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Osteoporosis is a common chronic metabolic bone disease caused by
disturbances in normal bone metabolism and an imbalance between
osteoblasts and osteoclasts. Osteoporosis is characterized by a decrease in
bone mass and bone density, leading to increased bone fragility. Osteoporosis
is usually treated with medications and surgical methods, but these methods
often produce certain side effects. Therefore, the use of traditional herbal
ingredients for the treatment of osteoporosis has become a focus of attention
and a hot topic in recent years. Curcumin, widely distributed among herbs such as
turmeric, tulip, and curcuma longa, contains phenolic, terpenoid, and flavonoid
components. Modern pharmacological studies have confirmed that curcumin
has a variety of functions including antioxidant and anti-inflammatory properties.
In addition, curcumin positively regulates the differentiation and promotes the
proliferation of osteoblasts, which play a crucial role in bone formation. Multiple
studies have shown that curcumin is effective in the treatment of osteoporosis as
it interacts with a variety of signaling pathway targets, thereby interfering with the
formation of osteoblasts and osteoclasts and regulating the development of
osteoporosis. This review summarized the key signaling pathways and their
mechanisms of action of curcumin in the prevention and treatment of
osteoporosis and analyzed their characteristics and their relationship with
osteoporosis and curcumin. This not only proves the medicinal value of
curcumin as a traditional herbal ingredient but also further elucidates the
molecular mechanism of curcumin’s anti-osteoporosis effect, providing new
perspectives for the prevention and treatment of osteoporosis through multiple
pathways.
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1 Introduction

As the aging population grows, osteoporosis (OP) has emerged as one of the top three
major chronic diseases in China (Yu and Xia, 2019). OP is a disease in which bone mass is
reduced, microstructure deteriorates and fragility fractures occur. The main reason is the
upregulation of osteoclasts, resulting in an imbalance between osteoblasts and osteoclasts,
which are the basic cells for bone growth and maintenance because they form bone tissue,
and an imbalance between the two can lead to OP (Visconti et al., 2019). Research findings
have shown that in the maintenance of the bone metabolic balance, the critical stem cells are
BMSC (Wang et al., 2016). Furthermore, the osteogenic conversion of bone marrow
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mesenchymal stromal cells (BMSCs) is a primary provider of
osteoblast precursor cells (Wilkesmann et al., 2020). Osteoblasts
are fundamental cells that produce bone, controlling mineralization,
and driving bone development (Florencio-Silva et al., 2015).
Therefore, a sufficient source of osteoblasts is the key to ensuring
bone reconstruction and maintaining bone metabolic balance. OP is
often seen to fall in either primary or secondary category and it
affects people of all ethnic backgrounds, as well as many older men
and women (Romagnoli et al., 2011). Preventing OP calls for
reaching a normal peak bone mass, but this requires an
individual to nourish their body with a healthy diet comprising
calcium, vitamin D in plenty, regular menstrual cycles, and a
comprehensive physical workout schedule (Weaver et al., 2016).
Menopause triggers significant hormonal fluctuations and localized
oxidative inflammation predominantly in women, disrupting the
delicate balance maintained by osteoclasts and osteoblasts. This
disruption accelerates the process of bone degeneration, ultimately
contributing to the development of OP, a condition characterized by
weakened bones and increased fracture risk (Baastrup, 2016).

Since ancient times, Chinese herbal medicine has constituted an
indispensable and fundamental part of the medical field, carrying
with it profound traditional wisdom (Yuan H. et al., 2016). The
advancement of modern science and technology has greatly
facilitated the in-depth study of Chinese herbal medicine,
enabling scientists to accurately analyze its chemical composition
and elucidate its complex pharmacological mechanisms (Lihong,
2019). This has resulted in the establishment of a more solid
scientific foundation for the application of traditional Chinese
herbal medicine. Currently, Chinese herbal medicine is gradually
becoming a bridge and intersection point connecting traditional and
modern, Eastern and Western medicine (Scheid, 2002). Its wide
variety and different efficacy are not only widely used globally for the
treatment of all kinds of diseases, but also become a vivid
embodiment of the concept of mankind’s pursuit of a
harmonious symbiosis with nature. From the long heritage of the
ancient classic Shennong’s Classic of Materia Medica to the
continuous exploration of modern scientific research, Chinese
herbs have consistently played a pivotal role in the history of
human medical practice, and continue to contribute to human
health and wellbeing in a unique way (Liu et al., 2018). Over
time, they have developed a comprehensive theoretical
framework and a set of sophisticated practical techniques, which
have been passed down from generation to generation through the
accumulated wisdom of countless medical practitioners. The essence
of Chinese herbal medicine lies in the uniqueness of its “four qi and
five flavors” concept, which reveals the subtle regulating effects of
the four qualities of cold, heat, warmth, and coolness, as well as the
five flavors of acidity, bitterness, sweetness, pungency, and saltiness
on the balance of the human body’s internal environment (Zhaoguo
et al., 2021). This concept enables the comprehensive goals of disease
prevention, treatment, and healthcare to be achieved.

In recent times, turmeric has garnered widespread attention for
its potent anti-inflammatory, pain-relieving, and blood circulation-
enhancing properties, as documented in reference (Yuandani et al.,
2021). Through meticulous clinical research, scientists have
successfully identified and isolated key constituents from the
turmeric root, including polysaccharides and the bioactive
compound curcumin (CUR), as noted in reference (Jiang T.

et al., 2021). The discovery that turmeric extracts are capable of
inducing both vasoconstriction and vasodilation has significantly
expanded our comprehension of turmeric’s multifaceted therapeutic
mechanisms. This insight also offers a crucial perspective for the
development of medicinal spices rich in curcumin, potentially
revolutionizing the field of herbal medicine.

CUR is a bioactive compound extracted from the root of the
turmeric plant and has excellent antioxidant and anti-inflammatory
properties due to its unique phenolic structure. Several studies have
confirmed its effectiveness in combating intracellular reactive
oxygen species (ROS) and scavenging free radicals, thereby
reducing oxidative stress and enhancing the immune system
(Iddir et al., 2020). Therefore, CUR has been widely used in the
treatment of cancer, cardiovascular diseases, osteoporosis, etc. The
special molecular composition of CUR endows it with unique
chemical properties, and the morphological equilibrium of its
heptadienone molecules in different pH environments is crucial
for its antioxidant and physicochemical properties (Stanić, 2017;
Luca et al., 2020; Slika and Patra, 2020).

In addition, CUR has been reported to protect against oxidative
damage and promote osteoblast differentiation by attenuating the
inhibition of Wnt/βcatenin signaling (Manandhar et al., 2020). CUR
can not only reduce the oxidative state of mitochondria but also
improve the mitochondrial membrane potential and improve the
oxidative stress-induced apoptosis of osteoblasts (Inchingolo et al.,
2022). Therefore, CUR promotes the osteogenic differentiation and
bone formation of BMSC by interfering with BMSC, osteoblasts, and
osteoclasts. In addition, it promotes the growth and specialization of
osteoblasts while inhibiting the proliferation and differentiation of
osteoclasts, ultimately increasing bone density and improving the
microstructure of bone trabeculae. For example, AHMED et al.
found that adding CUR to a petri dish helped enhance the osteogenic
differentiation of mouse BMSC (Ahmed et al., 2019). Not only that,
but CUR can also protect osteoblast function by anti-oxidative
stress. According to Li et al., Cur preconditioning reduced the
apoptosis of osteoblasts and maintained their differentiation
function by eliminating the inhibitory effect of ROS on the
GSK3β-Nrf2 signaling pathway (Li et al., 2020a).

Mitogen-activated protein kinase (MAPK) can be switched on
by a variety of extracellular stimuli and consists of a conserved
tertiary kinase pattern (Bharti et al., 2021). This particular pathway
helps regulate various bodily processes, including cell growth, stress
response, and inflammation. It is a part of the signal transmission
network in cells, regulating gene expression and cytoplasmic activity
(Olivares-Bañuelos et al., 2019). In addition, there are specific
pathways in the MAPK signaling pathway, such as the ERK1/
2 pathway, the c-Jun N-terminal kinase (JNK) pathway, the
P38 pathway, and the Extracellular signal-regulated kinase 5
(ERK5) pathway, which have been associated with diseases such
as OP and bone formation (Rodríguez-Carballo et al., 2016). Innate
immune cells and inflammatory T cells are regulated by nuclear
factor-kappa B (NF-κB) through its ability to modulate gene
expression. The function of NF-κB is important in the context of
different pathogens and infections as it ensures an adequate immune
response (Liu et al., 2017). Two Rel family proteins (p50/p65) make
up the inactive form which is normally bound to inhibitory proteins
(i-κB) in the cytoplasm; the liberation of NF-κB p65/
p50 dimerization allows for its transportation into the nucleus.
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Upon reaching the nucleus, the p65/p50 dimer binds to certain DNA
sequences and starts transcription for target genes that are
important in different cellular activities such as cell growth
(Wang et al., 2015). In a lot of illnesses, NF-κB is highly
stimulated in the inflammation zones; this results in the
production of pro-inflammatory mediators including
cyclooxygenase-2 (COX-2) among others (Al-Harbi et al., 2016).
Hence NF-κB has emerged as a target for the progression of anti-
inflammatory and anti-cancer drugs. The study of NF-κB and its
signaling pathway becomes unavoidable in appreciating its role in
OP and devising ways to regulate its functioning efficiently. One of
the physiological processes that the pathway for PI3K-AKT is
associated with include obesity, diabetes, and cancer. Given its
importance and potential for therapeutic intervention, it remains
a fascinating and important area of research. Signaling cascades
mediated by Phosphoinositide 3-Kinase (PI3K) and Protein kinase B
(Akt) regulate key cellular activities and influence tissue-specific
functions in adipose tissue, skeletal muscle, liver, brain, and
pancreas (Savova et al., 2023). Class I PI3K regulates the
production of the vital phosphatidylinositol second messenger
that is essential for maintaining a balance in the body, it also
contributes to the development of many human illnesses, such as
cancer and metabolic ailments (Fruman et al., 2017). This process is
initiated by the initiation of tyrosine kinase or G protein-coupled

receptors, which leads to the generation of Phosphatidylinositol
(Florencio-Silva et al., 2015; Wang et al., 2016; Wilkesmann et al.,
2020) trisphosphate (PIP3). This PIP3 further triggers downstream
effectors resulting in the amplification of the signal cascade
(Oeckinghaus and Ghosh, 2009; Fruman et al., 2017). These
signaling pathways have their characteristic targets for OP, and
CUR can act on these targets to inhibit or activate the signaling
pathway to achieve the purpose of treating OP (Figure 1).

2 Curcumin

Throughout China’s long history, herbs have consistently held a
prominent position in the treatment of human diseases and the
maintenance of health. This reflects the profound depth and rich
heritage of traditional Chinese medicine (Unschuld, 2018). Chinese
herbs, a magnificent cultural legacy, have been used for thousands of
years, not only embodying the wisdom and vitality of the ancients
but also representing a precious gift from nature. They encompass a
vast array of subjects, including plants, animals, and minerals
(Hageneder, 2020). Each type of Chinese herbal medicine is a
unique chemical treasure trove in nature, containing a variety of
pharmacological components such as flavonoids, alkaloids,
polysaccharides, volatile oils, etc (Kuzmishyna, 2024). These

FIGURE 1
Curcumin acts onmultiple pathways to inhibit the formation of osteoclasts, thus achieving the purpose of treating osteoporosis. Curcuminmediates
the occurrence of osteoporosis by acting on MAPK, NF-κB, Wnt signaling pathway, MAPK, nuclear factor kappa-B complex, and Runt-related
transcription factor 2 molecules.
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components exhibit multiple biological activities, including anti-
inflammatory, anti-bacterial, anti-viral, enhancement of immunity,
and optimization of microcirculation in the body. This highlights
the infinite charms of Chinese herbal medicine.

Chinese medicine theory profoundly recognizes that the human
body is a complex and sophisticated organic system and that the
occurrence of diseases is often a reflection of the imbalance of yin
and yang in the body and the dysfunction of the internal organs.
Therefore, Chinese herbal medicine treatment upholds the principle
of “evidence-based treatment”, i.e., based on the patient’s specific
condition, physical differences, age and gender characteristics, a
careful and detailed consideration, carefully formulated drug
combinations, and strive to achieve both symptomatic and
curative effects (Hoover, 2021). In addition, the scope of
application of Chinese herbs goes far beyond drug treatment,
they are also cleverly integrated into food therapy, medicinal
meals healthcare products, and other areas of life, becoming an
indispensable part of the pursuit of health and enjoyment of life
(Hong et al., 2022). In recent years, with the rapid development of
science and technology, there has been an explosion of research on
the isolation and development of biologically active components
from Chinese herbal medicines, which have attracted much
attention because of their remarkable pharmacological properties.
What is even more gratifying is that the influence of Chinese herbs
and their preparations has crossed national borders, and they are not
only trusted in China but are also gaining recognition and popularity
in Europe and North America as complementary therapeutic means
(Rausch et al., 2024). With the help of advanced extraction,
separation, and identification technologies, we have been able to
explore the pharmacological mechanisms of Chinese herbs and
reveal their scientific mysteries, contributing indelibly to the
cause of human health and medical progress.

Among them, turmeric is particularly widely used in ancient
medicinal formulas, and its medicinal value has been fully reflected
in traditional Chinese medicine formulas. For example, turmeric
powder paired with other herbs can effectively treat intractable
cardiac pain as documented in Sheng Ji Gong Lu (Liu, 2024).
This is due to the efficacy of turmeric in activating blood
circulation and removing blood stasis, thus relieving heart pain.
It is recorded in ancient books that turmeric is used in combination
with Citrus aurantium and cinnamon bark to relieve stomach pain
due to liver depression and stagnation of qi (McCaskill, 2021). This
shows that the combination has unique efficacy in dispersing the
liver and regulating qi, moving qi, and relieving pain.

CUR, an extracted component of herbal medicine, is also a highly
versatile natural polyphenolic compound that can be isolated from the
rhizomes of plants in the Zingaceae and Araceae families, such as
Curcuma (C. zedoaria (Berg.) Rosc.), tulip (Curcuma aromatica Salisb.)
and others (Jabczyk et al., 2021). In addition, CUR boasts a rich history
of widespread consumption as a dietary spice and food coloring, and it
is increasingly garnering attention for its diverse pharmacological
benefits, primarily its anti-inflammatory and antioxidant properties
(Esatbeyoglu et al., 2012a). Its molecular formula is C21H20O6. In
varying pH chemical environments, CUR possesses seven carbon
atoms on its carbon chain and features two keto groups that can
undergo keto-enol tautomerism. Consequently, CUR’s chemical
structure is not stable at the physiological pH value (Stanić, 2017).
CUR is almost completely insoluble in water, but soluble in organic

solvents such as acetone and ethanol, and is fairly stable in the acidic
pHof the stomach. From a chemical point of view, themolecule has two
similar aromatic ring symmetrys and has conjugated double bonds as
effective electron donors to hinder the formation of ROS (Parcheta
et al., 2021). Therefore, the main function of CUR is reflected in its
functional groups: phenolic groups and diketone structures. These two
active functional groups mediate the hydrogen supply reaction of CUR,
the Michael addition reaction, and a series of hydrolytic and enzymatic
reactions (Figure 2) (Esatbeyoglu et al., 2012b). Despite its therapeutic
potential, curcumin’s swift metabolism leads to poor oral bioavailability.
Following ingestion, themajority is expelled through bile and feces, with
a substantial portion (40%–85%) traversing the gastrointestinal tract
unaltered, despite the presence of certain gutmicrobiota. To enhance its
bioavailability, CUR can be co-administeredwith bromelain (Joshi et al.,
2023). Additionally, researchers have proposed an innovative
nanotechnology strategy to precisely overcome existing challenges
and significantly advance the in-depth study of CUR in both
in vitro experiments and in vivo applications (Li and Kataoka,
2020). This strategy exploits the distinctive benefits of nanoparticles,
encompassing micelles, liposomes, and nanogels, to markedly enhance
the efficacy of CUR through two fundamental mechanisms (Jacob et al.,
2024). Primarily, by enhancing solubility, it effectively facilitates the
dissolution and distribution of CUR in living organisms. Secondly, by
prolonging the blood circulation time and ingeniously blocking
unwanted metabolic pathways, it significantly improves the
bioavailability of CUR. The second strategy is to significantly
enhance the bioavailability of CUR by extending the blood
circulation time and subtly blocking unnecessary metabolic
pathways. The researchers also found that curcumin’s effectiveness
may indeed vary among different populations (Salehi et al., 2019). The
study indicates that womenmay absorb curcuminmore effectively than
men. Based on area under the plasma concentration-time curve
comparisons, the bioavailability of micronized CUR was several
times higher in women than in men (the exact value was five times
higher in women than in men). This suggests that women may derive
higher biological effects from CUR at the same dose. Similarly, for
micellar curcumin, bioavailability was significantly higher in females
than in males (114 times higher in females than in males).

Derived from natural plants, CUR is a ubiquitous bioactive
supplement widely used in the treatment of chronic diseases,
including cardiovascular diseases, diabetes, malignancies and
osteoarthritis (Table 1). CUR counteracts inflammatory mediators
and has the ability to neutralize reactive oxygen species in the body.
In addition, it enhances the activity of enzymes such as superoxide
dismutase and glutathione peroxidase, thereby strengthening the body’s
antioxidant defenses (Sharifi-Rad et al., 2020). CUR is a natural
compound that modulates a variety of signaling pathways and
possesses both anti-inflammatory and antioxidant properties, and
therefore has a positive impact on bone health (Antolin et al., 2024).
Recent studies have shown that CUR can influence bone formation by
regulating the distinction between osteoblasts (Blair et al., 2017). It
promotes the proliferation of osteoblasts and increases the expression of
important genes critical for bone formation, including alkaline
phosphatase, osteocalcin (OCN), Runt-related transcription factor 2
(Runx2) and various other markers (Yang et al., 2023a). Furthermore,
in studies investigating the efficacy of curcumin in the treatment of
osteoporosis, researchers have used in vivo experiments to determine
the optimal mode of administration and dosage due to the low

Frontiers in Pharmacology frontiersin.org04

Wang 10.3389/fphar.2024.1446536

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1446536


bioavailability of curcumin. For example, in a related study conducted
by Folwarczna et al. in an oestrogen-deficient rat model, it was observed
that oral administration of 10 mg/kg/d for 4 weeks did not improve
osteoporosis symptoms (Folwarczna, 2013). In contrast, other
researchers increased the oral dose of curcumin to 110 mg/kg/d and
showed that curcumin significantly enhanced oestrogen-deficiency-
induced bone tissue morphology and markedly increased the

number of osteoblasts in ovariectomized rats (Jiang Q. et al., 2021).
These findings will be summarized in a subsequent review. It can
therefore be concluded that the optimal mode of administration of
curcumin is daily oral administration via feed and that lower doses may
not achieve optimal therapeutic effects. Previous studies have found that
the optimal therapeutic dose of curcumin is 110 mg/kg/d. Some
findings related to potential side effects or adverse reactions

FIGURE 2
Chemical structures of curcuminoids. Curcumin has keto-enol tautomers, and the two can be converted to each other. Curcumin can be split into
Ferulic acid, vanillin, and feruloyl methane. It can also be oxidized to bicyclopentadione.

TABLE 1 Function and application of CUR.

Function General medical/clinical research applications Ref.

Antitumous effect Curcumin treats cancer by targeting cell signaling pathways by regulating cytokines, enzymes, transcription
factors, etc

Giordano and Tommonaro
(2019)

Anti-inflammatory
action

Curcumin can treat inflammation-related diseases such as inflammatory bowel disease, psoriasis,
atherosclerosis, and OP

Peng et al. (2021a)

Antihyperlipidemic
effect

For the treatment of diabetes, non-alcoholic liver disease, obesity, etc de Sousa Guardiano Reis et al.
(2022)

Antioxidant Curcumin blocks the production of free radicals and is used in anti-aging products Lima et al. (2011)

Antibiosis Curcumin has an inhibitory effect on Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Bacillus cereus
and other foodborne pathogens and putrefactive bacteria

Gunes et al. (2016)

Antiischemic activity Curcumin applied to laboratory rodents prevents edema and maintains the integrity of the blood-brain barrier Li et al. (2016)

Antiviral Curcumin or its derivatives can inhibit the gene expression and replication of virus and degrade the ubiquitin-
proteasome system

Si et al. (2007)

Neuroprotective activity Curcumin significantly improved memory in Alzheimer’s mice Pan et al. (2008)

Anti-osteoporosis Curcumin prevents diabetic osteoporosis by promoting osteogenesis and angiogenesis coupling through NF-κB
signaling

Fan et al. (2022)

Anti-osteoporosis Curcumin alleviates glucocorticoid-induced osteoporosis by protecting osteoblasts from apoptosis in vivo and
in vitro

Chen et al. (2016a)

CUR, as an effective Chinese herbal medicine, has little adverse reactions to humans or animals, because of its anti-inflammatory, antioxidant, antibacterial, anti-cancer and other effects in the

world’s food, drugs, health products and clinical treatment and other fields have been applied.
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associated with curcumin for the treatment of osteoporosis have
emerged from recent studies and reports (Ghahfarrokhi et al., 2023).
However, it is important to note that these findings may not be specific
to the treatment of osteoporosis, but rather the general application of
curcumin as a drug or supplement. For example, curcumin has been
shown to potentially cause gastrointestinal disturbances, liver and
kidney damage, and an increased risk of bleeding (Liu et al., 2022).

3 The cause and pathogenesis of OP

OP encompasses a range of bone conditions resulting from
diverse factors, where the calcification process in bone tissue
remains unaffected, calcium salt to the normal ratio of the
matrix, and the unit volume of bone tissue reduction is
characterized by metabolic bone disease. In most cases of OP, the
loss of bone tissue is primarily caused by increased bone resorption.

This disparity in the process of bone breakdown and regeneration
leads to an increased susceptibility to experiencing fractures, which
can significantly impact the quality of life and increase mortality
rates in both men and women (Rinonapoli et al., 2021).

The causes of OP can be classified into primary and secondary
categories (Figure 3). Based on the established theory, OP is
primarily viewed as a bone remodeling disturbance stemming
from factors like estrogen insufficiency or the aging process
(referred to as primary OP). Conversely, secondary OP arises due
to alternative underlying health conditions or medication use that
contribute significantly to bone mass depletion (Zhang et al., 2022).
Primary OP mainly includes senile and postmenopausal women.
Secondary OP includes nutritional, disuse, endocrine, and so on. In
women, menopause - the cessation of ovarian function, is one of the
main causes of primary OP (Wu D. et al., 2021). The loss of ovarian
function is a key factor contributing to bone loss in postmenopausal
women, with estrogen believed to play a crucial part in facilitating

FIGURE 3
The cause and mechanism of primary osteoporosis. Primary osteoporosis is mainly determined by genetic factors and environmental factors and is
divided into two categories: postmenopausal osteoporosis and age-related osteoporosis. Enhanced pro-inflammatory response, oxidative stress,
reduced secretion of sex hormones, and intestinal flora disorder will lead to the imbalance of bone reconstruction, the reduction of osteoblast formation,
and the increase of osteoclast formation, which will lead to the enhancement of bone absorption and the reduction of bone mass, thus
inducing fracture.
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this procedure (Cheng et al., 2022). Bone remodeling is regulated by
estrogen through its control over the synthesis of cytokines and
growth factors in bone marrow and bone cells (Crane and Cao,
2014). A number of studies have reported the mechanism of the
development of postmenopausal osteoporosis, in which estrogen
deficiency in the organism causes inflammatory factors and
MicroRNA activation, which leads to disruption of the RANKL-
RANK-OPG axis, causing bone loss (Seely et al., 2021). At the same
time, estrogen acts as an antioxidant to protect bone against
oxidative stress (Shi et al., 2015).

Diabetes is the most common secondary cause of surgery.
Several researchers have found an association between the
management of blood glucose levels and the likelihood of
fractures, as well as increased bone fragility in diabetic patients
(Napoli et al., 2017). Studies have shown that people with diabetes
have a significantly higher risk of fracture than the general
population (Starup-Linde et al., 2017). In a comprehensive
Nurses’ Health Study, the incidence of hip fracture in patients
diagnosed with T1DM was found to be six times higher than the
overall incidence of hip fracture observed in the general population
in this particular study, which had an average age of 65 years (Vilaca
et al., 2020). Persistent high blood sugar, a hallmark of diabetes,
triggers the generation of advanced glycation end-products (AGEs)
(Khalid et al., 2022). These molecules can cause significant
alterations in the structure of type I collagen and other vital
biological components that are central to preserving the
structural integrity of bone, consequently impeding the
osteogenic process. Research has demonstrated that the receptor
for AGEs (RAGE) suppresses osteoblast proliferation by disrupting
multiple signaling pathways, such as the PI3 kinase, extracellular
signal-regulated kinase (ERK), and Wnt pathways (Zhou et al.,
2023). Furthermore, RAGE plays a role in enhancing the
development of osteoclasts, which can result in disordered bone
formation. The aggregation of AGEs upon their binding to RAGE
forms cross-links with bone matrix proteins, which could impact the
rigidity and breaking point of the bone (Burr and Allen, 2019). It has
been observed that individuals with diabetes often exhibit
considerably lower levels of alkaline phosphatase, a critical
enzyme for bone mineralization. A reduction in the activity of
alkaline phosphatase is typically detected following the diagnosis
of diabetes. In consequence, diabetes adversely influences bone
metabolism, leading to the weakening of cellular functions and
the deterioration of the extracellular matrix. This can manifest in
the form of bone loss, an altered bone microarchitecture, a reduction
in bone turnover, and an increased susceptibility to fractures even
under low-impact conditions (Kemmler and von Stengel, 2019).
Additionally, the development of mineral and vitamin D deficiencies
can be attributed to gastrointestinal dysfunction, malnutrition, and
malabsorption, ultimately leading to deterioration of bone health
(Minisola et al., 2021). Notably, patients with chronic liver disease
are at a higher risk of fracture due to hepatic osteodystrophy.
Clinical conditions associated with wasting osteoporosis include
spinal cord injuries as well as other neurological and neuromuscular
disorders, post-fracture immobilization, and prolonged bed rest
(either actual or simulated) (Ponzano, 2022). This results in
immediate bone loss in the trabecular and cortical regions of the
bone, a relative increase in bone resorption, and a decrease in bone
formation. Thus, disuse is considered to be one of the main factors

contributing to rapid bone loss and OP. In addition, alterations in
osteoblastic pathways are thought to play a crucial role in the bone
loss associated with wasted bone.

Diabetes is the most common secondary cause of OP. Some
researchers have found that there exists a relationship between the
management of blood sugar levels and the likelihood of experiencing
fractures and that people with diabetes have increased bone fragility
(Napoli et al., 2017). Studies have shown that people with diabetes
have a significantly higher risk of fracture compared to the general
population (Wallander et al., 2017). The occurrence of hip fractures
among individuals diagnosed “with T1DM in a comprehensive
Nurses” Health study was found to be sixfold greater compared
to the overall prevalence of hip fractures observed within the general
population sample of this particular investigation, who had an
average age of 65 years (Ballane et al., 2014). Therefore, bone
metabolism is negatively affected by diabetes, leading to impaired
cell function and degradation of the extracellular matrix, which leads
to bone loss, changes in bone microstructure, reduced bone
turnover, and susceptibility to low-trauma fractures (Asadipooya
and Uy, 2019). Furthermore, the occurrence of mineral and vitamin
D deficiencies can be attributed to gastrointestinal disorders,
malnutrition, and malabsorption, ultimately resulting in the
deterioration of bone health. It is worth noting that individuals
with chronic liver disease face an elevated risk of fractures due to
hepatic bone dystrophy (Sobh et al., 2022). Clinical conditions
linked to disuse OP encompass spinal cord injury, along with
other neurological and neuromuscular disorders, immobilization
following fractures, and prolonged periods of bed rest (whether
actual or simulated) (Brent et al., 2021). This results in immediate
loss of bone in trabeculae and cortical compartments, along with a
relative increase in bone resorption and a decrease in bone
formation (Seeman, 2003). Hence, disuse is considered one of the
primary factors leading to rapid bone loss and OP. Additionally,
alterations in osteocyte pathways are believed to play a crucial role in
bone loss associated with bone disuse (Rolvien and Amling, 2022).

Initial investigations have indicated that bone loss begins shortly
after injury in patients with spinal cord injury and nerve/
neuromuscular disorders. During the first year, subregional bone
sites may experience bone loss rates of up to 2%–4% per month
(Poole et al., 2015). Nevertheless, disuse OP encompasses not only
overall systemic bone loss but also localized bone loss in various
conditions. For example, in a group of post-stroke patients, the
lower limbs impacted by the stroke showed reduced mineral and
geometric properties in comparison to the unaffected upper limbs
(Kazakia et al., 2014).

From a mechanism point of view, an important factor that
causes OP is oxidative stress, which usually refers to an excess of free
radicals, an imbalance between free radical oxidants and
antioxidants, resulting in cell damage that affects its contents
(Manolagas, 2010). In addition, signaling pathways such as NF-
κB are activated to produce downstream cytokines. As the oxidizer
continues or increases, the entire physiological system is affected.
Changes in cells and their organelles alter cell function by inhibiting
or activating various cellular pathways (Liu and Tang, 2020).

The bone mineral density seems to be influenced by the
consumption of phenols, as they function as scavengers of free
radicals and safeguard against oxidative damage to bone cells
(Chisari et al., 2019). Polyphenols target a range of molecular
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mechanisms and signaling pathways, including mTOR, NF-κB, and
Wnt/β-catenin. Furthermore, they interact involving intracellular
signaling cascades, including PI3K, PKB/Akt, tyrosine kinases,
protein kinase C (PKC), and MAPKs (Maleki Dana et al., 2021).
To date, a multitude of investigations have confirmed that curcumin
plays a pivotal role in modulating the signaling pathways implicated
in the pathogenesis of osteoporosis.

4 Mechanism of action of CUR against
OP: Based on multiple pathways

The Wnt signaling pathway is highly conserved in biological
evolution and is essential for core processes such as organism
construction, cell proliferation, differentiation, and polarity
determination (Habib and Acebrón, 2022). There are 19 Wnt
proteins in mammals that differ in sequence but share lipid
modifications, secreted glycoproteins, and conserved cysteine
residues, features that enable enhanced function via Frizzled
receptors and the LGR5/6 complex (Martin-Orozco et al.,
2019). Wnt signaling is classified into classical (β-catenin-
dependent) and non-classical categories. Aberrant expression
of the core transcription factor β-catenin is closely associated
with a variety of diseases, especially tumor formation (Wu Z-L.
et al., 2021; Zhu et al., 2022). In the Wnt/β-catenin pathway, β-
catenin accumulates and enters the nucleus to regulate gene
expression. In addition, several components of the Wnt
pathway are strongly associated with the development of
cancer and degenerative diseases (SMA, 2020). In addition,
hereditary bone mass abnormalities are associated with
specific mutations in LRP5, Wnt5a, ROR2, and DVL1, and
these abnormalities not only affect the skeletal system but also
spread to other parts of the body (Table 2). These findings not
only reveal the strong connection between the Wnt signaling

pathway and human health but also deepen our knowledge of the
signaling mechanisms.

Furthermore, the Wnt signaling pathway is critical for OP, as it
regulates the growth, differentiation, and apoptosis of mesenchymal
stem cells (MSCs), driving the differentiation of bone marrow
progenitor cells to osteoblasts and influencing bone formation
and growth (Amjadi-Moheb and Akhavan-Niaki, 2019). This
process is achieved by inhibiting adipocyte differentiation-
associated transcription factors and enhancing osteoblast
differentiation-associated transcription factor expression,
balancing adipogenesis and osteogenesis. In the absence of β-
catenin, cells may develop into chondrocytes rather than
osteoblasts (Yuan X. et al., 2016). Wnt signaling also promotes
osteoblast formation and inhibits anisocytosis, in contrast to
PPARγ. In some cases, increased Wnt signaling reduces
osteoclast genesis and bone resorption by elevating osteoblast
protein expression in osteoblasts and inhibiting the binding of
RANKL to osteoclast precursors using bone-protecting aggrecan,
which inhibits osteoclast differentiation and activity and reduces
bone resorption (Srisubin, 2021).

NF-κB is a key factor in the regulation of immune cells, affecting
survival, activation, and differentiation, especially innate immune
and inflammatory T cells. It is bound by p50/p65 to IκB in an
inactive complex (Baldwin, 1996). signals such as TNF activate IKK,
which degrades IκB and releases NF-κB into nuclear regulatory
genes (Hayden and Ghosh, 2014). Continued activation may lead to
aberrant cell proliferation. NF-κB is important in inflammation,
promoting pro-inflammatory factors and COX-2 expression, with
potential as an anti-inflammatory and anti-cancer drug. In
osteoporosis, NF-κB regulates osteogenic and osteoclast function
(Deng et al., 2024). Upon activation, p50/p65 enters the nucleus to
promote transcription, especially in the RANKL-RANK
environment to induce osteoclast formation, and with c-Fos to
form AP-1, which is critical for osteoclast development (Qu

TABLE 2 Diseases associated with Wnt signaling pathway components.

Disease Component Ref.

Bone density defects LRP5 Gong et al. (2001) Jenkins et al. (2009)

LGR4

WNT1

WNT16

WTX

Tooth development defects LRP6 Jenkins et al. (2009) Lammi et al. (2004)

WNT10A

WNT10B

AXIN2

Robinow syndrome WNT5A White et al. (2015); van Amerongen et al. (2012)

DVL1

ROR2

Relevant components of theWnt signaling pathway, such asWnt5a, ROR2, and DVL1, have an impact on degenerative diseases. Especially in metabolic bone diseases, the regulation of theWnt

signaling pathway may lead to abnormal bone metabolism. Abbreviations: LRP5-low density lipoprotein receptor-related proteins 5; LGR4 - leucine-rich repeat-containing G proteincoupled

receptor 4 Gene; WTX-Wilms’ tumor X; AXIN2-Axis Inhibitor 2.
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et al., 2022). It was also found that inhibition of the NF-κB signaling
pathway suppressed RANKL-induced osteoclast differentiation. In
addition, the cytokine TNF-α promotes RANK-RANKL binding
through activation of the NF-κB pathway, which in turn promotes
osteoclast genesis (Amin et al., 2020). The pathogenesis of OP is
closely related to inflammation and oxidative stress, in which NF-κB
plays a central role, responding to oxidative stress by decreasing
SOD expression and increasing MDA synthesis (Neganova et al.,
2021). ROS accumulation also enhances NF-κB through
phosphorylation activation, leading to the upregulation of
inflammatory cytokines and NLRP3 inflammasome synthesis
(Sho and Xu, 2019). AP-1, a downstream factor of NF-κB, is
responsible for regulating oxidative stress-induced pro-
inflammatory cytokine production (Lee et al., 2017). Notably, the
NF-κB signaling pathway is regulated by estrogen and affects ERα
and β activity (Chen et al., 2018). In menopausal women, estrogen
deficiency leads to increased secretion of pro-inflammatory
cytokines such as TNF-α and IL-6, which in turn may induce OP
(Salamanna et al., 2018).

After a long period of extensive research, the PI3K-AKT
pathway is also a compelling area of study due to its multiple
functions. This signaling pathway involves key proteins such as
PI3K and Akt, which play critical roles in mediating growth factor
signaling, organismal growth, and regulation of fundamental cellular
processes (He et al., 2021). In addition, the PI3K-AKT pathway
affects cell differentiation, metabolic activity, cytoskeletal
organization, and key processes such as apoptosis and cancer cell
survival (He et al., 2021). Thus, this pathway is intricately linked to a
range of health problems such as osteoporosis. Osteoblast growth
and differentiation are regulated by PI3K/AKT and osteoblast
signaling pathways involved in the OP process (Ponzetti and
Rucci, 2021). It was found that reducing p-PI3K and p-AKT
expression inhibited PI3K/AKT pathway activation in osteoblasts.
In OP model rats, although the mRNA levels of PI3K, PDK1, and
Akt were stable, the expression of phosphorylated proteins was
significantly decreased (Jantan et al., 2021). LY294002, a PI3K
inhibitor, blocked PI3K/Akt signaling in osteoblasts and inhibited
cell proliferation, ALP activity, calcium accumulation, and
expression of osteogenic markers, indicating that the PI3K/Akt
pathway is essential for osteoblast function and mineralized bone
formation is critical (Zhou et al., 2019). Also, LY294002 promoted
the mRNA expression of Caspase-3 and Caspase-9. Dexamethasone,
as a synthetic glucocorticoid, downregulated p-PI3K and p-AKT,
upregulated GSK-3β expression, inhibited osteoblast proliferation
and induced apoptosis, which was useful for the treatment of
glucocorticoid-induced OP (Deng et al., 2019). In contrast, IL-37
activated the PI3K/AKT pathway, promoting bone formation-
related gene expression, mineral deposition, and ALP function in
MSCs. PI3K/AKT inhibitors partially reversed the enhancing effect
of IL-37 on osteogenic differentiation of MSCs (Ye et al., 2019).

Signaling between the cell surface and the nucleus is handled by
a group of protein kinases, MAPK, which can be activated by
external factors such as hormones, stress, and adhesion, and are
key to cellular communication (Jarouliya and Keservani, 2019).
MAPK gets its name from its activation by mitogens such as
growth factors (Yue and López, 2020). Across the evolutionary
spectrum, from yeast to Homo sapiens, the MAPK cascade
maintains a consistent three-tiered kinase configuration. This

includes the presence of upstream kinases like MAP4K and
downstream effectors such as MAPKAPK (Rahman, 2018). The
pathway is activated by a three-order enzymatic cascade from
MAP3K, MAPKK to MAPK, which regulates cell growth,
differentiation, stress adaptation, and inflammation. The MAPK
signaling pathway includes ERK1/2, JNK, P38, and ERK5, which
respond to different stimuli and are involved in a variety of cellular
processes (Guo et al., 2020). Factors related to OP such as RANKL,
OPG, PTHBMP, TGF-B, IL-1, IL6, TNF-a, and estrogen are
associated with the MAPK signaling pathway. RANKL promotes
osteoclast differentiation through the activation of RANK, which
then activates signaling pathways such as NF-KBNFATc1, AP-1,
MAPK, and so on. Estrogen, on the other hand, promotes osteoblast
proliferation and inhibits osteoclast apoptosis through activation of
the MAPK pathway, such as ERK1/2, P38, and JNK, and plays an
anti-OP role (Su et al., 2024).

The therapeutic potential of curcumin for osteoporosis is well-
documented and is supported by a substantial body of evidence
derived from a variety of biological mechanisms and a considerable
number of long-term studies. All of these studies have yielded
positive results, and some have progressed to the clinical trial
stage. However, there is still a paucity of relevant clinical
research data. Consequently, there has been a notable surge in
scientific interest in curcumin, largely due to its remarkable
capacity to safeguard bone health and its vast range of
therapeutic applications. Findings from preclinical and a limited
number of clinical studies indicate that curcumin exerts a profound
influence on the activities of osteoblasts and osteoclasts. By fostering
bone formation while impeding the development of osteoclasts,
curcumin plays a pivotal role in promoting bone health (Yang
et al., 2023b).

4.1 Mechanism of curcumin regulating Wnt
pathway in osteoporosis

Turmeric root contains a naturally occurring compound called
CUR, whose pharmacological effects have been extensively studied,
and curcumin has antioxidant and anti-inflammatory properties
(Ahmad et al., 2020). CUR, a bioactive compound, engages in direct
interactions with a range of molecular entities such as COX-2, DNA
polymerase, lipoxygenase (LOX), glycogen synthase kinase-3β
(GSK-3β), and cytokines including tumor necrosis factor-alpha
(TNF-α) (Grover et al., 2021). Furthermore, it modulates the
activity of various transcription factors in an indirect manner,
encompassing NF-κB, activator protein 1 (AP-1), β-cyclin, signal
transducers and activators of transcription (STAT), and peroxisome
proliferator-activated receptor gamma (PPARγ). The multifaceted
regulatory influence of curcumin on these molecular targets
underscores its robust anti-inflammatory properties, suggesting
its potential as a therapeutic agent in the treatment of
inflammation-associated disorders (Chainoglou and Hadjipavlou-
Litina, 2019). For instance, many studies have shown that the typical
WNT/β-catenin pathway stimulates inflammation and that ROS
activates the typicalWNT/β-catenin pathway through oxidation and
inactivation of nuclear oxyreducing proteins (a redox-sensitive
regulator) under NOX stimulation, thereby stimulating the
oncogenic process (Vallée et al., 2019a). CUR exerts its influence
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on the Wnt signaling pathway by reducing the activity of β-catenin,
thereby downregulating the expression of genes targeted by β-
catenin (Li et al., 2021). Computational studies suggest that
curcumin may impede the recruitment of axin to the cell
membrane, which is crucial for preserving the integrity of β-
catenin destruction complexes in the normal cellular context.
This action prevents the accumulation of β-cyclin in the nucleus,
thus hindering its interaction with lymphocyte enhancer factor/
T-cell-specific transcription factor (Lef/Tcf) complexes and
dampening the transcriptional activation of target genes
(Hosseinzadeh et al., 2018). Consequently, this leads to the
suppression of hepatocellular carcinoma cell proliferation and the
induction of programmed cell death, or apoptosis. This shows that
curcumin has a significant role in the treatment of inflammation and
cancer by regulating the Wnt signaling pathway.

CUR has the potential to affect the Wnt signaling pathway,
which is important in the treatment of OP. CUR appears to inhibit
this pathway, resulting in an anti-osteoporotic effect on the
organism (Yang et al., 2023b). Some researchers found that
curcumin gavage inhibited ovxinduced EZH2 mRNA levels in
mandible and femur, and ovx-induced upregulation of the
number of EZH2-positive cells was reduced (Toyokawa et al.,
2019). In contrast, CUR gavage restored ovx-mediated
downregulation of β-Catenin and Runx2 mRNA levels (Faienza
et al., 2024). The protective influence of curcumin against OP is
likely attributed to its capacity to suppress the transcriptional
activity of EZH2, which in turn leads to a diminished activation
of the Wnt/β-Catenin signaling pathway (Brockmueller et al.,
2023). In addition, CUR alters downstream effectors of the Wnt
signaling pathway, including c-Myc and cell cycle protein D1
(Vallée et al., 2019b). Deletion of the mouse β-catenin gene was
found to promote the differentiation of MSCs to adipocytes, while
hindering the differentiation of osteoblasts. This implies that the
regulation of bone formation is largely influenced by the Wnt/β-
catenin pathway (Song et al., 2012). Chen et al. showed that CUR
has the potential to enhance nuclear translocation of β-catenin
(Chen et al., 2016b). This was primarily achieved by increasing the
enzymatic activity of GSK3β phosphorylated glycogen synthase,
resulting in beneficial effects on bone health. Furthermore, it has
been observed that the intake of curcumin, at a rate of 100 mg/kg/
d, substantially alleviated the decrease in bone mineral density and
the loss of bone mineral in rats subjected to conditions that mimic
glucocorticoid-induced osteoporosis (Chen et al., 2016b). This
result was attributed to the modulation of the Wnt/β-catenin
pathway and the alleviation of impaired osteoblast
differentiation in the in vitro setting. In addition, it has been
found that glucocorticoid (GC)-induced Wnt/β-catenin mRNA
expression levels were significantly downregulated in OP model
rats, whereas Cur intervention increased serum OCN levels and
decreased C-terminal peptide of type I collagen (Yang et al.,
2023a). The expression of genes pivotal to osteoblast
differentiation and function, such as ALP, Runx2, and osterix
(Osx), was found to be elevated. ALP and OCN serve as indicators
of the bone formation process, in contrast to C-telopeptide of type
I collagen, which is a biomarker for bone resorption (Tang et al.,
2020). It is evident that CUR can promote bone formation and
inhibit bone resorption through the regulation of the Wnt/
βcatenin signaling pathway (Chen et al., 2016c).

4.2 Regulation of NF-κB signaling pathway
by curcumin in osteoporosis

In conclusion, curcumin shows promise in the therapeutic
management of osteoporosis (OP) by targeting the regulation of
the NF-κB/IL-6 signalling pathway, a mechanism that significantly
inhibits inflammatory processes (Yang et al., 2023a). This highlights
the critical role of curcumin in alleviating bone health challenges.
Additionally, curcumin has been shown to be beneficial in
addressing diabetes-induced osteoporosis by positively affecting
key signaling pathways such as NF-κB and transforming growth
factor β1 (TGF-β1) (Zamanian et al., 2024), which are essential for
protecting bone health. Osteoporosis is a common complication in
diabetic patients, with a higher prevalence in the diabetic stage. In
particular, CUR successfully reversed the overexpression of
inflammatory cytokines such as TNF-α, IL-1β, IL-6 and
chemokines such as MCP-1 in diabetic samples, which strongly
demonstrated its anti-inflammatory efficacy against
hyperglycemias-induced lesions (Kong et al., 2021). In a
hyperglycemic environment, CUR pretreatment not only
promotes differentiation induction of BMSCs, but also
significantly enhances angiogenesis (Wang et al., 2012; Zhang
et al., 2023), providing a new perspective for the treatment of
diabetes-induced osteoporosis. Notably, CUR inhibits the NF-κB
pathway, thereby preventing the decline in bone mineral density
(BMD) common in diabetic patients (JiaQiang et al., 2021). This
discovery has the potential to revolutionize the treatment of
osteoporosis. In vivo experiments further confirmed that daily
CUR treatment at 100 mg/kg effectively prevented bone loss and
promoted angiogenesis in diabetes-induced osteoporosis (Yang
et al., 2023a). Given the strong link between osteoporosis and
oxidative stress, it was found that CUR not only has antioxidant
and anti-inflammatory effects but also attenuates oxidative stress
and promotes bone formation by modulating the MDA/GSH ratio,
as demonstrated by the mouse OVX model (JiaQiang et al., 2021).
Low concentration of CUR-protected osteoblasts under oxidative
stress conditions, reduced the levels of inflammatory factors such as
RANKL and IL-6 and reduced the secretion of inflammatory
cytokines such as IL-6 and RANKL by inhibiting the
phosphorylation of P65 in the NF-κB signaling pathway, which
in turn promoted bone formation (Li et al., 2020b).

In addition, CUR reduced the intranuclear expression of NF-κB
p65 by inhibiting the phosphorylation of IκBα and its degradation,
thereby inhibiting NF-κB activation, which plays a key role in the
inhibition of osteoclast genesis in rheumatoid arthritis patients. A
large number of studies have consistently shown that CUR reverses
biological abnormalities in inflammatory and oxidative processes by
decreasing the activity of NF-κB transcription factors, as well as
reducing the expression of p-p65 and the transcription of its
phosphorylated factors (Zhong et al., 2016).

In summary, the activity of the NF-κB signaling pathway, a key
pathway regulating the expression of IL-6 and RANKL, is tightly
regulated by CUR, which in turn affects the osteogenesis process in
preosteoblasts. CUR, by virtue of its dual antioxidant and anti-
inflammatory effects, promotes bone formation by inhibiting the
phosphorylation of P65, and exhibits inhibitory effects on
osteoclasts in in vivo experiments, reducing bone resorption, and
may have directly promoted osteoblast activity and bone formation.
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This series of findings highlights the centrality of the NF-κB
signaling pathway in the mechanism of action of CUR.

4.3 Curcumin interferes with osteoporosis
and PI3K-AKT signaling pathway

The PI3K/AKT signaling pathway, as a well-recognized anti-
apoptotic and pro-survival signal transduction pathway, is of great
importance. Numerous studies have shown that CUR exhibits
significant therapeutic potential in the areas of inflammation
alleviation, neurological disorders and anti-cancer by upregulating
the expression of PI3K and AKT proteins (Hamzehzadeh et al.,
2018). Especially, in the study of osteoporosis model rats, although
themRNA expression levels of PI3K, PDK1 and Akt remained stable in
bone tissues, the protein expression of their phosphorylated forms was
significantly decreased, a finding that reveals key signaling changes
during osteoporosis pathology (Wang et al., 2023). Further exploration
revealed that when PI3K activation was blocked, the mRNA expression
of cell proliferation ability, ALP activity, calcium accumulation, and
osteogenesis-related genes such as OCN, Osterix, and Runx2 were
suppressed, whereas the mRNA expression of apoptosis-related genes,
Caspase-3 and Caspase-9, increased accordingly, highlighting the
central role of the PI3K/AKT pathway in the central role of the
PI3K/AKT pathway in maintaining bone health (Aimaiti et al.,
2020). It is particularly exciting that curcumin was shown in
another study to be able to elevate the protein and mRNA levels of
ALP, COL1 and RUNX2, and activate the PI3K/AKT/Nrf2 signaling
pathway, which effectively promotes the osteogenic differentiation of
human periodontal stem cells, providing a new strategy for bone
regeneration therapy (Xiong et al., 2020). In addition, CUR has
demonstrated its unique efficacy in the treatment of osteoarthritis by
precisely intervening in the PI3K-AKT signaling pathway, which
protects joint health by inhibiting the PI3K/AKT/mTOR signaling
cascade, promoting autophagic response, reducing joint
inflammation and restoring joint homeostasis (Song et al., 2022).
Although activation of the PI3K/AKT/mTOR pathway has a positive
effect on chondrocyte proliferation and differentiation and reduces
apoptosis, there is a dearth of research on the specific mechanisms and
effects of curcumin in treating OP through this pathway. However,
there have been preliminary studies such as the work of Riva et al. By
administering high-dose curcumin (1000 mg/day) orally to 57 healthy
subjects with low BMD for a period of 24 weeks, not only did the
subjects confirm good tolerance of CUR, but also positive changes in
BMDwere observed (Riva et al., 2017). In response to the current status
of OP as a common complication of spinal cord injury and the lack of
treatment options, the Hatefi team’s study was equally encouraging.
They found that 6 months of CUR supplementation (at a dose of
110 mg/kg) significantly elevated BMD parameters and effectively
reduced biomarker levels of bone loss in spinal cord injury patients,
providing strong evidence for slowing the process of OP (Kheiridoost
et al., 2022). In summary, CUR, as an active ingredient in natural herbs,
has shown the first signs of its ability to treat OP by modulating
signaling pathways. Although the specific mechanism and data on
curcumin’s treatment of osteoporosis through the PI3K pathway are yet
to be enriched, the potential it exhibits undoubtedly opens up a broad
prospect for future in-depth research and clinical application.

4.4 Curcumin interferes with osteoporosis
and MAPK signaling pathway

To date, various experiments on the effects of curcumin on
p38 MAPKs and related diseases have been successively conducted
(Peng et al., 2021b). Some researchers found that curcumin induced
p38 MAPK phosphorylation, which increased apoptosis and
facilitated tumour suppression in retinoblastoma cells (Shehzad
and Lee, 2013). Curcumin positively affects glucose uptake in
L6 myotubular cells through activation of p38 MAPKs (Ferraro
et al., 2014). Curcumin inhibits COX-2 expression by suppressing
p38 MAPK activation in human keratinocytes. In ovarian cancer,
curcumin upregulated the phosphorylation of p38 MAPK, thereby
promoting apoptosis (Wu et al., 2022). The role of curcumin in
reducing inflammation by inhibiting the MAPK pathway has been
validated in a variety of models and experiments. In a study of
middle cerebral artery occlusion in rats, we found that curcumin
reduces inflammation by inhibiting the TLR4/p38/MAPK pathway
(Huang et al., 2018). In a separate investigation, mice were subjected
to colitis through the administration of dinitrobenzene sulfonic acid.
Within this context, curcumin demonstrated its efficacy by
suppressing the activation of the p38 MAPK and NF-κB
signaling cascades, which resulted in a noticeable decrease in the
levels of the pro-inflammatory cytokine interleukin-1 beta (IL-1β).
Furthermore, curcumin’s anti-inflammatory properties were also
evident in its capacity to mitigate hepatic inflammation and cell
death (Ma et al., 2023). This was achieved through themodulation of
inflammatory signaling pathways, notably the p38 MAPK pathway,
consequently diminishing the expression of cytokines implicated in
inflammation, such as IL-1β (Ashrafizadeh et al., 2020). In an
experimental asthmatic condition replicated in mice, curcumin
exerts regulatory effects on secretory phospholipase A2 function,
consequently leading to a diminution in the concentrations of the
pro-inflammatory mediators Cox-2 and Prostaglandin D2
(Memarzia et al., 2022). CUR and its nano formulation have
demonstrated the ability to mitigate and potentially avert the
process of programmed cell death by impeding the signaling
pathways of Toll-like receptor 4 (TLR4) and NF-κB, as well as
MAPK cascade. In a rodent model of periodontal disease, the topical
application of curcumin in nanoparticle form has been observed to
curtail inflammatory responses by inhibiting the initiation of NF-κB
and p38 MAPK pathways (Zambrano et al., 2018). In human
intestinal microvascular endothelial cells exposed to vascular
endothelial growth factor, the presence of curcumin has been
shown to curtail the process of angiogenesis. This effect is
achieved through the suppression of COX-2 expression at both
the transcriptional and translational levels, thereby hindering the
synthesis of prostaglandin E2. Additionally, curcumin exerts its anti-
angiogenic influence by impeding the activation of the JNK and
p38 MAPK signaling pathways (Saberi-Karimian et al., 2019). In the
spectrum of inflammatory responses observed in inflammatory
bowel disease, the engagement of endothelial cell adhesion
molecules stands out as a crucial component. Studies have
confirmed that curcumin inhibits vascular cell adhesion molecule
expression by affecting Akt, NF-κB, and p38 MAPK, and reduces
TNF-α, IL-1β, and lipopolysaccharides, ultimately leading to a
reduction in inflammation (Patel et al., 2020).
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While inflammation and oxidative stress are the keys to
osteoporosis, based on the above mechanism of action of
curcumin mediating the MAPK pathway to reduce inflammation
and anti-oxidative stress to treat various diseases, it can be surmised
that curcumin based on the MAPK pathway to treat OP also has
similar targets and mechanisms. It turns out that this is indeed the
case. A comprehensive study showed that taking CUR significantly
increased BMD and alleviated bone loss in postmenopausal women
with OP. In a 12-month clinical trial that was randomized and
double-blinded, involving 60 postmenopausal women, the
concurrent administration of curcumin at a dosage of 110 mg
daily and alendronate at 5 mg daily was observed to notably
enhance BMD and more effectively diminish the levels of bone
resorption markers compared to the use of either drug alone
(Khanizadeh et al., 2018). The potential synergistic effect of CUR
and alendronate indicates a promising approach for both the
amelioration and prevention of OP in postmenopausal women.
Furthermore, a study by Khanizadeh and colleagues, involving a
6-month randomized, triple-blind trial with 120 participants,
demonstrated that the concurrent application of nano cellular
curcumin integrated with black seed oil notably decreased serum
levels of bone turnover biomarkers. These markers include ALP,
osteocalcin, and bridging proteins, thereby potentially mitigating the

risk of osteoporosis among this demographic (Kim et al., 2011).
Several studies have shown that CUR positively affects the
P38 MAPK signaling pathway, resulting in anti-inflammatory,
neuroprotective and apoptotic effects (Shamsnia et al., 2023).
Curcumin has demonstrated the ability to decrease the
phosphorylation of p38 MAPK, a mechanism that positions it as
a promising therapeutic agent for osteoporosis management, and a
study conducted by Chen and colleagues demonstrated that CUR
has a protective effect on osteoblasts, preventing DeX-induced
apoptosis. This was achieved by inhibiting the expression of pro-
apoptotic proteins and enhancing the ERK pathway (Figure 4)
(Chen et al., 2016d). These findings suggest that CUR is an
effective drug for the treatment of glucocorticoid-induced OP.
Heo et al. also found that CUR was able to impede the
differentiation of BMMs to osteoblasts by inhibiting RANKL-
induced expression of the osteoclast transcription factors c-Fos
and NFAT1 (Heo et al., 2014). In addition, it activated the
downstream MAPK pathway (Yang et al., 2023a). The findings
indicated that the in vitro application of curcumin in a mouse model
led to a significant suppression of osteoclast genesis and the
maturation of osteoclasts. Consequently, curcumin has the
potential to be utilized in the therapeutic management of
osteoporosis by modulating the MAPK signaling pathway.

FIGURE 4
The diagram depicts the formation and differentiation of the MAPK/Erk signaling pathway and the cascade of MAPK. MAPK, mitogen-activated
protein excitation, MAPK exists in the cytoplasm and can be translocated to the nucleus to catalyze the phosphorylation of dozens of cytoplasmic
proteins and many nuclear transcription factors.
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5 Conclusion and perspectives

In recent years, a comprehensive review of various signaling
pathways implicated in OP, when integrated with the therapeutic
mechanisms of curcumin, has revealed its multifaceted role in bone
health. CUR demonstrates the capacity to mitigate inflammation
within bone tissues, curb the differentiation and proliferation of
osteoclasts, foster the growth of osteoblasts, and reduce oxidative
stress. This is achieved through a coordinated regulation of multiple
signaling pathways, including but not limited to NF-κB, Wnt/β-
catenin, PI3K/Akt, and MAPK. Our study and summary provide
evidence and reference for the treatment of OP through multiple
signaling pathways mediated by CUR, demonstrating a mechanism
characterized by multi-target, multi-pathway and multi-level
interactions. Although relevant studies have confirmed that CUR,
as a component of Chinese herbal medicine, can treat OP by
regulating related proteins and has received much attention and
made some progress in recent years, there are still many challenges
and problems that need to be solved. One of the main challenges is
the low bioavailability of curcumin, which leads to a decrease in the
therapeutic effect of the compound. Therefore, researchers are
trying to improve the clinical application of curcumin through
nanotechnology. In addition, although some controlled in vitro
experiments have demonstrated the potential of curcumin in the
treatment of osteoporosis, these experiments have not clearly
demonstrated that the effects of the compound on bone-forming
and bone-resorbing cells can be manifested in actual bone tissue.
Moreover, research on the mechanism of action of curcumin in the
treatment of osteoporosis is still predominantly confined to
preclinical animal and cellular experiments, which lack sufficient
clinical data support. Consequently, it is imperative to conduct more
high-quality clinical studies in the future to provide further evidence
that curcumin can effectively treat osteoporosis through multiple
signaling pathways. Finally, curcumin has therapeutic effects on
osteoporosis due to its anti-inflammatory effects, but its specific
anti-inflammatory mechanisms and targets of action have not been
fully clarified as well as studies on related signaling pathways are
limited. Therefore, further studies are needed to investigate the
common mechanism of action and targets of CUR and other
polyphenols based on osteoporosis-related signaling pathways.
This will better utilize the advantages of multi-targets, multi-

levels and multi-pathways of natural products and provide
assistance for more in-depth related studies.
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