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Gut microecology,the complex community consisting of microorganisms and
their microenvironments in the gastrointestinal tract, plays a vital role in
maintaining overall health and regulating various physiological and
pathological processes. Recent studies have highlighted the significant impact
of gut microecology on the regulation of uric acid metabolism. Natural products,
including monomers, extracts, and traditional Chinese medicine formulations
derived from natural sources such as plants, animals, and microorganisms, have
also been investigated for their potential role in modulating uric acid metabolism.
According to research, The stability of gut microecology is a crucial link for
natural products to maintain healthy uric acid metabolism and reduce
hyperuricemia-related diseases. Herein, we review the recent advanced
evidence revealing the bidirectional regulation between gut microecology and
uric acid metabolism. And separately summarize the key evidence of natural
extracts and herbal formulations in regulating both aspects. In addition,we
elucidated the important mechanisms of natural products in regulating uric
acid metabolism and secondary diseases through gut microecology, especially
by modulating the composition of gut microbiota, gut mucosal barrier,
inflammatory response, purine catalyzation, and associated transporters. This
review may offer a novel insight into uric acid and its associated disorders
management and highlight a perspective for exploring its potential therapeutic
drugs from natural products.
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1 Introduction

In recent years, there has been plenty of research interest in the role of gut microecology
in regulating various physiological and pathological processes (Shen et al., 2023). The
human gut microbiota, composed of trillions of microorganisms residing in the
gastrointestinal tract, is crucial in maintaining overall health and metabolism (Li et al.,
2024), and recent studies indicated that it is closely involved in regulating uric acid (UA)
metabolism (Dang et al., 2023). For instance, certain gut microorganisms play a beneficial
role in UAmetabolism, facilitating the breakdown of purine and promoting the excretion of
UA through the intestinal tract (Wang J. et al., 2022; Kasahara et al., 2023). On the contrary,
many investigations implicated that an altered gut microecology could produce enzymes
that contribute to the conversion of purine into UA or impair the excretion of UA, resulting
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in its accumulation and the development of hyperuricemia (HUA)
(Wang Z. et al., 2022; Yin et al., 2022). These inconsistent data
indicated the bidirectional effect of gut macroecology on UA
metabolism, implying that a favorable interaction between gut
microecological homeostasis and UA metabolism balance may be
a candidate biomarker for health monitoring and drug
target screening.

Natural products, including monomers, extracts, and herbal
formulations derived from various sources such as plants,
animals, and microorganisms, have been shown as potential
drugs to modulate gut microecology and UA metabolism for
body health (Guo et al., 2017; Yang L. et al., 2022). It testified
that some plant extracts contain bioactive compounds such as
polyphenols (Ye et al., 2022), flavonoids (Oteiza et al., 2018),
which can selectively promote beneficial bacteria growth while
inhibiting harmful ones. In addition, Chinese medicine herbal
formulation compounds such as puerarin, glycyrrhizin, berberine,
and baicalin significantly repair the gut barrier and reduce pro-
inflammatory cytokine expression in the gastrointestinal tract (Wu
et al., 2019). Besides regulating gut macroecology, certain extracts
and herbal formulations possess UA-lowering properties, which can
inhibit the production via diminishing xanthine oxidase (XO)
activity or enhance the excretion of UA by adjusting UA
transporters, thereby maintaining its physiological levels in the
body (Xu et al., 2024). This viewpoint of natural products
targeting gut microecology to modulate UA metabolism has
recently been accepted theoretically. Considering the
interwinding effect on gut microbiota and UA interactively,
researchers reasoned that natural products could adjust UA
balance via modulating gut microbiota composition, typically
engaging an augmentation of beneficial bacteria and a
diminution of harmful bacteria (Wang Z. et al., 2022). In recent
years, many advanced studies have testified that natural products
not only modulate gastrointestinal flora composition but also
enhance gut barrier function, attenuate inflammatory responses,
modulate purine metabolism, and regulate transporter activity (Bian
et al., 2020; Mehmood et al., 2024). In summary, natural products
showed promising potential for modulating the interwinding effect
between gut microecology and UA metabolism. Therefore, we
review the bidirectional regulating relationship between gut
microbiota and UA metabolism and summarize natural products
targeting gut microecology to modulate UA metabolism. It may
provide an innovative avenue for developing natural products
interventions that can effectively modulate UA metabolism and
mitigate the risk of associated diseases.

2 Overview of uric acid metabolism and
its functions

UA is a nitrogenous product resulting from the breakdown of
purine nucleotides. It plays a significant role in the human body, acting
as an antioxidant and participating in various physiological and
pathological processes. The liver, gut, kidneys, and vascular
endothelium are the primary tissues for UA metabolism.
Endogenous UA production commences with the catabolism of
nucleic acids, followed by conversion to xanthine via a series of
enzymes, ultimately yielding UA through the action of XO

(El Ridi and Tallima, 2017). Differently, exogenous UA synthesis is
primarily derived from ingesting of purine-rich foods. Approximately
one-third of UA excretion occurs in the gastrointestinal tract, with the
remainder excreted from urine in the kidney via transporters (Yin et al.,
2022) (Figure 1). Studies demonstrated that UA had a bidirectional role
in regulating the body’s health, and a U-shaped correlation has been
established between UA levels and total mortality (Crawley et al., 2022).
A literature displayed that UA is a potent antioxidant, rivaling the
antioxidant capacity of ascorbic acid, and possesses multifaceted
functions, including blood pressure maintenance, anti-aging, and
neuroprotection (Wen et al., 2024). However, elevated UA levels of
HUA are associated with a spectrum of diseases, such as gout, kidney
stones, chronic renal disease, hypertension, and metabolic syndrome
(So and Thorens, 2010; Alvarez-Lario and Macarron-Vicente, 2011;
Yanai et al., 2021). HUA is defined as bloodUA levels exceeding 7.0mg/
dL for males or 5.7 mg/dL for females due to UA production surpassing
its elimination (Yang B. et al., 2022). Of note, young males currently
exhibit an increasing prevalence of HUA, and its incidence rate among
Chinese adults was up to 24.4% (Zhang et al., 2021b). Thus, we should
pay serious attention to UA metabolism and its homeostasis
modulation for human health.

3 Gut microecology and uric acid
metabolism

3.1 Mutual favorable effect between gut
microbiota and uric acid metabolism

The gastrointestinal tract harbors a diverse ecosystem of
microorganisms known as the gut microbiota. These
microorganisms maintain a symbiotic relationship with the
human host and play a vital role in various aspects of health,
including immune regulation, nutrient absorption, and
metabolism. Emerging evidence suggests that the gut microbiota
significantly influences UA metabolism (Wang J. et al., 2022). To
maintain the homeostasis of UA, the gut bacteria adapt to the host’s
microenvironment, serving as a crucial regulator of UA production,
metabolism, and excretion pathways. The purine degradation
clusters have been identified in diverse gut bacterial groups,
including Bacillota, Fusobacteriota and Pseudomonadota
(Kasahara et al., 2023). Besides, changes in metabolizing gene
clusters facilitate UA’s metabolic conversion into hypoxanthine
or short-chain fatty acids (SCFAs) (Liu et al., 2023b).
Hypoxanthine plays a pivotal role in energy metabolism and
safeguards the gut barrier integrity mediated by gut epithelial
cells (Lee et al., 2018). SCFAs are involved in gut endocrine and
immune modulation, contributing to the treatment and recovery of
various metabolic diseases (van der Hee and Wells, 2021). In
addition, an investigation implied that an increase in the
abundance of beneficial gut bacteria correlates with the
upregulation of UA metabolism-related excretory genes, such as
ATP-binding cassette sub-family G member 2 (ABCG2) and
Organic Anion Transporter 1 (OAT1), and the downregulation
of absorption genes, including Urate Transporter 1 (URAT1) and
Glucose Transporter 9 (GLUT9) (Li et al., 2021b). For instance,
Lactobacillus, a member of the gut flora, exhibits inhibitory effects
on the XO and purine nucleoside phosphorylase while promoting
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the activity of nucleoside hydrolase RihA-C to curtail urate
synthesis, and it upregulates ABCG2, enhancing UA excretion as
well (Li M. et al., 2023). These studies indicated that the gut
microbiota and its metabolites regulate gut microecological
functions and facilitate normal UA metabolism (Figure 2).

Conversely, UA plays a pivotal role in reverse-modulating the
microbiota of the gastrointestinal tract, in addition to the usual

consideration of safeguarding cardiac, vascular, and neuronal cells
from oxidative stress as a physiological antioxidant. A report
evidenced that appropriate levels of UA have conferred an
evolutionary advantage on humans by elevating antioxidant
markers and fostering the diversity of gut flora
(Wada et al., 2022). Moreover, UA is indispensable for free
radical scavenging and offers a fundamental tissue repair

FIGURE 1
UA metabolic pathways. Ingested and endogenously produced purines impose a significant strain on the body’s purine nucleotide synthesis
processes, culminating in the accumulation of intermediates such as IMP, AMP, and GMP. This accumulation triggers an elevated conversion of xanthine,
facilitated by xanthine oxidase, ultimately leading to the generation of UA. Notably, approximately one-third of UA undergoes metabolism within the
intestinal tract, with UA-associated transporter proteins playing pivotal roles in both the reabsorption and excretion of UA. ABCG2: ATP-Binding
Cassette Subfamily G Member 2; AMP: Adenosine Monophosphate; GLUT9: Glucose Transporter 9; GMP: Guanosine Monophosphate; IMP:Inosine
Monophosphate; OAT1: Organic Anion Transporter 1; OAT2: Organic Anion Transporter 2; OAT3: Organic Anion Transporter 3; UA: uric acid; URAT1: Uric
Acid Transporter 1.

FIGURE 2
Bidirectional regulation of gut microecology and UA metabolism. Gut microecology promotes both purine degradation to reduce UA level and UA
synthesis to increase UA level. While UA is related to gut energy metabolism and maintenance of gut barrier, it also affects the gut flora, destroys the
mucosal barrier, and causes an imbalance of gut microecology.
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mechanism that benefits gut microbiota (El Ridi and Tallima, 2017).
Purine, a source of carbon and energy for gut bacteria, is well-known
as the precursor of UA synthesis, which is also frequently implicated
in the auto-regulation of gut microecology (Kasahara et al., 2023).
Notably, in healthy individuals with normal levels of UA, butyrate-
producing bacteria are more abundant, and other beneficial bacteria,
such as Bifidobacterium and Clostridium sensustricto1, are
significantly enriched. In turn, these dominant microflora
collectively maintain the integrity of the gut barrier, exert
immunomodulatory effects, and possess anti-inflammatory
properties for favoring UA metabolism (Mendez-Salazar et al.,
2021). It has indicated that an appropriate level of UA is crucial
for maintaining gut ecological flora diversity to modulate metabolic
homeostasis favorably.

3.2 Reciprocal unfavorable effect between
dysregulated gut microbiota and uric acid
metabolism

A diminution of beneficial bacteria and a proliferation of
harmful bacteria within the gut microbiota can incite
microecological imbalance, which perturbs UA metabolism,
consequently enhancing UA production and diminishing
excretion, ultimately resulting in HUA. A Mendelian
randomization study has implicated thirty distinct gut microbiota
species in modulating UA levels, with five specific types exhibiting a
notable influence on blood UA concentrations (Wang et al., 2023).
Various gut bacteria exert diverse effects on UAmetabolism. Studies
have shown that elevated yeast proliferation and decreased
bifidobacteria abundance facilitate purine metabolism and
augment UA production (Chiaro et al., 2017; Gong et al., 2022).
Furthermore, the disruption of gut microbiota induced by various
causal agents can also significantly impact UA levels. Recent
literature demonstrated that antibiotic-induced alteration in gut
microbiota resembled that observed in animals with HUA, with a
reduced abundance of purine salvage proteins expression in the gut
microbiota, increasing the risk of HUA (Liu et al., 2023). In addition,
exposure to the heavy metal nickel suppressed beneficial gut bacteria
such as Lactobacillus and Lachnospiraceae, while promoting the
proliferation of harmful bacteria like Parabacteriodes and
Escherichia-Shigella (Yang et al., 2023). This impairment in
purine degradation elevates UA levels and systemic inflammatory
response. In this case, gout can be triggered by the disruption of the
gut barrier and the subsequent release of inflammatory factors,
stemming from a decrease in SCFAs, a metabolite of the gut
microbiota, and an increase in lipopolysaccharides (Liu et al.,
2022). These indicated that disorder modulation of UA resulting
from an imbalance of gut microecology is a common cause for
various diseases.

On the contrary, elevated levels of UA have a significant effect on
gut microecology reciprocally. A study unveiled that distinctive
miRNAs associated with the onset and remission of UA in
Apostichopus japonicus hydrolysate. These miRNAs exhibited a
strong correlation with the metabolism of tryptophan, bile acid,
and SCFAs, suggesting a bidirectional interplay between UA
metabolism, gut bacteria and their metabolites (Fan et al., 2022).
A further discovery of distinct gut bacterial flora in patients with

varying UA levels. In particular, the abundance of enterobacteria
capable of producing SCFAs, such as Ruminococcus, was decreased,
while the abundance of Proteobacteria and Bacteroides was
increased in patients with HUA (Liang et al., 2022). These
findings support the hypothesis that gut flora and microbial
markers could be predictive models for HUA. Studies have
shown that with escalated UA levels, the bacterial flora diversity
was diminished, which led to a downregulation of tight junction
proteins Occludin and Claudin-1, compromising the gut barrier,
enhancing permeability and promoting an imbalance between
Th17 and Treg cells in the gut (Lv et al., 2020; Wang P. et al.,
2022). The downregulated of UA-secreted transporter proteins
ABCG2, OAT1, and OAT3, while upregulated of the UA
reabsorption transporter protein URAT1, which contributed to
HUA and its continuous secondary disadvantage of the gut
microecology (Wu et al., 2022). Notably, cultivating beneficial
bacteria, such as lactobacilli, can produce SCFAs and mitigate the
severity of HUA and its associated secondary damage (Wan et al.,
2020). In a word, abnormally elevated UA can disrupt gut flora’s
composition, compromise the gut barrier, and subsequently trigger
imbalanced gut microecology modulation.

4 Natural products are innovative
modulators of gut microecology

Natural products are compounds derived from natural sources,
such as plants, animals, or microorganisms, encompassing a plenty
of substances, including monomers, extracts, and herb formulations.
In recent years, many investigations have revealed that natural
products were innovative drugs with the potential to modulate
gut microecology and subsequently regulate UA metabolism.
Because more research is interested in the role of extracts and
herb formulations modulating the gut microbiota balance, thus
we enumerate their action below.

4.1 Natural extracts engage in modulating
gut microecology

The advent of liquid chromatography-mass spectrometry (LC-
MS) has ushered in a new era of precision in the effective
employment of natural products, enabling the accurate
determination of phytochemical extract profiles and predictive
assessment of plasma absorption capacity based on the molecular
weight and lipophilicity of individual chemical components (Selby-
Pham et al., 2018). Under such conditions, numerous natural
products, particularly these extracts in managing gut
microecology, have garnered extensive attention. It has been
evidenced that extracts such as Rhodiola crenulata extract (Wang
et al., 2021), Ginkgo biloba leaves extract (Wang Y. et al., 2022),
Centella asiatica ethanol extract (Li H. et al., 2021), have exhibited
promising potential in alleviating gut inflammation by reparative
actions on the gut mucosal barrier and modulation of gut flora
composition. It was noteworthy that individual natural product
preparations exhibited significant therapeutic value. For instance,
the Wuzhi capsule, derived from Schisandra chinensis extract, is a
clinically recognized synergistic and detoxifying formulation, that
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can mitigate gut microecological dysbiosis induced by
mycophenolate through the inhibition of oxidative stress,
inflammation, and apoptosis (Zhang et al., 2022c). In the realm
of natural products, our investigation revealed that polysaccharides
and polyphenols emerge as potent material foundations for
meticulously managing gut microecology (Lin et al., 2019;
Pascuta et al., 2022). Diverse polysaccharide fractions,
encompassing those derived from Lycium barbarum
polysaccharides (Gao et al., 2021), marine algal polysaccharides
(Yu et al., 2023), alongside polyphenolic fractions such as
blueberry polyphenols (Polewski et al., 2020), tea polyphenols
(Ye et al., 2022), exhibit remarkable capability of regulating
bacterial flora composition, whereby benefit for bolstering the gut
mucosal barrier, mitigating oxidative stress, and gut inflammation.
Meanwhile, a nuanced analysis of the intricate relationships between
dietary polyphenols and the gut microbiota further verified that
polyphenols can modulate gut microecology (Koudoufio et al.,
2020). Interestingly, many innovative natural antimicrobials have
been developed with the rapid progress in drug discovery based on
natural extracts modulating gut microecology in recent years
(Guglielmi et al., 2020). It represents a cornerstone of screening
natural products for combating human health threats of gut
microbiota-related disease and paves a new avenue for natural
products to be used in clinical applications.

4.2 Herbal formulations and their
ingredients based on clinical efficacy
modulate gut microecology

Natural products constitute a pivotal source of herbal remedies
in traditional Chinese medicine. Herbal formulations contain
massive natural ingredients owning multifaceted pharmaceutical
targets and diverse medical therapeutic efficacy. Due to their
pharmaceutical activity, these formulations are applied in clinical
treatment as pharmaceutical prescriptions in China. Studies have
testified that many herbal formulations and their active ingredients
exhibited a role in sustaining gut microecological stability with an
intricate reciprocal complementary mechanism (Zheng et al., 2022).
However, pieces of literature implied that ingredients within herbal
formulations displayed vast heterogeneity. For instance, in a mouse
model of spleen deficiency syndrome, gut barrier impairment, and
disrupted microbiota metabolism were observed. It evidenced that
the active polysaccharide component S-3 in Sijunzi decoction
primarily enhanced gut immune function and gut microbiomes,
whereas its non-polysaccharide component was chiefly engaged in
ameliorating gut motility disorders (Ma et al., 2021). It evidenced
that metabolic pathways of the gut microbiota play a crucial role in
regulating gut microecological balance, especially carbohydrates,
SCFAs, and amine metabolites, which are associated with the gut
flora. A recent study implied that these metabolites are critical
targets of Zengye decoction by modulating gut microecology in
constipated rats mode (Liu et al., 2019). Besides, another classic
prescription Shenling Baizhu San remarkably alleviated gut
microecological disorders induced by indigestion, thereby
modulating microflora energy metabolism, amino acid
metabolism, and other related pathways (Zhang et al., 2020). In
conclusion, evidence suggests that the multi-component and multi-

target effects feature of herbal formulations is well-suited to
modulating the complexity of gut microecology, and this afford
them effectively regulate gut microecological homeostasis. Whereas,
despite the clinical efficacy of herbal formulations and their
ingredients, many researchers still reckon that there will be a
long way and substantial challenging work needs to be done for
screening feasible clinical natural products drugs (Zhou et al., 2016).

5 Natural products regulate uric acid
metabolism

Several natural products have shown promising effects in
modulating UA metabolism, such as resveratrol and quercetin,
have been reported to regulate UA metabolism through the
inhibition of XO, a key enzyme in UA production. In general
mechanism, studies speculated that natural products mainly
switch the activity of key enzymes involved in the production
process of UA or target critical transporters of its excretion,
thereby orchestrating the balance of UA metabolism.

5.1 Natural extracts engage in modulating
uric acid metabolism

In recent years, many researchers have manifested that the
utilization of natural extracts could effectively regulate the
synthesis and excretion metabolism of UA (Zhang X. et al.,
2022). XO is a pivotal enzyme for UA production, and its
activity can be modulated by administering natural inhibitors
(Sun et al., 2024). Compounds of natural extracts such as
flavonoids, anthraquinones, and xanthones have been evaluated
for their potential inhibitory effect of XO, employing techniques
like 3-D QSAR analysis and molecular docking of natural XO
inhibitors (Malik et al., 2019). Consistently, flavonoid extracts
derived from saffron floral bio-residues have consistently
exhibited antagonistic effects against HUA by modifying gut flora
associated with host metabolism, inhibiting XO activity, and
subsequently reducing UA synthesis (Chen et al., 2022).
Intriguingly, in tandem with compound structure-based virtual
screening for UA-producing inhibition, isopentenyl dihydro
flavones have been identified from a natural herb database, which
were as potential activated scaffolds as human urate transporter 1
(hURAT1) inhibitors for the treatment of gout (Chen et al., 2021).
These finding emphasized the capability of flavonoids as a primary
component for potentially controlling UA metabolism. In addition,
tea polyphenols (Zhang G. et al., 2022), apple polyphenols (Cicero
et al., 2017), and numerous other polyphenolic compounds also
inhibited the activity of XO. Recent studies revealed that many other
natural extracts, including the ethanol extract of Amomum villosum
Lour (Dong et al., 2023), the active ingredient of Lagotis
brachystachya (Zhu et al., 2021) and numerous others, not only
inhibited XO but also regulated urate transporter proteins, thereby
reducing UA production and promoting excretion. However, the
underlying mechanisms of natural extracts involving UA
metabolism are rather complicated, which may be influenced by
numerous factors, including genetics, gender, health status, etc.
Thus, it elicits challenges of natural extracts exerting the
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TABLE 1 Natural extracts target gut microbiome to regulate UA metabolism and antagonize associated disorders.

Mechanism Natural extracts Disease models Outcomes References

Regulation of gut
microbiota composition

Camellia sinensis PO and adenosine induced HUAmice Ruminococcus,Lactobacillus↑
Bacteroides, Escherichia coli↓

Wu et al. (2022)

Coffee leaf tea extracts High purine diet induced HN rats Phascolarctobacterium, Alloprevotella, and
Butyricicoccus↑

Zhou et al. (2023)

Cichorium intybus L. formula Adenine combined with ethambutol
induced HN rats

Lactobacillaceae, Erysipelotrichaceae,
Lachnospiraceae, Ruminococcaceae, and

Bifidobacterium↑
Bacteroides↓

Amatjan et al.
(2023)

Chicory High-purine diet induced HUA quails Bifidobacterium, Erysipelotrichaceae↑
Helicobacteraceae↓

Bian et al. (2020)

Radix Astragali PO-induced HUA mice Lactobacillaceae,Lactobacillus murine↑
Prevotellaceae, Rikenellaceae and

Bacteroidaceae↓

Deng et al. (2023)

Berberine PO-induced HUA mice Coprococcus, Bacteroides, Akkermansia and
Prevotella↑

Shan et al. (2022)

Kidney tea PO-induced HUA mice Roseburia, Enterorhabdus↑
Ileibacterium and UBA1819↓

Chen et al. (2023a)

Curcumin Adenine and PO induced HN rat Lactobacillus and Ruminococcaceae↑
Escherichia-Shigella and Bacteroides↓

Xu et al. (2021a)

Maintenance of gut
barrier’ integrity

Pectic polysaccharides from
Aconitum carmichaelii leaves

DSS induced acute ulcerative colitis
mice

ZO-1,occludin↑
LPS,NOD1,TLR4 ↓

Fu et al. (2022)

Marine fish protein peptide PO induced HUA rats Recovering the expression of tricellular tight
junction protein ILDR2 and the immune-

related genes Ccr7 and Nr4a3

Wu et al. (2023)

Ganoderma atrum
polysaccharide

Acrylamide induced intestinal injury
in rats

Decreased inflammatory cell infiltration and
restoration of intact intestinal epithelium

Yang et al. (2019)

Extract of Dendrobium
officinale leaves

Unhealthy lifestyle induced HUA rats ZO-1 and occludin↑ Li et al. (2023a)

Modulation of
inflammatory response

Apostichopus japonicus
oligopeptide

Purine-rich solution induced HUA
mice

NLRP3, NF-κB↓ restores m6A methylation
levels

Lu et al. (2021)

Tuna meat oligopeptides PO combined with purine-rich
solution induced HUA mice

NLRP3, TLR4/MyD88/NF-κB↓ the
phosphorylation of p65-NF-κB↓

Han et al. (2020)

Camellia japonica bee polle PO induced HUA mice NLRP3↓
TLR4/MyD88/NF-κB↓

Xu et al. (2021b)

A. japonicus (EH-JAP) and A.
leucoprocta (EH-LEU)

Diet-induced HUA mouse model TLR4/MyD88/NF-κB↓
IL-1β, TNF-α, IL-6 ↓

TGF-β, IL-10↑

Wan et al. (2020)

Glycyrrhiza uralensis CPT-11 induced colitis mice TNF-α, IL-1β,IL-6,NLRP3↓
Further regulates UA metabolism

Yue et al. (2021)

Regulation of purine
metabolism

Inulin-type prebiotics Continuous ambulatory peritoneal
dialysis patients

Enriched purine-degrading species, enhanced
fecal UA degradation

He et al. (2022)

Rhein DSS induced mouse colitis model Lactobacillus changed purine metabolism
indirectly,led to decreased UA levels

Wu et al. (2020)

Flavonoid extract of saffron
floral bio-residues

PO induced HUA rats Hepatic XO, UA↓ Chen et al. (2022)

Enteromorpha prolifera
polysaccharide

Hypoxanthine and oteracil potassium
induced HUA mice

Serum XO, hepatic XO↓ Li et al. (2021c)

Modulation of gut
transporter activity

Stevia residue extract PO-induced HUA mice ABCG2↑
GLUT9, UA↓

Mehmood et al.
(2019)

Tigogenin PO induced HUA rats; adenine-PO
induced HUA mice

OAT-1, ABCG2↑
GLUT9, URAT1↓

Zhang et al. (2018)

(Continued on following page)
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TABLE 1 (Continued) Natural extracts target gut microbiome to regulate UA metabolism and antagonize associated disorders.

Mechanism Natural extracts Disease models Outcomes References

MannuronatE oligosaccharide 0.5% Sodium carboxymethyl
Cellulose solution containing PO

induced HUA mice

Renal GLUT9, URAT1↓
Gut GLUT9↓
Gut ABCG2↑

Wei et al. (2023)

Tea water extracts PO and adenosine induced HUAmice Renal ABCG2, OAT1 and OAT3↑ gut ABCG2↑
Renal URAT1↓

Wu et al. (2022)

Ulva lactuca polysaccharide Hypoxanthine and oteracil potassium
induced HUA mice

ABCG2/OAT1↑
URAT1, GLUT9↓

Li et al. (2021b)

ABCG2: ATP-Binding Cassette Subfamily G Member 2; CPT-11: Irinotecan HCl, Trihydrate; GLUT9: Glucose Transporter 9; HN: hyperuricemic nephropathy; HUA: hyperuricemia; IL-1β:
Interleukin-1β; IL-6: Interleukin-6; IL-10: Interleukin-10; LPS: lipopolysaccharide; NLRP3: nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3; NOD1:

Nucleotide-binding Oligomerization Domain-containing Protein 1; OAT1: Organic Anion Transporter 1; OAT3: Organic Anion Transporter 3; PO:potassium oxonate; TLR4/MyD88/NF-κB:
Toll-like receptor 4/myeloid differentiation factor 88/nuclear factor-κB; TGF-β: Transforming Growth Factor-β; TNF-α: Tumor Necrosis Factor-α; UA: uric acid; URAT1: Uric Acid

Transporter 1; XO: xanthine oxidase; ZO-1: Zonula occludens-1.

TABLE 2 Herbal formulations target gut microbiome to regulate UA metabolism and antagonize associated disorders.

Mechanism Herbal
formulations

Disease models Outcomes References

Regulation of gut microbiota
composition

Modified Baihu decoction Sodium urate induced acute gouty
arthritis rat

Lachnospiraceae, Muribaculaceae, and
Bifidobacteriaceae↑

Lactobacillaceae, Erysipelotrichaceae,
Ruminococcaceae, Prevotellaceae and

Enterobacteriaceae↓

Wang et al.
(2022c)

CoTOL PO induced HUA rats Akkermansia↑
Bacteroides and Alloprevotella↓

Gao et al. (2020)

Bi Xie Fen Qing Yin
decoction

PO and adenine induced HN mouse
model

Ruminococcaceae, Clostridium sensu stricto 1,
and Streptococcus↑

Desulfovibrionaceae, Enterobacter,
Helicobacter, and Desulfovibrio↓

Lin et al. (2024)

Cichorium intybus L.
formula

Adenine combined with ethambutol
induced HN rats

Lactobacillaceae, Erysipelotrichaceae,
Lachnospiraceae, Ruminococcaceae, and

Bifidobacterium↑
Bacteroides↓

Amatjan et al.
(2023)

Fangyukangsuan granules PO and hypoxanthine induced HUA rat
model

Fermentation of pyruvate to SCFAs↑ amino
acid biosynthesis↓

Zhang et al. (2024)

Guizhi Shaoyao Zhimu
Decoction

High-purine diet combined with local
injection induced gouty arthritis rat

Lactobacillus, Ruminococcaceae, and
Turicibacter↑
Blautia↓

Bian et al. (2024)

Maintenance of gut barrier’
integrity

Qu-zhuo-tong-bi
decoction

High-fat diet and MSU crystal-induced
gouty arthritis model

SCFAs↑
ZO-1, Occludin↑

Wen et al. (2020)

Modulation of inflammatory
response

Sanmiao Wan Intra-articular injection induced acute
gouty arthritis rat

MDR1 mRNA and P-gp↓ knee joint swelling,
synovial hyperplasia , inflammatory cell

infiltration↓

Wu et al. (2018)

Si-Miao-San Monosodium urate induced acute gouty
arthritis mice

M2 macrophage polarization↑
PI3K/Akt signaling↓

Cao et al. (2021)

Regulation of purine
metabolism

Er Miao Wan High-fructose diet induced HUA rat Six purine metabolites related to HUA were
changed, including UA, hypoxanthine,

xanthine, deoxyadenosine, deoxyguanosine,
and deoxyinosine

Gu et al. (2023)

Qi-Zhu-Xie-Zhuo-Fang Adenine and PO induced HN rat XO, renal epithelial-to-mesenchymal
transition↓

Huijuan et al.
(2017)

Modulation of gut
transporter activity

Dendrobium officinalis Six
nostrum

PO and hypoxanthine induced HUA rat ABCG2 and PDZK1↑
Intestinal GLUT9↓

Ge et al. (2023)

ABCG2: ATP-Binding Cassette Subfamily G Member 2; GLUT9: Glucose Transporter 9; HN: hyperuricemic nephropathy; HUA: hyperuricemia; MDR1: Multi-Drug Resistance Gene-1;

PDZK1: PDZ, Domain Protein 1; PO: potassium oxonate; P-gp: P-glycoprotein; SCFAs: Short-chain fatty acids; ZO-1: zonula occludens-1.
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modulation of UAmetabolism directly. Therefore, screening natural
extracts targeting purine degradation, UA transporters, and gut
microbiotas or their associated enzymes involved in the UA
metabolism process becomes a new highlighting orientation to
develop novel therapeutic agents for UA-associated disease
treatment (Rullo et al., 2023).

5.2 Herbal formulations based on clinical
efficacy modulate uric acid metabolism

With the gradually increased prevalence rates of UA
dysmetabolism and its associated disorders in recent years, many

researchers have oriented to exploring therapeutic natural products
for HUA, particularly focusing on herbal formulations in China.
Strikingly, it has testified that several herbal formulations and their
ingredients exhibited robust clinical efficacy in modulating UA
metabolism and mitigating symptoms of UA-related diseases. For
instance, classic formulations such as Wuling San (Huang et al.,
2023), Siwu decoction (Wang et al., 2016), Fuling-Zexie formula (Lu
et al., 2024), and Simiao San (Zhang Y. et al., 2023) have exhibited
modulatory effects on UA metabolism, encompassing inhibition of
XO activity, modulation of UA transporter protein, regulation of
inflammatory signaling pathways, such as NLRP3 complex signaling
activity. Additionally, in a clinical trial of an herbal drug treating
gouty arthritis, investigators revealed that the ingredients of

FIGURE 3
Natural products target gut microecology to regulate UA metabolism and secondary diseases. Extracts or preparations from natural products such
as plants, animals, marine organisms, and microorganisms can repair gut microecological imbalance, resulting in reduced UA production or increased
excretion, thereby improving UA metabolism and related secondary diseases. The specific ways are to restore the gut flora structure, repair gut barrier
function, reduce the inflammatory state, and regulate purine metabolism and transporter activity. ABCG2: ATP-Binding Cassette Subfamily G
Member 2; GLUT9: Glucose Transporter 9; IL-1β: Interleukin-1β; IL-6: Interleukin-6; LPS: Lipopolysaccharide; NF-κB: nuclear factor-κB; NLRP3:
nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3; OAT1: Organic Anion Transporter 1; OAT3: Organic Anion
Transporter 3; ROS: Reactive Oxygen Species; TNF-α: Tumor Necrosis Factor-α; UA: uric acid; URAT1: Uric Acid Transporter 1; XO: xanthine oxidase; ZO-
1: zonula occludens-1.
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Huzhang Granule, a traditional Chinese herbal compound, exerted a
better capability of analgesic and anti-inflammatory effects, acquired
a lower level of UA, even with less incidence of adverse effects,
comparing with that of the etoricoxib control group (Wang et al.,
2024). Furthermore, it has been reported that the Shuang-Qi gout
capsule, a patented pharmaceutical prescription currently utilized in
clinical application, exhibited its ability to benefit UA metabolism
effectively in a dose-dependent manner, consequently treating gout-
related tissue edema and pain (Kodithuwakku et al., 2013). In
conclusion, numerous herbal formulations exerted significant
efficacy in modulating UA metabolism. However, plenty of
challenging work need to be done to clarify the complexity of
their ingredient constitution and decipher their underlying
mechanisms of UA metabolism modulation.

6 Complex mechanism of natural
products modulating uric acid
metabolism via its targeted gut
microecology

As aforementioned, natural products, including various extracts
and herbal formulas, can modulate gut microbiota and UA
metabolism. It inspired researchers to speculate that an
interwinding effect existed between gut microecology and UA
metabolism, and natural products could modify gut microecology
to orchestrate UA metabolism balance. Recent mechanistic studies
indicated that natural products could target gut microbiota to
orchestrate an intricate network of modifying its composition,
gut mucosal barrier, inflammatory response, purine catalyzation,
and associated transporters. Understanding these intriguing
mechanisms of these natural products modulating UA
metabolism balance may propose new strategies for managing
HUA and its associated diseases. (Table 1; Table 2; Figure 3).

6.1 Regulation of gut microbiota
composition

The intricate equilibrium of gut microbiota composition is
strongly intertwined with UA metabolism and several
pathophysiological conditions. Natural products showed a
promising role in enhancing UA metabolism and alleviating
associated secondary disorders through regulating gut microbiota
composition, typically exerting an augmentation of beneficial
bacteria and a diminution of harmful bacteria (Chen et al.,
2023b). Generally, to resist detrimental Bacteroidaceae, bacterial
genera such as Bifidobacterium, Lactobacillaceae, and
Lachnospiraceae, which represent the beneficial bacterial
spectrum, usually grow superiorly and can be strengthened by
natural products (Amatjan et al., 2023). For instance, studies
have documented that rhein can upregulate Lactobacillus, thereby
enhancing purine metabolism and mitigating secondary
manifestations of HUA (Wu et al., 2020; Cao et al., 2023).
Moreover, supplementation with Radix Astragali and berberine
in HUA model mice could reduce the abundance of
Prevotellaceae, Rikenellaceae, and Bacteroidaceae, while
augmenting Lactobacillaceae, Coprococcus, Bacteroides,

Akkermansia, and Prevotella, which concurrently assist of
regulating XO’ activation and renal function, and safeguarding
mice against HUA induced damage (Shan et al., 2022; Deng
et al., 2023). In a clinical trial, patients with renal failure were
administered inulin-type prebiotics, and results showed that it could
elevate the ratio of Firmicutes to Bacteroidetes, with the majority of
bacteria enriched in their fecal matter correlated with UA
degradation (He et al., 2022). Numerous studies have consistently
demonstrated that an augmentation in SCFAs production is
frequently associated with increased abundance of beneficial
bacteria involved in UA metabolism, confirming the beneficial
effect of SCFAs on UA metabolism (Ni et al., 2021). It has
reported that both coffee leaf tea (Zhou et al., 2023) and
chlorogenic acid (Zhou et al., 2021) exhibited therapeutic effects
on hyperuricemic nephropathy (HN) by improving the abundance
of SCFAs-produced bacteria, indicating that SCFAs-produced gut
bacteria may serve as pivotal targets of natural products to
ameliorate diseases associated with dysmetabolism of UA. In
conclusion, numerous evidences suggest that the optimization of
gut microbiota composition serves as a pivotal step in the regulation
of UA metabolic imbalance by natural products.

6.2 Maintenance of gut barrier’ integrity

The physiological gut barrier is comprised of physical structure,
microflora, and immunological microenvironment, which regulates
various physiological activities, including UA metabolism. The
physical barrier consists of an epithelial layer rich in tight
junction proteins and a mucus layer composed of abundant
mucins, and the immunological microenvironment is constituted
by immunological tissues and cells (Sylvestre et al., 2023). Recent
studies manifested that high levels of UA could impair the gut’s
physical barrier and microenvironment (Lv et al., 2020).
Interestingly, a report illustrated that natural products could
affect UA metabolism by restoring these gut barriers.
Administration of the extract of Dendrobium officinale leaves
and herbal formulation Qu-zhuo-tong-bi decoction can repair the
intestinal barrier damage caused by HUA, manifested by
upregulation of ZO-1 and occludin expression, thereby enhances
gut mucosal thickness and facilitates the normal excretion of UA
(Wen et al., 2020; Li L. Z. et al., 2023). Upon disrupting the gut
barrier, inflammatory mediators can readily disseminate into the
systemic circulation and exacerbate simultaneous symptoms
induced by HUA. Natural extract tuna meat oligopeptide was
considered as a potential inhibitor of the TLR4/MyD88/NF-κB
signaling, and a study testified that it could suppress
TLR4 signaling cascade and NLRP3 inflammasome subsequently,
thereby orchestrating the restoration of the gut barrier integrity
(Han et al., 2020). Regarding immunological microenvironment
coordinates gut immune barrier repairment, a report has manifested
that the extract of Aconitum carmichaelii root not only modulated
UA metabolsim but also regulated immune-associated siganling
proteins, including TLR4 and NOD1, consequently promoting
the transcription of tight junction protein in colitis model mice
(Fu et al., 2022). Furthermore, a profound interplay between gut
microbiota and gut barrier function was exsisted, research elucidated
that augmention of SCFAs-generating microflora strains could
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significantly fortifies gut barrier integrity, and that could be
amplified by curcumin supplementation in HN rats (Xu X. et al.,
2021). In summary, numerous natural products exhibit potent
reparative effects on the intestinal barrier, thereby facilitating the
recovery from HUA.

6.3 Modulation of inflammatory response

The inflammatory status of the gut interacts with inflammation
related to UA metabolism, while natural products with anti-
inflammatory properties can suppress inflammatory signal
pathways involved in UA metabolism, potentially reducing the
risk of HUA and related diseases (El-Tantawy, 2021). Crucial
mediators that regulate the intricate interaction between
inflammation and UA metabolism are the NLRP3 inflammasome
and the NF-κB signaling molecules. A study has shown that A.
japonicus oligopeptide significantly inhibited the NF-κB signaling
pathway and NLRP3 inflammatory vesicle, thereby alleviating
HUA-induced inflammation in HUA model mice (Lee et al.,
2022). Moreover, recent studies have elucidated that Tuna meat
oligopeptides (TMOP) (Han et al., 2020), Camellia japonica bee
pollen (Xu Y. et al., 2021), A. japonicus (EH-JAP) and Apostichopus
leucoprocta (EH-LEU) (Wan et al., 2020) commonly exhibited
inhibitory effects on the TLR4/MyD88/NF-κB signaling pathway.
Individually, TMOP could modulate the UA metabolic pathway by
inhibiting the phosphorylation of p65-NF-κB also. Meanwhile, C.
japonica bee pollen could regulate specific gut transport proteins
and gut microflora composition. Besides, both EH-JAP and EH-LEU
could reduce the abundance of pathogens in the gut tract while
exhibiting antagonistic effects on HUA and its induced renal
inflammation. Gut inflammation intricately intertwined with
various factors underpinning the UA metabolism process. IL-1β
and IL-18 are the most pivotal cytokines among these inflammatory
molecules, contributing to several pathological processes (Keenan,
2020). UA was considered as a crucial exogenous ligand for the
NLRP3 inflammasome, and it reasonably speculated that HUA
intensified the inflammatory response processes (Yue et al.,
2021). An observation verified that IL-1β and IL-6 were evildoers
of initiating systemic inflammation, while chlorogenic acid inhibited
their detrimental action via NLRP3 signaling in HUA model mice
(Zhou et al., 2021). In summary, natural products emerge as
promising candidates for preventing gut tract inflammation and
mitigating disorders associated with UA dysmetabolism.

6.4 Regulation of purine metabolism

Purine metabolism comprises de novo synthesis, nucleotide
degradation, and salvage processes, requiring a series of synthetic
and catabolic enzymes such as phosphoribosyltransferase, xanthine
dehydrogenase, XO, and uricase. UA is the end product of human
purine metabolism and is generated directly from the purine
metabolite xanthine (Furuhashi, 2020). XO is the crucial rate-
limiting enzyme involved in this metabolic pathway, which is
generated from the liver and plays a pivotal role in orchestrating
purine metabolism and concerting gut microenvironment
(Bortolotti et al., 2021). Recent studies indicated that natural

products could target XO as inhibitors and effectively reduce UA
production, providing a potential therapeutic strategy for HUA (Sun
et al., 2024). In addition, other scholars have revealed an intricate
interaction between gut flora and XO activation, which could be
modulated sophisticatedly by several inherent factors in the gut
microecology system (Liu et al., 2022; Shan et al., 2022).
Perturbation of gut flora profoundly affects purine metabolism,
particularly the presence of Lactobacillus, which is closely
correlated with the purine catabolic process. These above findings
were testified by the flavonoid extract derived from saffron floral
bio-residues, which antagonizes HUA by modulating both XO
activity and gut flora composition (Chen et al., 2022). Total
flavonoids isolated from Glycyrrhiza uralensis and rhein
ameliorated the disorder of purine metabolism and reduced UA
levels in the feces with dysbacteriosis in colitis mice (Wu et al., 2020;
Yue et al., 2021). This definite efficacy of natural compounds to
improve purine metabolism. Furthermore, HUA-triggered renal
epithelial-mesenchymal transition is linked to altered XO activity,
and Qi-Zhu-Xie-Zhuo decoction has the potential to reverse this
process (Huijuan et al., 2017). Moreover, the classic herbal
prescription Ermiao Wan is usually applied for the therapeutic
management of HUA. A report indicate that this formula
enhances purine degradation, modulates key metabolites like
hypoxanthine, xanthine, and UA, thereby combating HUA (Gu
et al., 2023). The above studies indicated that natural products could
effectively ameliorate purine metabolism in coordination with
microbiota to reduce UA production, which provides a potential
therapeutic strategy for HUA-induced disorders.

6.5 Modulation of gut transporter activity

In recent years, studies have illustrated several transporters
located in the gastrointestinal tract epithelium that have
significantly contributed to modulating UA metabolism through
the reabsorption or excretion of UA in the gut microenvironment.
For instance, GLUT9 primarily exhibits the regulation of UA
reabsorption into enterocytes, while ABCG2 is responsible for the
excretion of UA from enterocytes into the gut lumen. Interestingly,
URAT1 exerts both reabsorption and excretion of UA,
corresponding to environmental changes in gut microecology
(Dalbeth et al., 2021). Notably, recent findings have indicated
that natural products may modulate the activity of UA
transporters in the gut tract, thus influencing UA excretion and
preventing its accumulation (Zhang M. Q. et al., 2023).
Supplementation with the extracts from Stevia in HUA model
mice could change UA levels by suppressing GLUT9 and
enhancing ABCG2 expression, resulting in reduced UA levels in
the gut tract and serum, and mitigated HUA-induced damage
(Mehmood et al., 2019). Coffee-leaf tea has also be testified as an
effective intervention to lower serum UA levels, prevent HUA and
kidney damage, throughmodulating the activities of GLUT9, OAT3,
and ABCG2 in the HN model (Zhou et al., 2023). In addition, an
in vitro study also showed that Dioscin exerted a dual modulatory
effect by inhibiting URAT1 expression level while stimulating the
activity of ABCG2 to transport UA concurrently (Zhang et al., 2018).
Furthermore, utilizing network pharmacology and molecular
docking methods revealed that the natural product isobavachin
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facilitated the reduction of UA by activating ABCG2-mediated bile
acid secretion (Luo et al., 2023). These findings provide novel
insights into how natural products regulate UA transporters and
their intricate interaction to modulate UA metabolism.

7 Conclusion and perspective

Despite the remarkable emergence of natural products as a vital
resource for drug development in recent decades, the utilization of
natural products in clinical intervention for diseases still needs
improvement in quantity and diversity. As the third stage in
ingesting food or drugs, the gut tract holds a pivotal role in
maintaining fluid homeostasis, metabolizing nutrients, and
eliminating waste products. And the stability of the gut
microecology is imperative for the efficient absorption and
utilization of dietary and medicinal compounds (Lu et al., 2020).
UA is closely related to diet and subsequent changes in gut
microecology, and is directly or indirectly involved in a variety of
pathological injuries (Zeng et al., 2019). With the rapid progression of
multi-omics technology fosters the establishment of virtual and physical
screening databases grounded in natural products (Wilson et al., 2020),
the elucidation of gut physiological and pathological microecological
environments (Shalon et al., 2023), and the refinement of mathematical
model predictions based on gut microecology’s temporal and spatial
dynamics (Geng et al., 2021), these advancements have bolstered
confidence in targeting gut microecology to modulate UA
metabolism. However, constructing a sophisticated natural product
screening platform aimed at gut microecology for medicinal
advancements to intervene in UA metabolism poses a feasible yet
formidable challenge.

Current investigations into natural products confront several
significant hurdles. Natural products constitute a mass of
compounds derived from plants, animals, microorganisms, and
other sources. Screening for potential natural candidates targeting
gut microecology can be arduous, as current methodologies often
hinge solely on the product’s active component, thereby restricting
its broad development and utilization. Additionally, acquiring a
comprehensive understanding of the intricate modes of action and
diverse targets of natural products, along with their variable curative
potentials across disease types, poses a considerable challenge.
Therefore, we espouse a balanced approach that incorporates the
pursuit of novel natural products with exploring established natural
compounds and their underlying mechanisms. This strategy will
facilitate the establishment of a comprehensive network
encompassing natural products, individual extracts, complex
preparations, and disease mechanisms, along with a comprehensive
database serving as a repository of fundamental data to cater to the
diverse needs of researchers. In addition, aligned with the complexities
inherent in natural product discovery, the precise modulation of gut
microecology also encounters significant challenges. Gut microecology
represents a dynamic and intricately balanced system characterized by
the diverse composition of gutmicrobiota, where even strainswithin the
same genus perform distinct roles. The precise elucidation of the
mechanisms of gut microbiota and the factors that shape gut
microecology concurrently poses a formidable challenge, given the
intricate interplay of numerous regulatory mechanisms influenced
by environmental factors, dietary patterns, multi-systemic diseases,

and various pathological aspects. In recognition of this complexity,
we advocate for the extensive utilization of multi-omics technology to
elucidate the diverse functionalities of the same microbiota in various
disease models and the distinct functionalities of different microbiota
within a single disease model. Furthermore, we support a
comprehensive examination of the spectrum of gut microecological
alterations across different pathological stages of a given disease,
encompassing alterations in microbiota, gut barriers, inflammatory
states, and other contributing factors.

Furthermore, the preponderance of research about UA
metabolism primarily focuses on its synthesis and elimination,
specifically the activity of XO and the expression of UA
transporters. Nonetheless, in the absence of clinical
manifestations, patients often ignore HUA. As a result, to
augment our comprehension of the dynamic role of UA in
pathological processes, it is crucial to conduct research that
concurrently examines UA as both a consequence of lesions and
an etiological factor.

In conclusion, Delving into potential targets for modulating UA
metabolism within the intricate gut microecology utilizing natural
products could offer valuable insights into natural product-based
drug development, intricate equilibrium maintenance of gut
microbiota, and the intricate regulatory mechanisms underlying UA
metabolism. Our comprehensive review demonstrates that extracts of
natural products and herbal compounds not only have the potential to
regulate gut microecology and UA metabolism but can also indirectly
improve UA metabolism by modulating the gut microecology.
Specifically, they can regulate gut microbiota composition, restore
intestinal barrier integrity, alleviate inflammatory responses,
modulate purine metabolism, and influence intestinal transporter
function, thereby alleviating HUA and related complications. Our
review provides conceptual frameworks and a foundation for more
comprehensive and precise investigations into natural product-oriented
gut microecology interventions in UA metabolism and
associated disorders.
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