GSVA) comparing high versus low CRISP2 expression groups
are presented in Figure 7. These analyses revealed significant
associations between CRISP2 expression and processes such as
apoptosis and cell cycle, as depicted in Figure 7A. Chi-square
tests analyzing the relationship between CRISP2 expression levels
and various clinical traits, illustrated in Figure 7B, showed
significant associations with factors including gender,
PAM50 subtypes, tumor stage, age, ER status, PR status,
HER2 status, and treatment types. The survival analysis,
presented in Figure 7C, suggested a potential impact of higher
CRISP2 expression on patient survival outcomes. However, there
was no significant difference in survival status across different
CRISP2 expression quartiles, as indicated in Figure 7D (p =
0.93). Furthermore, CRISP2 immune infiltration analysis
(Figure 8) highlighted intricate relationships between
CRISP2 expression and immune response parameters. Figure 8A
provides a heatmap illustrating the correlation between immune
response parameters and genome state, while Figure 8B displays
heatmaps of CRISP2 expression across different
immunostimulatory genes. A detailed heatmap in Figure 8C
shows the expression and modulation of various
immunomodulatory genes in BRCA. The Spearman correlation
analysis between ATAC-Peak regions and various transcription
factors, illustrated in Figure 8D, highlight key transcriptional
regulators associated with CRISP2. Figure 8E visualizes the types
of ATAC-Peak regions using a 3-Venn pie chart, representing
various genomic regions where ATAC-Peaks are located.
Appropriate statistical methods, including correlation analyses
and Chi-square tests, ensured the validity of these findings. These
detailed results provide a comprehensive overview of the role of
CRISP2 in BRCA, highlighting its potential impact on biological
processes, clinical traits, and immune infiltration. This contributes
to a deeper understanding of CRISP’2 functional significance in
cancer biology.
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CRISP2 gene mutation analysis

Our analysis of CRISP2 gene mutations underscores its critical role
in cancer cell viability, particularly in breast cancer (BRCA).
Visualization of the top 200 cell lines from the DepMap database
(Figure 9A) shows the essentiality scores for CRISP2, highlighting its
importance for cell survival in specific cancer types. Copy number
alterations (CNAs) in BRCA from the TCGA database (Figure 9B)
demonstrate significant amplifications and deletions across various
chromosomes, emphasizing the genomic instability in BRCA and its
impact on CRISP2. A circular plot (Figure 9C) correlates CRISP2 gene
expression with functional protein quantification at the pathway level
using TCPA-RPPA sequencing data, illustrating significant correlations
with varying intensity. The scatter plot in Figure 9D shows a significant
positive correlation (p < 0.001) between copy number variation scores
and CRISP2 gene expression levels, indicating that copy number
variations directly influence CRISP2 expression. Violin plots
(Figure 9E) compare CRISP2 gene expression across different types
of copy number variations (deep deletion, shallow deletion, normal,
gain, and amplification), revealing that amplifications lead to higher
expression levels (P = 0.005). These comprehensive analyses underscore
the potential of CRISP2 as a therapeutic target, with variations in its
copy number and expression significantly affecting cellular
functions in BRCA.

Hesperidin reduces the expression of
CRISP2, iNOS, and COX2 in IDD, decreases
ROS and apoptosis, and lowers
inflammatory markers

This study investigated the effects of hesperidin on
inflammatory responses in IDD using RAW 264.7 cells. Flow
cytometry analysis (Figure 10A) revealed that ROS levels
significantly increased in the LPS group compared to the control
group. However, treatment with hesperidin at concentrations of
20 μM, 50 μM, and 100 μM reduced ROS levels in a dose-dependent
manner, indicating its antioxidative properties. Cell viability,
assessed using the CCK-8 assay (Figure 10B), showed that LPS
exposure significantly decreased cell viability. In contrast, hesperidin
treatment at various concentrations notably improved cell viability,
suggesting a protective effect against LPS-induced cytotoxicity.
Quantitative RT-PCR analysis of nucleus pulposus cells (NPCs)
demonstrated that LPS treatment increased the mRNA expression
levels of inflammatory markers CRISP2, iNOS, COX2, and IL-6
(Figures 10C–F). Hesperidin treatment significantly reduced the
expression levels of these markers, indicating its potent anti-
inflammatory effects in NPCs. Immunofluorescence staining was
performed to visualize the expression of IL-6 and iNOS in RAW
264.7 cells. The staining for IL-6 (Figure 10G) showed increased
expression in the LPS group, which was markedly reduced upon
hesperidin treatment. Similarly, iNOS expression (Figure 10H) was
elevated in the LPS group and significantly decreased with
hesperidin treatment, further confirming the anti-inflammatory
properties of hesperidin. These results together suggest that
hesperidin effectively mitigates LPS-caused oxidative stress,
apoptosis, and inflammatory responses in RAW 264.7 cells,
highlighting its potential therapeutic role in managing IDD.

Discussion

Intervertebral disc degeneration (IDD) is a multifactorial
process involving oxidative stress, inflammation, and cellular
apoptosis. In our study, we demonstrate that Hesperidin, a
natural metabolic compound, effectively mimics the protective
effects of estrogen on IDD while mitigating the risk of tumor
progression. Hesperidin significantly decreased the expression of
CRISP2, iNOS, and COX2, reduced ROS levels and apoptosis, and
diminished inflammatory markers in IDDmodels. By reducing ROS
levels, Hesperidin may attenuate oxidative damage to disc cells and
modulate inflammatory responses within the intervertebral disc
microenvironment. This anti-oxidative and anti-inflammatory
potential of Hesperidin presents a promising avenue for
therapeutic intervention in IDD, potentially slowing down or
preventing disc degeneration. Our analysis revealed the
correlation between CRISP2 expression and immune cell
infiltration, with survival analysis indicating that CRISP2 levels
were associated with patient outcomes across various cancer
types. These findings highlight Hesperidin’s potential as a natural
metabolic regulator that synergizes with estrogen therapy to
promote spinal health and reduce cancer risks.

Previous research has explored the role of estrogen in
maintaining disc integrity and its associated cancer risks (Hu
et al., 2012; Liang and Shang, 2013). Estrogen’s interaction with
specific receptors is known to play a critical role in maintaining disc
health but is associated with increased risks of breast and
endometrial cancers (Pearce and Jordan, 2004; Hua et al., 2018).
Our study advances this understanding by identifying Hesperidin as
a compound that can mimic estrogen’s protective effects on IDD
without increasing cancer risk. This aligns with and extends prior
research on the role of metabolic dysregulation in IDD pathogenesis
and the potential of natural compounds as therapeutic agents
(Kochar Kaur, 2022; Khotimchenko et al., 2022). Furthermore,
chronic inflammation and oxidative stress are implicated in
various cancers, including those affecting the gastrointestinal
tract. Hesperidin, through its antioxidant properties, has been
studied for its potential chemopreventive effects against certain
cancers. While direct evidence linking Hesperidin to cancer
prevention in the context of IDD remains limited, its ability to
mitigate oxidative stress and inflammation suggests a broader
therapeutic potential in reducing cancer risk associated with
chronic inflammatory conditions.

CRISP2 has been implicated in various cellular processes,
including cell proliferation, apoptosis, and differentiation.
Emerging evidence suggests that CRISP2 may play a role in
maintaining disc cell homeostasis. Dysregulation of
CRISP2 expression has been observed in degenerated disc tissues,
indicating its potential involvement in IDD pathogenesis. The
precise mechanisms by which CRISP2 influences disc
degeneration remains to be fully elucidated, but it is postulated
that CRISP2 may interact with signaling pathways that regulate
oxidative stress and inflammation. Modulating CRISP2 expression
or function may help maintain disc cell homeostasis and prevent
degeneration (Cheng et al., 2021; Hermawan et al., 2021). In our
study, Hesperidin’s ability to reduce CRISP2 expression was evident
through multiple bioinformatics analyses. The use of Bioconductor
Limma package enabled the identification of DEGs from the GEO
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database, confirming Hesperidin’s regulatory impact. Functional
enrichment analyses through GO and KEGG further illustrated
Hesperidin’s influence on key metabolic pathways associated with
IDD and cancer progression. The immunological assessments via
CIBERSORT and ssGSEA underscored the compound’s effects on
immune cell infiltration, linking CRISP2 to various immune cell
types, thus reinforcing the anti-inflammatory and anti-tumorigenic
properties of Hesperidin.

The importance of cell death and metabolic regulation in disease
progression is increasingly recognized, providing new targets and
strategies for drug development (Wang and Zhang, 2024; Liu and
Ren, 2023). The study of gene expression and regulatorymechanisms in
diseases has been deepening, offering crucial insights into the onset and
progression of diseases (Zhao et al., 2024). This study establishes
Hesperidin as a promising natural metabolic regulator for IDD
treatment, offering synergistic benefits with estrogen therapy without
increasing cancer risk. In addition, CRISP2 can become a valuable
diagnostic and therapeutic target in IDD. Future studies should focus on
validating those findings in vivo, exploring the specific molecular
mechanisms involved, and developing combination therapies to
maximize therapeutic outcomes. These efforts will pave the way for
new clinical approaches that improve spinal health and reduce the
burden of IDD and its associated complications. By addressing the
current limitations and expanding on this study, we can enhance our
understanding of IDD and develop more effective, safer treatments
for patients.

Despite the promising findings, several limitations should be
acknowledged. First, the study primarily relies on bioinformatics
analyses and in vitro experiments, which may not fully capture the
complexity of IDD and its interaction with systemic metabolic processes
in vivo. Second, the sample size for RNA sequencing and clinical data
from various cancers types was limited, potentially affecting the
generalizability of the results. Third, while the molecular docking and
molecular experiments demonstrated the interaction betweenHesperidin
andCRISP2, further in vivo studies are required to confirm these findings
and determine the long-term safety and efficacy of Hesperidin in clinical
settings. To address these limitations, further research should include
large sample sizes and diverse patient populations to enhance the
generalizability of the findings. In vivo studies are crucial to validate
the therapeutic potential and safety of Hesperidin over extended periods.
Additionally, exploring the molecular mechanisms underlying
Hesperidin’s effects on immune cell infiltration and tumor
progression will provide deeper insights into its therapeutic benefits
and risks. Investigating the combination of Hesperidin with other natural
compounds or existing treatments may also offer new avenues for
enhancing its efficacy and safety profile.

These findings not only advance the clinical understanding of IDD
treatment but also provide a foundation for future research into natural
metabolic regulators that can synergize with existing therapies to
provide holistic, multi-targeted treatment strategies. In the future, it’s
essential to consider potential adverse effects, such as Gastrointestinal
Effects, Drug Interactions with certain medications, Allergic Reactions,
etc. In addition, while acute toxicity of Hesperidin has been low, there is
a need for more long-term studies to ascertain its safety profile with
extended use, especially at higher doses or in specific patient
populations. In conclusion, while Hesperidin shows promise as a
therapeutic agent for IDD and potentially as a safer alternative to
estrogen therapy, vigilance regarding its potential side effects and

interactions is crucial. Continued research and clinical monitoring
will be instrumental in fully elucidating its therapeutic benefits and
ensuring its safe use in clinical practice. Multiple studies have shown
that by improving drug delivery systems and leveraging
nanotechnology, drug targeting and therapeutic efficacy can be
markedly improved (Chen et al., 2024; Liu et al., 2024; Nittayacharn
et al., 2024). In the future, biomaterials based on these mechanisms
could demonstrate broad application prospects in various biomedical
and engineering fields, as shown in previous studies (Pan et al., 2024;
Wu et al., 2024). Diverse patient studies and in vivo experiments are
essential to confirm these findings and explore the specific molecular
mechanisms of Hesperidin’s effects. These studies pave the way for
developing new clinical strategies that improve spinal health and reduce
the burden of IDD.

Conclusion

This study demonstrates that Hesperidin, a natural metabolic
compound targeting CRISP2, effectively mimics the protective effects
of estrogen on IDD while mitigating cancer risks. Hesperidin
significantly reduced the expression of CRISP2, iNOS, and COX2,
decreased ROS levels, and diminished inflammatory markers in IDD
models. These findings highlight Hesperidin’s potential as a natural
metabolic regulator that synergizes with estrogen therapy to promote
spinal health and reduce cancer risks. The study contributes to the
understanding of IDD treatment by integrating bioinformatics and
multi-omics approaches, providing a robust theoretical framework for
the therapeutic applications of hesperidin.
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