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Background: Cardiomyocyte senescence plays a crucial role as a pathological
mechanism in heart failure (HF). However, the exact triggering factors and
underlying causes of HF onset and progression are still not fully understood.

Objectives: By integrating multi-omics data, this study aimed to determine the
genetic associations between cardiomyocyte and HF using cell senescence-
related genes (SRGs).

Methods: The study utilized the CellAge database and the SenMayo dataset,
combined with high-resolution single-cell RNA sequencing (scRNA-seq) data, to
identify SRG and examine differences in cardiac cell expression. To explore the
causal relationship with HF using Mendelian Randomization (MR). Genetic
variations influencing gene expression, DNA methylation, and protein
expression (cis-eQTL, cis-mQTL, and cis-pQTL) were analyzed using the two-
sample MR (TSMR) and summary-data-based MR (SMR). Additionally, Bayesian
colocalization analysis, germline genetic variation, and bulk RNA data were
employed to strengthen the reliability of the results. The application potential
of therapeutic targets is ultimately assessed by evaluating their druggability.

Results: The expression of 39 SRGs in cardiomyocytes was identified. In the
discovery set revealed that CDKN1A (OR = 1.09, 95% confidence interval (CI)
1.02–1.15, FDR = 0.048) could be causally related to HF, and the results are also
replicated in the validation set (OR = 1.20, 95% confidence interval (CI) 1.10–1.30,
FDR <0.0001). Based on the SMRmethod,CDKN1Awas confirmed as a candidate
pathogenic gene for HF, and its methylation (cg03714916, cg08179530) was
associated with HF risk loci. The result is validated by Bayesian colocalization
analysis, genetic variations, and bulk RNA data. The druggability analysis identified
two potential therapeutic drugs.

Conclusion: Based on multi-omics data, this study uncovered the reciprocal
regulation of cardiomyocyte senescence through CDKN1A, providing potential
targets for HF drug development.
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Introduction

Heart failure (HF) is a complex syndrome characterized by
decreased filling or poor ejection, along with symptoms such as
dyspnea and fatigue (Baman and Ahmad, 2020). The role of aging as
a major risk factor for cardiovascular disease is often overlooked
(North and Sinclair, 2012). Even in the absence of systemic risk
factors like smoking, dyslipidemia, hypertension, and diabetes,
intrinsic cardiac aging can lead to a decline in cardiac structure
and function in the elderly. Epigenetic changes are implicated in
various age-related cardiac diseases, such as ischemic heart disease,
which might make the heart more susceptible to aging. The
accelerated aging of the population increases the risk of HF,
particularly in individuals with chronic diseases, which imposes a
significant economic burden on the public health system (Shahim
et al., 2023). Therefore, understanding the triggers of cardiac aging
and identifying key molecular targets that contribute to it
is essential.

Several mechanisms contribute to senescence, including
increased oxidative stress, stem cell depletion, altered cell
communication, reduced genomic stability, shortening of
telomeres, epigenetic changes, disrupted protein homeostasis,
impaired nutrient metabolism, and mitochondrial dysfunction,
which lead to changes at the molecular, cellular, tissue, and
organ levels (López-Otín et al., 2013; Yin et al., 2022).
Consequently, hypertrophy, fibrosis, protein misfolding,
mitochondrial dysfunction, and an increase in sympathetic nerve
activity are observed (Steenman and Lande, 2017; Evangelou et al.,
2023). Senescence-related genes (SRGs) in human tissues are linked
to accelerated aging. Furthermore, these SRGs are not restricted to
specific tissues, indicating that their expression varies between
different organs and cell types, which results in distinct biological
functions (Hernandez-Segura et al., 2018). Cardiomyocytes, which
make up 30%–40% of the total cardiac cells, undergo morphological
and functional changes with age. Studies have shown that elderly
hearts contain a significant number of senescent cells, which may be
responsible for structural and functional changes, such as
hypertrophy of the left ventricle, decreased diastolic function, and
pathological changes including myocardial fibrosis, extracellular
matrix remodeling, and conduction block (Hu et al., 2022).

Meanwhile, some studies have partially revealed the connection
between aging-related gene regulation and HF. Currently,
traditional observational studies have identified associations
between specific cell senescence-related genes and HF risk. For
example, mild to moderate expression of Sirt1 can delay cardiac
aging (Alcendor et al., 2007), and vaccine therapies targeting
Igfbp7 may help prevent the development of HF (Xie et al., 2023;
Katoh et al., 2024). However, the underlying mechanisms involving
epigenetic changes remain unclear. Genome-wide association
studies (GWAS) have uncovered intricate details of the
pathophysiology of complex diseases, providing important
insights. These extensive studies have identified numerous
disease-related genetic loci, further enhancing our understanding
of the critical role genetic factors play in disease etiology.

Mendelian randomization (MR) and Summary data-based
Mendelian randomization (SMR) are utilized to assess causal
links or pleiotropy between genetic and complex traits. MR
employs genetic variants as instrumental variables (IVs) to

explore potential causal connections between exposures over a
lifetime and their outcomes (Davey Smith and Hemani, 2014).
Additionally, research on quantitative trait loci (QTL) has been
crucial in determining which genes are influenced by GWAS by
analyzing how gene sequences correlate with gene expression. SMR
seeks to integrate GWAS data with molecular trait data to accurately
identify disease susceptibility genes (Zhu et al., 2016). HEIDI tests
are employed to differentiate between widespread linkage
disequilibrium (LD) and possible causal associations (Zhu et al.,
2016; Lu et al., 2017). GWAS connects single nucleotide
polymorphisms (SNPs) with gene expression and methylation
profiles to uncover genetic links to various traits. SNPs are highly
effective in pinpointing genetic risk loci for complex diseases such as
rheumatoid arthritis, schizophrenia, and Alzheimer’s disease,
emphasizing their significance in genetic research (Steinberg
et al., 2021; Lee et al., 2022; Zhou et al., 2024). This study uses
ScRNA-seq, bulk RNA, and MR to identify risk loci for HF
cardiomyocyte senescence, providing a scientific rationale to
improve the prevention and treatment of HF.

Materials and methods

Study design

An overview of the study’s workflow can be found in Figure 1.
We obtained 307 genes from the CellAge database (Chatsirisupachai
et al., 2019; Avelar et al., 2020) and 125 genes from the SenMayo set
defined by Saul et al. (2022). With duplicate genes removed,
413 senescence-related genes were listed (Additional file 1:
Supplementary Table S1). Initially, differential gene analysis in
cardiomyocytes was performed using ScRNA-seq dataset. Two-
sample MR (TSMR) and SMR (Zhu et al., 2016) analysis were
used to identify potential risk loci for HF using the cardiomyocyte
SRGs. In addition, bulk RNA-seq of various types of HF was
performed to assess the reliability of the findings. This study
followed the STROBE-MR (Skrivankova et al., 2021)
(Strengthening the reporting of observational studies in
epidemiology using mendelian randomization) guidelines and the
STROBE-MR reporting checklist (Additional file 2: Supplementary
Datasheet S1).

Ethics approval

In this study, data were obtained from public databases
approved for original research, thereby avoiding the need for
additional ethical approval.

scRNA-seq data analysis

ScRNA-seq datasets GSE161470 (Luo et al., 2021) and
GSE121893 (Wang et al., 2020) were retrieved from the Gene
Expression Omnibus (GEO) database (Additional file 1:
Supplementary Table S2), and were analyzed using the “Seurat”
package (Stuart et al., 2019). Single-cell objects were constructed
based on the expression of each gene set in at least any three cells.

Frontiers in Pharmacology frontiersin.org02

Bian et al. 10.3389/fphar.2024.1446300

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1446300


There was no filtering for cells expressing fewer than 200 or more
than 6,000 genes in paired samples. The feature
“FindVariableFeatures” to identify highly variable genes. After
filtering the data using the “harmony” package and principal
component analysis (PCA), 17 clusters were identified.
Annotation of representative cell types was performed using
marker genes (Wang et al., 2020). A total of 23,053 cells were
annotated with the following cell types based on their marker genes:
cardiomyocytes (CM), endothelial cells (EC), fibroblasts (FB),
macrophages (MP), and smooth muscle cells (SMC). In this
study, “FindAllMarkers” (min. pct = 0.25, logfc = 0.50). To

quantify differential gene expression among subgroups, we
conducted a statistical test using a false discovery rate (FDR)
threshold of less than 0.05, applying the Benjamini–Hochberg
(BH) method for calculation (Benjamini and Hochberg, 2018).
Comparing metabolic spectrums across different cell types was
achieved via the scMetabolism (Wu et al., 2022) tool. Using
GeneSwitches (Cao et al., 2020), gene transcription and
functional events during HF activation are identified, revealing
the genes that act as switches between cell states. Upregulated
switch genes are those with a pseudotemporal correlation (R2 >
0), while silent switch genes with a pseudotemporal correlation (R2 <

FIGURE 1
Flowchart of the analyses performed. HF, Heart failure; TSMR, two-sample MR, SMR, summary-data-based MR, IVW, inverse-variance weighted,
FDR, false discovery rate, HEIDI, heterogeneity in dependent instruments.
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0) are considered downregulated genes. The acceleration process
correlates more closely with switch genes when the pseudotemporal
correlation is higher.

Bulk RNA-seq data analysis

GEO data were used to retrieve bulk RNA information
(Additional file 1: Supplementary Table S2). The dataset
GSE116250 (Sweet et al., 2018) consists of 64 samples, including
37 cases of dilated cardiomyopathy, 13 cases of ischemic
cardiomyopathy, and 14 non-HF specimens. The dataset
GSE203160 (Wang et al., 2022) includes 15 samples, 8 of which
are ischemic cardiomyopathy cases and 7 of which are non-HF
cases. The GSE89714 dataset contains 9 samples, including 5 cases of
hypertrophic cardiomyopathy and 4 non-HF cases. The GSE206803
(Chen et al., 2023) study included 22 human induced pluripotent
stem cell-derived cardiomyocyte samples, 11 cases of amyloid
cardiomyopathy, and 11 control samples. Using a linear
regression model and adjusting for covariates like age and gender
(if applicable), we could identify differences between non-HF
individuals and specific categories of HF patients.

GWAS data

HF data from the FinnGen study (Kurki et al., 2023) and the
Heart Failure Molecular Epidemiology for Therapeutic Targets
consortium (HERMES) (Shah et al., 2020) were used in this
study (Additional file 1: Supplementary Table S2). The FinnGen
study consists of 23,622 cases and 317,939 controls, while the
HERMES study consists of 47,309 cases and 930,014 controls.

This data is sourced from the eQTLGen Consortium (https://
www.eqtlgen.org/cis-eqtls.html) (Võsa et al., 2021), which covers
37 datasets and 31,684 individuals. To mitigate the likelihood of
horizontal pleiotropy, cis-eQTLs were used as instrumental
variables. Summary cis-mQTL data from two European cohorts
(n = 1980) are used to select cis-eQTL instruments linked to DNA
methylation (DNAm)-related genes (Wu et al., 2018). The protein
quantitative trait loci (pQTL) data originated from the UKB-PPP
(http://ukb-ppp.gwas.eu) (Sun et al., 2023), a joint initiative that
conducted an in-depth analysis of plasma proteomic profiles across
54,219 UKB participants with germline genetic variation. This
research delivered an extensive mapping of cis-pQTL involving
2,923 distinct proteins.

IVs selection

IVs related to single nucleotide polymorphisms (SNPs) of the
target gene were extracted from the dataset. The MR analysis aimed
to investigate the causal relationship between SRGs and the risk of
HF, utilizing these SNPs as IVs. SNPs with significance
threshold <5.0E-08, minor allele frequency (MAF) > 0.01, SNP
allele frequency difference <0.2, and maximum allele frequency
difference ratio <0.05, were identified. Only robust IVs with
F-statistics exceeding 10 were retained. To validate the IVs, three
key assumptions were imposed: 1) a strong correlation between

genetic instruments and the exposure, 2) no correlation with
potential confounders, and 3) no correlation with confounders
influencing the exposure-outcome relationship.

SMR and colocalization analysis

In SMR, gene expression, DNAm, and exposure outcomes are
analyzed for their pleiotropic associations. The heterogeneity in
dependent instruments (HEIDI) test to evaluate pleiotropy (Zhu
et al., 2016; Lu et al., 2017). An SMR analysis was performed using
SNPs as genetic IVs, cis-eQTLs andDNAms as exposure factors, and
HF as the outcome. An analysis of sensitivity was conducted to
evaluate the robustness of the results. To establish the final causal
relationship, the following criteria must be met in the three-step
SMR (Zou et al., 2023): 1) FDR <0.05, 2) HEIDI >0.01, and 3) eQTL
and mQTL should correspond to the same gene symbol.

Bayesian colocalization analyses test whether GWAS summary
data and eQTL share causal variants. It assesses the posterior
probability of each hypothesis based on five hypotheses (H0, no
association with either GWAS or QTL at the locus; H1, the
association only with GWAS; H2, the association only with QTL;
H3, the association only with GWAS and QTL but not colocalized;
H4, colocalization of GWAS and QTL). A colocalization analysis
was performed on all SNPs within 100 kb of the top SNP of the
probe. Several loci with PPH4 ≥ 0.5 appear to align with the
colocalization suggested by PPH4 ≥ 0.8 (Dobbyn et al., 2018).

Druggability analysis

We utilized DGldb (Freshour et al., 2021) to evaluate the
druggability of potential target proteins. These resources provide
comprehensive insights into drug-target interactions and aid in
determining the therapeutic viability of target genes.

Statistical analysis

To calculate TSMR estimates for individual SNPs, we used the
Wald ratio method (Teumer, 2018), the inverse-variance weighted
(IVW) model (Burgess et al., 2016), which utilizes multiple IVs for
genes. To minimize potential omissions of target genes,
FDR <0.05 was established (Zhang et al., 2022). MR-Egger
(Bowden et al., 2015) intercepts and Cochran’s Q were used to
measure horizontal pleiotropy and heterogeneity. PhenoScanner
(Kamat et al., 2019) was also used to explore associations
between identified QTLs and other traits. The leave-one-out
analysis was utilized to identify potential outliers that could
introduce significant bias into the results. Subsequently, these
outliers were excluded, and the MR analyses were re-performed.

The SMR analysis and HEIDI testing were conducted using
version 1.3.1 of the SMR software available (https://yanglab.
westlake.edu.cn/software/smr/#Download). TSMR analysis was
performed utilizing the “TwoSampleMR (version 4.2.2)” package
within R software (version 0.5.6). Colocalization analysis was carried
out using the “coloc (version 3.3.0)” R package. Differential analysis
of datasets utilized the “Limma (version 1.2.6)” package, while result
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visualization was achieved using the “forestploter (version 3.0.
1)” package.

Results

The selection of differentially expressed
genes in cardiomyocyte senescence

A total of 23,053 cells passed the quality control and were
included in the analysis. A total of 5 cell subtypes were identified
(Figures 2A, B), including CM, EC, FB, MP, and SMC,
“FindVariableFeatures” identifies highly variable genes in cell
subtypes (Figure 2C, Additional file 1: Supplementary Table S3).
In addition, using a |logFC| > 0.5 and FDR <0.01, we detected
39 differentially expressed cardiomyocyte senescence genes
associated with HF (Additional file 1: Supplementary Table S4).

TSMR analysis of cardiomyocyte aging

After eliminating outliers for the multiple regression analysis, the
F statistics of all SNPs surpassed 10, suggesting that these SNPs are
appropriate for utilization as robust instrumental factors. The findings
suggest that heat shock protein family A member 1B (HSPA1B),
cyclin-dependent kinase inhibitor 1A (CDKN1A) may serve as

potential genes, and the overall causal effects of cis-eQTL of all
genes on HF were summarized (Figure 3; Additional file 1:
Supplementary Tables S5, S8, S9). The MR-Egger method was
utilized to assess the sensitivity and directional pleiotropy of
different genes, and the Egger intercept results of MR-Egger
indicated that all variable P > 0.05, suggesting no significant
pleiotropy was present (Additional file 1: Supplementary Table S7).
Additionally, the leave-one-out test results demonstrated that, upon
removing each SNP in turn, the remaining SNPs yielded similar
analysis results to the inclusion of all SNPs, with no SNP significantly
influencing the estimated causal values. Furthermore, the FinnGen
study validated CDKN1A as a potential risk locus for HF (Figure 3;
Additional file 1: Supplementary Table S6).

SMR analysis of senescence genome-wide
cis-eQTLs and HF

The SMR results of 2055 SNPs representing SRG expressions were
associated with the experience of HF (Additional file 1: Supplementary
Table S10). As a result of test correction, onlyCDKN1A showed a strong
association (Figure 4, FDR = 2.07E-05), whereas the subsequent HEIDI
test excluded pleiotropy. Additionally, the CDKN1A and HF have been
linked in the FinnGen cohort (Additional file 1: Supplementary Table
S10, FDR = 1.20E-09). The findings of our study suggest an increased
risk of HF in people with high CDKN1A expression.

FIGURE 2
The expression of SRGs is revealed by ScRNA-seq analysis. (A), Defining cardiac tissue cells. (B), Histogram displaying distinct subtypes of myocardial
cells based on categorical variables. (C), Visualization of differential gene expression across single-cell subtypes.
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SMR analysis of SRGs genome-wide
cis-mQTLs and HF

The causal relationship between DNAm in SRGs and HF was
examined. According to SMR analysis of mQTL data, 195 CpG sites
were identified (Figure 5A; Additional file 1: Supplementary Table S11).
These sites corresponded to nine genes associated withHF. According to

the HEIDI test, CDKN1A exhibited six independent sites, while EGR1,
ADCY5, andMAP3K5 each exhibited one. In the FinnGen cohort, only
cg03714916 (FDR = 3.54E-06, Additional file 1: Supplementary Table
S12) and cg08179530 (FDR= 5.96E-05, Additional file 1: Supplementary
Table S13) passed validation. There was a positive correlation between
CDKN1A expression and HF onset at site cg03714916 (Figure 5B). In
contrast, a negative correlation was found between CDKN1A expression

FIGURE 3
Cardiomyocyte senescence and HF risk estimation by TSMR analysis. OR, odds ratio; CI, confidence interval.

FIGURE 4
SMR analysis prioritized putative causal SRGs in HF. (A), plots displaying the consistent genetic effects from HF GWAS in the cis-eQTL region near
CDKN1A. (B), SMR results indicate significant causal relationships between CDKN1A gene expressions and HF.
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and HF onset at site cg08179530 (Figure 5B), indicating an association
between higher CDKN1A expression and HF onset. Therefore, lower
levels of DNAm in the CDKN1A enhancer region may stimulate gene
expression, thereby increasing the risk of HF.

As a result of investigating the relationship between cis-mQTL
and cis-eQTL, according to the FDR and HEIDI test, we observed
significant interactions between 37 sites of 17 genes (Additional file
1: Supplementary Table S14). Our analysis of the results of the
previous two steps found a significant association between
cg08179530 and a reduced risk of HF (PSMR = 1.47E-08) and a
significant association between cg15474579 and an increased risk of
HF (PSMR = 5.48E-36). A three-step SMR analysis showed that the
SNP signals and CDKN1A in the HF GWAS, cis-mQTL, and cis-
eQTL data studies were highly significant.

Sensitivity analysis

A colocalization analysis was conducted to assess the influence
of linkage disequilibrium. A posterior probability (PP.H4) of shared
causality between trans-gene expression and HF greater than
0.50 suggests that HF GWAS and eQTL are colocalized. Bayesian
colocalization results indicate that CDKN1A and HF share genetic
variation in the Consortium dataset (Figure 6A; Additional file 1:
Supplementary Table S15). However, CDKN1A and HF shared no

genetic variation in the FinnGen cohort (Figure 6B). In addition,
phenotype scanning has shown that CDKN1A is associated with
trunk fat-free mass, trunk predicted mass, and triglycerides, while
total cholesterol is associated with atopic dermatitis (Additional file
1: Supplementary Table S16).

Race-specific germline analysis

To evaluate the relationship between germline genetic variation
in the CDKN1A gene and HF, TSMR analysis was performed on
CDKN1A cis-pQTL among distinct racial groups. This analysis
compared European and East Asian populations and identified
significant disparities in the associations (Table 1).

Assessing CDKN1A potential role in
cardiomyocyte senescence in HF

Apseudotime analysis was performed to investigate the late-switching
events of CDKN1A in HF. The expression of HSP90AA1, HSP90AB1,
JUN, CD63, and ATF3 was upregulated before CDKN1A, and SATB1
expression increased with the increase in CDKN1A expression. EGR1
displayed the best McFadden’s Pseudo R2

fit quality and may regulate
cardiomyocyte senescence through CDKN1A expression (Figures 7A, B).

FIGURE 5
Results of SNPs and SMR associations across cis-mQTL and HF GWAS. (A), Locus zoom plots illustrating the consistent genetic effects from HF
GWAS in cis-mQTL near CDKN1A. (B), SMR indicating significant causal relationships between CDKN1A gene expressions and HF.
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For the investigation of metabolic pattern dominance in
cardiomyocyte with CDKN1A (CDKN1A+ and CDKN1A−), we
used ScMetabolism to score metabolic pathways quantitatively. A
study revealed that cardiomyocytes with CDKN1A+ showed
increased biosynthesis of ubiquinone, other terpenoid-quinones,
thiamine, riboflavin, nicotinate, and nicotinamide. In contrast,
CDKN1A− cardiomyocytes produced more pantothenate and
CoA, degraded other glycans, and synthesized glycosphingolipids
(Figure 7C). CDKN1Amay mediate a variety of biological processes
in HF cardiomyocytes.

Meta-analysis of CDKN1A in HF

To enhance the reliability of this study, data from a variety of
types of HF were analyzed. A differential analysis revealed higher

expression in mixed heart disease (GSE116250) (Figure 8A).
Increased expression in ischemic heart disease (GSE203160),
hypertrophic heart disease (GSE89714), and anthracycline heart
disease (GSE206803) (Figures 8B–D). After adjusting for gender and
age effects by linear regression, the meta-analysis indicated that
CDKN1A is a significant risk factor for HF (Additional file 1:
Supplementary Table S17). There is the evidence that CDKN1A
may be an effective target for the treatment of HF.

Druggability evaluation

In the assessment of drug availability, the approved drugs
sodium salicylate and dicoumarol were identified as potential
regulators of CDKN1A. Sodium salicylate inhibits
cyclooxygenase, reducing prostaglandin production and offering

FIGURE 6
Colocalization analyses prioritized intestinal causal CDKN1A and interactions with HF. (A), Colocalization analysis of CDKN1A locus genes with HF
(HERMES, PPH4 = 0.703). (B), Colocalization analysis of the genes of CDKN1A locus with the genes of HF (FinnGen cohort, PPH4 = 0.154). The r2 value
indicates the LD between the variants and the top SNPs.

TABLE 1 Race-specific germline analysis.

Germline Method OR [95% CI] P Heterogeneity Pleiotropy

Europe Inverse variance weighted 1.09 [1.02,1.17] 0.013 0.631 0.674

MR Egger 1.14 [0.93,1.39] 0.210

Weighted median 1.08 [0.97,1.20] 0.160

Weighted mode 1.07 [0.91,1.27] 0.405

East Asia Inverse variance weighted 1.03 [1.01,1.04] 0.001 0.802 0.621

MR Egger 1.01 [0.96,1.07] 0.670

Weighted median 1.02 [1.00,1.05] 0.030

Weighted mode 1.02 [0.99,1.06] 0.177

OR, odds ratio; CI, confidence interval.
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FIGURE 7
The ScMetabolism andGeneSwitches analyses fromHF. (A), Diagram of the top fitting switching genes from various sets of known proteins along the
pseudotime. A positive or negative sign on the y-axis indicates upregulation or downregulation as defined by McFadden’s pseudo R2. “Transcription
factors (TFs)” refers to transcription factors. (B), CDKN1A expression escalating over time is demonstrated by pseudotime correlation analysis. (C), The
bubble plot illustrates the two main metabolic pathways for CDKN1A+ and CDKN1A−.

FIGURE 8
Differential expression analysis of CDKN1A in different types of HF. (A), HF mixed type sample (GSE116250). (B), ICM (GSE203160). (C), hypertrophic
cardiomyopathy (GSE89714). (D), Doxorubicin (GSE206803).
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anti-inflammatory, anti-rheumatic, and analgesic effects.
Dicoumarol acts as an anticoagulant, frequently used in the
prevention and treatment of thromboembolic disorders.

Discussion

The degeneration of heart function and structure resulting from
aging is primarily characterized by symptoms such as myocardial
hypertrophy, myocardial fibrosis, and HF. Cell senescence and death
result in the cessation of fibrillation and proliferation in mature
cardiomyocytes. The slowing down of cell cycles is not the most
common feature of cardiomyocyte senescence, and they typically
experience some degree of functional decline with aging (Li et al.,
2020). The TSMR analysis initially suggested HSPA1B, CDKN1A as
potential risk loci. However, the FinnGen study confirmed only
CDKN1A as a potential risk locus for HF. To further validate these
findings, Bayesian colocalization analysis, genetic variation in the
germline, and extensive RNA data were utilized. The study also
investigated the connections between specific SNPs and CpG sites
and the occurrence of HF, as well as the relationship between cellular
characteristics and CDKN1A expression. Strong evidence indicates
that the CDKN1A gene locus, along with its methylation status and
expression levels, plays a role in HF pathogenesis. The druggability
analysis identified sodium salicylate and dicoumarol as potential
therapeutic drugs.

HSPA1B is an important component of the HSP70 family, acts
as a molecular chaperone essential for cellular stress responses,
protein folding, and maintaining protein stability. Research
indicates that higher levels of HSPA1B can notably decrease
myocardial cell death during ischemia-reperfusion injury (Liu
et al., 2021; Tao et al., 2021). Additionally, various medications
have been identified that can indirectly influence HSPA1B
expression and activity, showing efficacy in heart failure and
related diseases (Gombos et al., 2008). CDKN1A is a cyclin-
dependent kinase inhibitor, has been known to regulate the cell
cycle process (López-Domínguez et al., 2021). Researchers have
discovered that HF patients have an increased expression of
CDKN1A. A crucial finding of our study confirms an increase in
the expression level of CDKN1A in HF samples, similar to the findings
published elsewhere (Zheng et al., 2023). Studies have indicated that
CDKN1Amay promote coronary heart disease by promoting chronic
inflammation and sustained inflammatory states (Zhang et al., 2019).
It has been reported that CDKN1A plays a significant role in
inflammatory heart diseases because it is highly expressed in
cardiomyocytes (Huang et al., 2020). A possible link between
DNAm, and the risk of HF is also revealed by our findings that
DNAm in enhancer regions negatively regulatesCDKN1A expression.
There is a genetic variation near the CDKN1A gene associated with
HF in previous GWAS studies (Shah et al., 2020), but whether this
gene is causally related to the illness remains unclear. DNAm may be
involved in genetic variation regulating gene expression in HF, which
impacts its pathogenesis. It has been reported that EGR1 regulates
CDKN1A expression, resulting in the senescence of cancer cells
(Carvalho et al., 2019). More research needs to be conducted to
find out whether it plays a role in HF.

CDKN1A mechanism is complex across a wide range of cell
types and stimulus environments. A number of studies have shown

that CDKN1A− positive senescent cells exhibit a clear convergence,
initially displaying high levels of CDKN1A due to damage, followed
by a subsequent decrease (Bloom et al., 2023). Furthermore, the
function of CDKN1A is influenced by the degree of DNA damage in
the cell. When DNA damage is low, CDKN1A expression increases,
slowing the cell division cycle and preventing apoptosis. In contrast,
with higher levels of DNA damage, CDKN1A expression decreases,
leading to apoptosis (Karimian et al., 2016). Additionally, our study
observed that HF cardiomyocytes with CDKN1A+ show elevated
levels of ubiquinone and other terpenoid-quinone biosynthesis,
thiamine metabolism, and nicotinate and nicotinamide
metabolism, suggesting metabolic discrepancies among HF
cardiomyocytes with different CDKN1A genotypes. In addition to
regulating fundamental processes such as cell cycle progression,
apoptosis, and transcription, CDKN1A could also be responsible for
the variation in phenotypes (Cazzalini et al., 2010). Biomarkers
related to cardiac aging are a major focus in cardiovascular disease
research. Compared to tissue markers and MRI (Salih et al., 2023),
blood biomarkers provide advantages like simpler collection,
reduced invasiveness, and the capacity for ongoing monitoring.
The loci identified in this study shed new light on potential non-
invasive biomarkers linked to HF. Current investigations into
CDKN1A inhibitors for cancer therapies indicate promising
possibilities for cardiovascular applications, which merit further
investigation. More research is required to establish the safety
and efficacy of these treatments in relation to HF.

Based on multi-omics data, genetic IVs, and causal inference
analysis methods, this study offers significant advantages in
dissecting GWAS signals and prioritizing gene expression and
methylation. In addition, sensitivity tests were carried out to
evaluate the robustness of the results and minimize potential
biases due to pleiotropic effects. However, the study has certain
limitations. The summary statistics for eQTL, mQTL, and pQTL
come from varied sources, and the models used do not consistently
account for confounders. While our study aligns with the core MR
assumptions and includes pleiotropy analysis to reduce confounding,
we cannot fully exclude its impact on the causal link betweenmolecular
traits and HF. The study’s sample sizes for mQTL, GWAS data, and
genetic variants tied to protein expression are limited, whichmay cause
some HF-related genes to be missed. Additionally, the scarcity of
GWAS datasets, especially those on cellular aging, restricts the
bidirectional MR analysis of causality. Even with sensitivity
analyses, pleiotropy assessment is still not precise, necessitating
more individual-level data for refined stratified analysis. The study
is basedmainly on European population data, andwhile it was tested in
East Asian groups, the specificity of genetic mutations restricts the
wider applicability of the findings. Further functional experiments are
required to validate these conclusions.

Conclusion

This study has increased our understanding of how senescence
may influence the biological mechanisms of HF. It has shown that
methylation and gene expression related toCDKN1Amay play a role
in initiating senescence in HF cardiomyocytes. It may help identify
potential new therapeutic targets for HF and advance fundamental
research on the role of cellular senescence in the disease.
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