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Objectives: This study aimed to observe the intervention of Weizhuan’an
prescription on rats with precancerous lesions of gastric cancer (PLGC) as
well as its regulation on gastric mucosal microflora and inflammatory factors
and explore the pharmacodynamic mechanisms of Weizhuan’an Formula.

Methods: The rats were classified into the blank control group (BCG);
low-, medium-, and high-dose groups of Weizhuan’an prescription (LDG,
MDG, and HDG, respectively); and natural recovery group (NRG) at random.
The rats in the traditional Chinese medicine (TCM) group were given
corresponding doses of Weizhuan’an formula, while the rats in the NRG
and BCG were given an equivalent volume of distilled water for 12 weeks.
After that, gastric mucosa samples of rats were collected to observe the
general and pathological changes in the gastric mucosa; the changes in
gastric mucosal microflora were detected by 16S rDNA amplicon
sequencing, and the inflammatory factors were analyzed by cytokine
antibody microarray and Western blotting.

Results: The results suggest that compared with the BCG, the pathology of
gastric mucosa and gastric mucosal microflora and inflammatory factors in rats
with PLGC have changed significantly, while Weizhuan’an formula effectively
improved them, especially in the MDG and HDG (p < 0.05). Compared with the
NRG, the abundance of probiotics such as Lactobacillus and Veillonella were
increased, while the abundance of pathogens such as Proteobacteria and
Pseudomonas was decreased (p < 0.05, p < 0.01), and the relative contents
of IL-2, IL-4, IL-13, and MCP-1 in gastric mucosa were decreased (p < 0.05).
Moreover, it can upregulate the DNA-binding transcriptional regulator, ABC
type multidrug transport system, and related enzymes and affect the signaling
pathways such as viral protein interaction with cytokine and cytokine receptor
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and T cell receptor signaling pathway significantly (p < 0.05, p < 0.01), which can
promote drug absorption and utilization and repair damaged gastric mucosa.

Conclusion: The study confirmed that Weizhuan’an prescription can treat rats with
PLGC by regulating gastric mucosal microflora and inflammatory factors.

KEYWORDS

precancerous lesion of gastric cancer, gastric mucosa, traditional Chinese medicine,
gastric mucosal microflora, inflammatory factors, Weizhuan’an prescription

1 Introduction

Gastric cancer (GC) is one of the commonest gastrointestinal
malignant tumors worldwide, which seriously threatens human
health owing to its rising morbidity along with high mortality
(Fitzmaurice et al., 2017; Zheng et al., 2022). It is difficult to apply
primary prevention due to the complicated causes of GC, and
therefore the intervention on precancerous lesions of gastric cancer
(PLGC) has always been a hot spot in clinical research. According to
the Chinese Integrated Clinical Management Guidelines for
Precancerous Lesions of Gastric Cancer (Wang et al., 2022),
common therapies for PLGC include eradicating Hp (positive
cases) and short-term use of acid suppressants, mucosal protectors,
etc., as well as using endoscopic surgical techniques combined with
botanical drugs to treat high-grade dysplasia and early GC. Folic acid,
antioxidant vitamins, etc. can also reduce the risk of GC to a certain
extent. Long-term use of Western medicine is usually avoided in
clinical practice due to the common side effects of using them, such as
abdominal pain, nausea, and gastrointestinal bloating. As the
treatment cycle for PLGC is relatively long, botanical drugs are
widely used due to its advantages of good efficacy and minimal
side effects. The combination of traditional Chinese medicine and
Western medicine has significant advantages in treating PLGC. There
is a complex gastrointestinal microecosystem in the body, and there
are various species of gastric microflora, although they are fewer than
intestinal microflora species (Nardone and Compare, 2015; Sung
et al., 2016). Studies have confirmed that the structure and abundance
of gastric microflora in patients with GC and PLGC are significantly
different from that in the healthy controls. The imbalance of gastric
microflora can induce gastric diseases such as gastritis and gastric
ulcer, which is tightly related to the occurrence of GC (Sohn et al.,
2017; Yu et al., 2017). Moreover, the relationship between the gastric
inflammatory environment and GC and PLGC is another research
highlight at present (Gullo et al., 2019; Zhou and Yang, 2019). A
normal immune response can repair damaged tissues and maintain
homeostasis. However, when the body is in a state of repeated
infection or injury, inflammatory stimulation will inhibit the repair
of damaged gastric mucosa (Sounni and Noel, 2013), eventually
leading to canceration of gastric mucosal epithelial cells (Schulz
et al., 2019). Some studies (Khatoon et al., 2018; Sultana et al.,
2018) have suggested that although the imbalance of intragastric
microflora may mediate inflammation to damage the gastric mucosa,
the final clinical outcome of patients depends on the body’s
inflammatory response. Conversely, the strength of the
inflammatory response is also influenced by the intragastric
microenvironment (Bockerstett and DiPaolo, 2017; Chen et al.,
2018). Existing studies have confirmed that traditional Chinese
medicine (TCM) has obvious effects in inhibiting gastric

pathogenic bacteria (Lian et al., 2017; Deng, 2020), regulating
inflammatory factors, and repairing gastric mucosal damage (Li
et al., 2015; Yu et al., 2018). For the most part, there is still a lack
of experimental research on the regulation of gastric microecological
immunity by TCM for treating PLGC. Weizhuan’an prescription,
created by the late Professor Gao Jinliang, a famous gastroenterologist,
is an empirical prescription for the treatment of PLGC. Our previous
research has confirmed that Weizhuan’an prescription can effectively
relieve the clinical symptoms of patients and improve the pathology of
the gastric mucosa (Wang et al., 2017; Meng et al., 2020). In order to
clarify its mechanism, this experiment from the perspective of
regulating gastric mucosal microflora and inflammatory factors
provides a view to opening up a new direction for clinical application.

2 Experimental materials

2.1 Experimental animals

Hundred male and healthy SPF Wistar rats, aged 6 weeks,
weighing 175 ± 25 g, were provided by SPF (Beijing)
BIOTECHNOLOGY Co., Ltd., the animal license No. is SCXK
(Beijing) 2019-0010. It was raised in the SPF Laboratory room of
the Animal Experiment Center of Tianjin University of Traditional
Chinese Medicine (TUTCM), room No. 337. The room temperature
was 23 ± 2°C, and the relative humidity was 55 ± 5%, with a 12-h
light and 12-h dark cycle. This experiment complies with the
regulations of the Ethics Committee of the Animal Experiment
Center of TUTCM, batch No. TCM-LAEC2020076.

2.2 Experimental medicine

The composition of Weizhuan’an prescription is as follows:
15 g Radix pseudostellariae (batch No. 21010101), 15 g Poria
cocos (batch No. 194200901), 10 g fried Atractylodes
macrocephala Koidz (batch No. 200911006), 30 g Astragalus
mongholicus (batch No. 2103260021), 10 g Curcuma zedoaria
(batch No. 2104050162), 30 g Hedyotis diffusa Willd (batch No.
201211002), 30 g Polygonum cuspidatum (batch No. 255190101),
and 3 g pseudo-ginseng (batch No. 901180602). Chinese medicinal
materials were purchased from Anhui Xiehecheng Co., Ltd., Beijing
Hongji Pharmaceutical Co., Ltd., Beijing Qiancao Herbal Pieces Co.,
Ltd., and BozhouHuqiao Pharmaceutical Co., Ltd. The concentrated
liquid of botanical drugs was decocted by the national standard
preparation and provided by the pharmacy of Tianjin Academy of
Traditional Chinese Medicine Affiliated Hospital. The specific
method for decoction is as follows: soak the dried medicinal
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botanical drugs (except pseudo-ginseng) and eight times of cold
distilled water in the casserole for 30 min. Boil it over high heat and
then turn to low heat and decoct for 30 min. Then, filter the
decoction to remove the drugs and concentrate the filtered liquid
to 200mL. Store in the refrigerator of the Animal Experiment Center
of TUTCM at 4°C away in dark conditions. Pseudo-ginseng was
stored in powder form at room temperature and away from light.
The main extract of Weizhuan’an prescription was quantitatively
analyzed by high-performance liquid chromatography (HPLC) and
liquid chromatography-tandem mass spectrometry (LC-MS/MS).
The results showed the presence of notoginsenoside R1
(27.0 mg·L−1), ginsenoside Rb1 (87.2 mg·L−1), ginsenoside Rg1
(111 mg·L−1), kaempferol (29.6 mg·L−1), quercetin (1.99 mg·L−1),
astragaloside IV (20.1 mg·L−1), polydatin (95.3 mg·L−1),
heterophyllin (24.7 mg·L−1), atractylenolide Ⅱ (1.21 mg·L−1),
atractylenolide III (10.0 mg·L−1), and poricoic acid A (0.101 mg·L−1).

95% N-methyl-N′-nitro-N-nitrosoguanidine (MNNG),
provided by the Tokyo Chemical Industry Development Co.,
Ltd., specification: 25 g*1 bottle, batch No. P1734775, was stored
in the refrigerator of the Animal Experiment Center of TUTCM at
4°C away from light. The SPF compound diet for rats was formulated
by Beijing HFK Bioscience Co., Ltd., in the proportion of 99.77%
ordinary diet and 0.2% sodium chloride and 0.03% ranitidine,
production license No. Beijing (2019) 06076. Purified sodium
chloride was provided by Tianjin Zhiyuan Chemical Reagent Co.,
Ltd., specification: 500 g*1 bottle. Ranitidine was provided by Jiangxi
Huiren Pharmaceutical Co., Ltd., specification:
0.15 g*30 tablets*1 bottle, batch No. H44021173. SPF ordinary
diet for rats was provided by the Animal Experiment Center of
TUTCM, and the basic ingredients are corn, flour, wheat bran,
soybean meal, imported fish meal, oil, stone powder, calcium
hydrogen phosphate, salt, complex microorganisms, and
trace elements.

2.3 Experimental apparatus

CX31 microscope and graphic analysis system (Olympus,
Japan); SH-118 electronic scale (Shengheng, China);
RM2125 pathological microtome (Leica, Germany); 7FB Water
Bath-Slide Drier (Xiaogan Yaguang, China); HP-D Sheet dryer
(Tianjin Tianli Aviation, China); JBM-B Embedding machine
(Tianjin Jiusheng, China); 101-1AB Electric blast drying oven
(Tianjin Taisote, China); ASP200S totally enclosed vacuum
biological tissue dehydrator (Leica, Germany); NovaSeq
PE250 sequencer (Illumina, United States); rat inflammation
array Q1 (QAR-INF-1) kit (RayBiotech, United States); InnoScan
300 Microarray scanner (Innopsys, France); Wellwash Versa
Microplate Washer (Thermo Scientific, United States); RT-6100
Microplate Reader (Rayto, China); F6/10 Micropipette Grinder
(Jingxin technology JX-FSTGRP, China); TGL-16gR Table-type
High-speed Refrigerated Centrifuge (Shanghai Anting, China);
DL-40B Desktop low-speed centrifuge (Shanghai Anting, China);
Mini-4s Multifunctional centrifuge (Labfish, China); VM-300
Multifunctional vortex mixer (Labfish, China); 180-1600 Casting
Stand (Shanghai Tanon, China); SK-O180-E Decolorization Shaker
(DragonLAB, China); DYY-7C Transfer electrophoresis apparatus
(Beijing Liuyi, China); VE180 Electrophoresis equipment Tanon,

China); VE186 Transmembrane equipment (Shanghai Tanon,
China); XB-50 Ice machine (Scientz, China); SCIENTZ-1500F
Ultrasonic Processor (Scientz, China); 5200 Chemiluminescence
Apparatus (Shanghai Tanon, China).

2.4 Experimental reagents

P0013B RIPA lysate (Beyotime Biotechnology, China);
P1010 protease inhibitor (Beyotime Biotechnology, China);
ST506 PMSF (100 mM) (Beyotime Biotechnology, China);
P1081 phosphatase inhibitors (Beyotime Biotechnology, China);
P0012 BCA protein quantitative detection kit (Beyotime
Biotechnology, China); P0015 SDS-PAGE SDS-PAGE loading
buffer (5X) (Beyotime Biotechnology, China); P0012A SDS-PAGE
gel preparation kit (Beyotime Biotechnology, China); 26617 protein
marker (Thermo, United States); ISEQ10100 PVDF membrane
0.22 μm (Millipore, United States); P0216 defatted milk powder
(Beyotime Biotechnology, China); ST825 Tween-20 (Beyotime
Biotechnology, China); P0018AS ECL chemiluminescent solution
(Beyotime Biotechnology, China); 66009-1 β-actin (43KD)
(Proteintech, United States); PB0059 IL-2 (18KD) (Boster, China);
BA0980 IL-4 (17KD) (Boster, China); A00077-2 IL-13 (19KD)
(Boster, China); BA 1843-2 MCP-1 (25KD) (Boster, China);
SA00001-2 HRP-labeled goat anti-rabbit (Proteintech); SA00001-1
HRP-labeled goat anti-mouse (Proteintech); P0021A transfer buffer
(Beyotime Biotechnology, China); P0014 electrophoretic buffer
(Beyotime Biotechnology, China); ST673 TBS-T buffer (Beyotime
Biotechnology, China); P0023 WB antibody diluent (Beyotime
Biotechnology, China).

3 Experimental methods

3.1 Modeling method

After 1 week of adaptive feeding, the rats were randomly divided
into two groups with a random number table: 14 in the blank control
group (BCG) and 86 in the model control group (MCG). The MCG
was established by compoundmethods. In the 1st–26th week,MNNG
and distilled water were prepared into a 1 g·L−1 stock solution and
stored in a refrigerator at 4°C away from light every week. Then, the
100 μg·mL−1 MNNG solution was diluted with clean drinking water
and filled into black bottles and supplied ad libitum to rats every day.
The SPF compound diet was also supplied ad libitum to rats. From the
27th–30thweek, it was prepared into 20 μg·mL−1MNNG solution (the
co-solvent shall be added in a ratio of 1 g MNNG to 10 mL dimethyl
sulfoxide) and stored in refrigerator at 4°C away from light every week
and then administered to the rats with the dose of 5 mL·kg−1 through
gastric tubes every day. The SPF ordinary diet was administered to rats
in the ratio of eating for 1 day and fasting for 1.5 days. In addition, the
BCG had ad libitum access to SPF ordinary diet and drinking water.

3.2 Determination of the model of PLGC

The pathological diagnosis standard referred to the Chinese
consensus on chronic gastritis (Chinese Society of

Frontiers in Pharmacology frontiersin.org03

Lu et al. 10.3389/fphar.2024.1446244

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1446244


Gastroenterology (CSGE), 2017). Moderate dysplasia and atrophy
or intestinal metaplasia of gastric mucosa can confirm the success of
modeling. From the 24th weekend, two rats from the MCG were
randomly selected and killed based on the random number table
fortnightly. Two tissues of gastric antral mucosa were taken and
fixed with 4% paraformaldehyde, made into paraffin sections, and
stained with hematoxylin and eosin (HE), and then the pathological
changes were observed by using a light microscope. At the 30th
weekend, the pathological section of the gastric mucosa in one of the
selected rats showed inflammatory cell infiltration, moderate
atrophy, and dysplasia, and the other showed mild intestinal
metaplasia and moderate dysplasia, indicating that the model of
PLGC was successfully established.

3.3 Drug intervention

After successful modeling, 76 rats in the MCG were divided into
the low-dose group (LDG), middle-dose group (MDG), high-dose
group (HDG), and natural recovery group (NRG) by random
number table, with 19 rats in each group. Referring to the
formula [the dose of the crude drug of rats (g·kg−1) = 143 g·d−1
of adult clinical crude drug dose/70 kg of adult weight × 6.25], we
calculated the daily dose of the equivalent dosage of crude drug as
12.76 g·kg−1 (the extract is 7.284 mg·kg−1). The drug concentration
gradient to the dose of the extract of the LDG, MDG, and HDG is
3.642, 7.284, and 14.570 mg·kg−1, respectively. In the 31st–42nd
weeks, the rats in the LDG, MDG, and HDG were given a
corresponding dose of Weizhuan’an (7 mL kg−1) at 7:30–8:
30 every morning, and the rats in the BCG and NRG were given
an equal dose of distilled water.

3.4 Observation index

We draw up the diagnostic and scoring criteria for PLGC,
referring to the pathological diagnosis and grading standard of
Chinese consensus on chronic gastritis (CSGE, 2017) and
Endoscopic classification and grading criteria for chronic gastritis
(Association of Digestive Endoscopy, Chinese Medical Association
(CMA), 2004). The quantified score: normal = 0; mild = 1;
moderate = 2; severe = 3; early gastric cancer (EGC) = 4;
advanced gastric cancer (AGC) = 5.

3.5 Sampling methods

All rats were starved for 36 h without water after the
intervention, and then they were anesthetized by intraperitoneal
injection of 0.3% pentobarbital sodium at 10 mL·kg−1. After that, the
abdomen was quickly opened with sterile surgical scissors, done on a
sterile operating table, and the whole stomach was taken out. After
gentle washing with pH 6.8 phosphate buffer, they were cut along
the greater curvature of the stomach, and four pieces of the gastric
antrum mucosa were taken and rinsed in phosphate buffer. One
piece of the gastric mucosa was stored in a 2-mL Eppendorf (EP)
tube with 4% paraformaldehyde, away from light. Ten samples were
taken from each group with a random number table, made into

paraffin sections, stained with HE, and observed by a light
microscope. Three pieces of gastric mucosa were added into 2-
mL cryogenic vials, quickly frozen in liquid nitrogen, and stored
at −80°C. Subsequently, 16S rDNA amplicon sequencing, cytokine
antibody microarray, and Western blotting were performed
following the standard method. All rats were killed by cervical
dislocation after sampling.

3.6 16S rDNA amplicon sequencing
operation procedure

Ten samples were taken from each group with a random number
table. Subsequently, the deoxyribonucleic acid (DNA) of samples
was extracted by cetyltrimethylammonium bromide (CTAB) buffer,
and then polymerase chain reaction (PCR) amplification and
purification were carried out. The library was constructed by
using the NEBNext® Ultra™ IIDNA Library Prep Kit, and the
qualification of the quality control of the library was confirmed
by the quantitative detection with Qubit and quantitative real-time
PCR (Q-PCR). The raw data were obtained by sequencing with
NovaSeq PE250, and the clean read data were obtained by splicing
and filtering, and then the final amplicon sequence variants (ASVs)
were obtained by DADA2 denoising based on clean read data.

3.7 Cytokine antibody microarray procedure

The expression of inflammatory factors in gastric mucosa in each
group was detected by the QAR-INF-1 kit. Ten gastric mucosa samples
were randomly taken from each group. After all samples were lysed, the
protein concentration of the cell lysate was detected by the BCA protein
assay kit, and sampled 100 μL at 500 μg·mL−1. The glass slide was
completely air-dried, and cytokine standard dilutions were prepared.
The cytokine antibody microarray procedure was performed according
to the manufacturer’s manual: 1) add 100 µL sample diluent into each
well, incubate for 1 h at room temperature, and block the slides. 2)
Decant the buffer solution from the well, add 100 µL standard cytokines
and sample into each well, and incubate overnight in a shaker at 4°C. 3)
Wash the slide by using a microplate washer (Thermo Scientific
Wellwash Versa). First, select 1X Wash Buffer I to wash the slide,
eachwell with 250 µL buffer ten times, and each high-intensity vibration
lasts for 10 s. Dilute 20X Wash Buffer I with deionized water. Then,
select the 1X Wash Buffer II for washing, each well with 250 µL buffer
six times, and each high-intensity vibration lasts for 10 s. Dilute 20X
Wash Buffer II with deionized water. 4) Incubate with biotinylated
antibody cocktail and wash. 5) Incubate with Cy3 equivalent dye-
streptavidin and wash. 6) Fluorescence detection. Scan parameters:
wavelength: 532 nm; resolution: 10 µm. 7) Adopt QAR-INF-1 data
analysis software for data analysis.

3.8 Western blotting procedure

Three gastric mucosa samples were randomly selected from each
group. The total protein of the gastric mucosa was extracted, and the
concentration was detected by the BCA protein assay kit. Adjust all
protein samples to a uniform concentration of 3 μg·μL−1. Add 5X
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reduced protein loading buffer into the protein solution at the ratio
of 4:1, and transfer to a boiling water bath for 5 min. Then, SDS-
PAGE electrophoresis was carried out, the voltage of the
concentrated gel was 70 V, and the voltage of the separated gel
was 100 V at constant pressure. Add enough electrophoresis
solution to the electrophoresis tank and load the sample for
electrophoresis. Then, the protein was transferred to a membrane
and placed for 60 min under a constant current of 200 mA, and the
reaction was completed with primary and secondary antibodies,
chemiluminescence, and automatic imaging. ImageJ software was
used to analyze the gray value of the protein bands.

3.9 Statistical methods

The pathological analysis and Western blotting results of the
gastric mucosa in rats were analyzed by Statistical Product Service
Solutions (SPSS) 25.0. The measurement data of normal distribution
were represented bymean standard deviation (‾x ± s), the paired t test
was used in intra-group comparison, and the one-way ANOVA was
used in inter-group comparison. The measurement data of non-
normal distribution were expressed by interquartile range (IQR) M
(P25; P75). The rank sum test was adopted for intra-group
comparison, and the Kruskal–Wallis test was adopted for inter-
group comparison. p < 0.05 indicated statistical differences.

The ASVs obtained by 16S rDNA amplicon sequencing were
processed in two ways. First, by annotating the species of ASVs and
then performing alpha diversity analysis, including alpha diversity
index and inter-group difference analysis. Second, multi-sequence
alignment was used for ASVs, and the phylogenetic tree was
constructed. It was visually displayed by principal co-ordinates
analysis (PCoA) and non-metric multidimensional scaling
(NMDS), and the differentially abundant features of microflora
were analyzed by Mothur metastats command (MetaStats) and
linear discriminant analysis effect size (LEfSe). In addition, the
correlation of microflora was calculated by Spearman correlation
analysis, and the functional abundance of microflora was predicted
by PICRUSt2 based on the clusters of orthologous groups (COG).

After the normalization of raw data obtained by cytokine antibody
microarray by RayBiotech software, the resulting data are selected for
analysis. The analysis method is moderated t-statistics, and the data
package used is limma, from R/Bioconductor. Differential proteins
were screened by p-value and logFC. The parameter threshold is that
the fold change >1.2 or <0.83, that is, the absolute value of
logFC >0.263, and p < 0.05. The Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analysis was adopted to predict
the functions of differential inflammatory factors.

4 Results

4.1 Pathology of the gastric mucosa in rats

The general conditions of the gastric mucosa of rats in each group
can be observed in Figure 1A. It was found that the general condition
of gastric mucosa in the BCG was the best, while that in the LDG,
MDG, and HDG was improved to varying degrees, which was better
than that in the NRG. The HE staining sections of rat gastric mucosa

at the 42nd weekend are shown in Figure 1B. There was a significant
difference in the pathological changes of the gastric mucosa among
groups. In the BCG, the gastric mucosa of rats was in good condition,
the morphology of gastric mucosa cells was regular, the number of
intrinsic glands did not decrease, intestinal metaplasia and dysplasia
did not exist, and there was no infiltration of monocytes, neutrophils,
or cancer cells in the mucosa. In the NRG, the overall condition of the
gastric mucosa was poor, the number of intrinsic glands in the gastric
mucosa was reduced, there was higher infiltration of monocytes and
neutrophils into gastric lamina propria, and the intestinal metaplasia
area in some rats exceeded the total area of the gastric mucosa by one-
third. It can be seen in Figure 1C that the pathological score of the
BCG is the lowest while the NRG is the highest, that of the
Weizhuan’an group was intermediate between the two groups, and
that of the MDG and HDG was obviously improved. Specifically,
there was no statistical difference in atrophy or canceration of rats in
each group. Compared with the NRG, there were significant
differences in the BCG, MDG, and HDG in terms of chronic
inflammation, intestinal metaplasia, and dysplasia (p < 0.05).
There were significant differences in each group compared with
the NRG in terms of active inflammation (p < 0.05).

4.2 Relative abundance and abundance
clustering of gastric mucosal microflora
in rats

The histograms (top 10) and heat maps (top 35) of the relative
abundance of gastric mucosal microflora of rats in phylum and
genus levels were drawn with QIIME 2 based on the annotation of
the microflora abundance table, which can be referred in Figure 2A.
There were 46 bacterial phyla and 896 bacterial genera with
significant differences between groups. The relative abundance of
five phyla in the top 10 was more than 1%, Firmicutes, 54.45%;
Proteobacteria, 33.63%; Bacteroidota, 4.34%; Actinobacteriota,
3.39%; and Fusobacteriota, 2.32%. The relative abundance of all
genera in the top 10 was more than 1%, except for Prevotella.

4.3 Alpha diversity analysis

The diversity of microflora was evaluated by alpha diversity
analysis. As shown in Figure 2B, compared with the species diversity
of the NRG, there were significant differences in the BCG, MDG, and
HDG (p < 0.001), amongwhich theMDGwas themost significant. The
rarefaction curves of alpha diversity indices indicate that the average
effective sequence is 6.9 w/sample. The rarefaction curves tend to be flat
when the sequence is about 4.6 w (cutoff = 45945). In addition, the
species accumulation boxplots of alpha diversity indices tend to be flat
gradually when the number of samples is approximately 45, which
shows that the sampling is reasonable and sufficient, and it is suitable for
subsequent analysis. See Figure 2C for details.

4.4 Beta diversity analysis

It can be seen in Figure 3A that the first principal component
(PC1) and the second (PC2) of the PCoA with weighted UniFrac
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are 32.28% and 19.35%, respectively. The stress value of NMDS
with weighted UniFrac is 0.15, which is lower than the threshold
value of 0.2. All of them form five clusters with unequal
overlapping parts, and the NRG is quite different from other
groups. Combined with ANOSIM, it can be seen that R > 0 in
each group, indicating that the difference between groups is greater
than that within groups, and the difference is significant (p < 0.05)
among groups, except for the LDG and NRG, which indicates that
the conclusion is reliable.

4.5 Analysis of differential abundance

The results of MetaStats analysis suggest that compared with the
gastric mucosal microflora of the NRG, there were significant
differences in the BCG, MDG, and HDG (p < 0.05, p < 0.01).
Refer to Table 1, 2 for phylum and genus levels with the top six in
relative abundance and with significant differences between groups.
There were 33 biomarkers combined with LEfSe analysis, as shown
in Figure 3B.

FIGURE 1
(A)General conditions of the gastricmucosa of rats in each group at the 42ndweekend. (B)HE staining sections of the gastric mucosa of rats in each
group at the 42nd weekend (×100/×400) Note: dysplasia (red arrow); atrophy or intestinal metaplasia (blue arrow); and inflammation (yellow arrow). (C)
Pathological score of the gastric mucosa of rats in each group at the 42nd weekend Note: * indicates compared with the BCG, p < 0.05; # indicates
compared with the NRG, p < 0.05.
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4.6 Data statistics of cytokine antibody
microarray

The average value of all sample data is normalized, and the
concentration values of inflammatory factors in the samples are
calculated based on the standard cytokine data; see Table 3 for
specific data.

4.7 Differential inflammatory factors of rat
gastric mucosa

The average expression and difference of inflammatory factors in
the gastric mucosa of rats in each group are given in Table 4. The results
showed that eight differential inflammatory factors were detected. The
BCGhad the largest difference compared with the other groups, and the

FIGURE 2
(A) Histograms and heat maps of the relative abundance of gastric mucosal microflora (phylum and genus levels). (B) Boxplots of alpha diversity
indices of gastric mucosal microflora of rats in each group. (C) Rarefaction curves and species accumulation boxplots of alpha diversity indices.
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relative content of inflammatory factors was significantly decreased (p <
0.05), except that IL-13 was increased compared with the LDG. The
second is the difference between the NRG and other groups. Compared
with the NRG, the levels of IL-2, IL-4, and IL-13 in the LDG were
significantly reduced (p < 0.05); the levels of IL-4 and IL-13 in theMDG
were significantly reduced (p < 0.05); and the levels of IL-2, IL-4, and
MCP-1 in the HDG were significantly reduced (p < 0.05).

4.8 Western blotting analysis

Western blotting (WB) was adopted to verify the results
obtained by the cytokine antibody microarray. The results
showed that the expression levels of all inflammatory factors
were the highest in the NRG and the lowest in the BCG, which
was consistent with the results of microarray analysis. See Figure 3C

FIGURE 3
(A) PCoA and NMDS analysis of duodenal mucosal microflora of rats in each group. (B) LEfSe analysis of duodenal mucosal microflora of rats in each
group. (C) Gray value and gray value ratio of each protein in the gastric mucosa of rats.
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for the gray value and gray value ratio of each protein in the
gastric mucosa of rats. The results showed that compared with
the BCG, there are significant differences in IL-2, IL-4, IL-13, and
MCP-1 in the NRG, LDG, and MDG (p < 0.05). Compared with
the NRG, the levels of IL-4, IL-13, and MCP-1 in the MDG were
significantly reduced (p < 0.05). The levels of IL-2, IL-4, IL-13,

and MCP-1 in the HDG were significantly reduced (p < 0.05). In
general, the overall trend of the difference between the results of
WB and cytokine antibody microarray is consistent, while there
are certain differences in significance, which may be caused by
the bias caused by the difference in detection methods and
sample size.

TABLE 1 Gastric mucosal microflora of rats with remarkable differences between groups in phylum level.

BCG vs NRG MDG vs NRG HDG vs NRG

Species Discrepancy Species Discrepancy Species Discrepancy

Firmicutes ↑ Bacteroidota ↑ Fusobacteriota ↓

Proteobacteria ↓ Euryarchaeota ↓ Euryarchaeota ↓

Actinobacteriota ↑ Actinobacteriota ↓ Proteobacteria ↓

Elusimicrobiota ↓ Acidobacteriota ↓ Desulfobacterota ↓

Patescibacteria ↑ Chloroflexi ↓ Acidobacteriota ↓

Verrucomicrobiota ↑ Elusimicrobiota ↓ Gemmatimonadota ↓

TABLE 2 Gastric mucosal microflora of rats with remarkable differences between groups in genus level.

BCG vs NRG MDG vs NRG HDG vs NRG

Species Discrepancy Species Discrepancy Species Discrepancy

Pseudomonas ↓ Pseudomonas ↓ Lactobacillus ↑

Ralstonia ↓ Ralstonia ↓ Fusobacterium ↓

Romboutsia ↑ Romboutsia ↑ Pseudomonas ↓

Lactobacillus ↑ Prevotella ↓ Acinetobacter ↑

Faecalibaculum ↑ Bacteroides ↑ Veillonella ↑

Turicibacter ↑ Lactobacillus ↑ Lachnospiraceae ↓

Note: ↑indicates that the relative abundance of group 1 is higher than that of group 2, ↓ indicates the opposite.

TABLE 3 Data statistics of the gastric mucosal inflammatory factors of rats.

Target LOD (pg/mL) % below LOD % above LOD but <3×LOD % in best confidence % above maximum

IFN-γ 0.2 56.0 20.0 24.0 0.0

IL-1α 1.2 82.0 4.0 14.0 0.0

IL-1β 50.9 8.0 30.0 62.0 0.0

IL-2 3.9 28.0 56.0 16.0 0.0

IL-4 0.2 28.0 40.0 32.0 0.0

IL-6 5.2 42.0 0.0 58.0 0.0

IL-10 4.3 2.0 4.0 94.0 0.0

IL-13 2.7 38.0 26.0 36.0 0.0

MCP-1 1.6 0.0 0.0 100.0 0.0

TNF-α 443.0 2.0 6.0 92.0 0.0

Note: the blue font represents the data with a high proportion; italics represent relatively low data; limit of detection (LOD) represents the lowest concentration value that can be detected in the

confidence interval. Unit: pg·mL−1.
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TABLE 4 Average expression of inflammatory factors in the gastric mucosa of rats in each group.

Group IL-2 IL-4 IL-10 MCP-1 IFN-γ TNF-α IL-13 IL-1β

BCG 1.600# 0.051# 4.321# 4.359# 0.000# 10.365# 2.612 6.237#

NRG 3.784* 0.890* 5.778* 5.217* 0.595* 11.663* 3.086 7.581*

LDG 2.501# 0.476*# 5.321* 5.194* 0.559* 11.063* 1.013*# 6.937*

MDG 3.218* 0.572*# 5.213* 5.088* 0.293 11.219 1.742# 7.751*

HDG 2.565# 0.527*# 5.254* 4.570# 0.311 11.255* 2.229 7.501*

Note: * indicates compared with the BCG, p < 0.05; # indicates compared with the NRG, p < 0.05.

FIGURE 4
(A) Network of gastric mucosal microflora of rats in each group. (B) Pearson analysis of the pathology of gastric mucosa and gastric mucosal
microflora (phylum and genus levels) Note: * indicates p < 0.05; ** indicates p < 0.01 (C) Pearson analysis of inflammatory factors and gastric mucosal
microflora (phylum and genus levels) Note: * indicates p < 0.05; ** indicates p < 0.01.
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4.9 Correlation analysis of gastric mucosal
microflora of rats

4.9.1 Analysis of the interaction among gastric
mucosal microflora of rats

The network of gastric mucosal microflora of rats in each group
was calculated and drawn by Spearman correlation analysis. The
dominant and closely interacting microflora in each group can be
displayed intuitively. Refer to Figure 4A for details, in which the size
of nodes represents the relative abundance, the red line between
nodes indicates a positive correlation, and the blue line indicates a
negative correlation. It can be found that the network density of the
microflora with a positive correlation in the BCG is significantly
higher than that with a negative correlation. On the contrary, the
network density of the microflora with a negative correlation in the
NRG is prominently higher than that with a positive correlation.
While the ratio of the microflora with positive and negative
correlations in the LDG, MDG, and HDG is between them. It is
suggested that with the intervention of Weizhuan’an prescription,
the gastric mucosal microflora has been remarkably regulated, which
can play a better cooperative role and help restore the stability of
gastrointestinal microecology.

4.9.2 Correlation analysis between gastric mucosal
pathology and gastric mucosal microflora

The correlation between the pathological indexes of the gastric
mucosa and the dominant microflora in phylum (top 10) and
genus (top 30) levels was calculated by Spearman’s correlation
analysis. The Spearman correlation coefficient values were
calculated by the corr.test function; then, the pheatmap
function was used for visualization after testing the significance
of the difference. Figure 4B shows that there is a correlation
between the pathological changes of gastric mucosa and gastric
mucosal microflora. Specifically, Proteobacteria was positively
correlated with inflammation (IN), atrophy (ATR), and
dysplasia (DYS) (p < 0.05, p < 0.01). Ralstonia and Vibrio were
positively correlated with DYS (p < 0.05). Prevotella and
Faecalibacterium were positively correlated with intestinal
metaplasia (IM), while there was no statistical difference
between the above groups (p > 0.05). Firmicutes and
Bacteroides were negatively correlated with IN, ATR, and DYS
(p < 0.05, p < 0.01). Actinobacteriota and Lactobacillus were
negatively correlated with DYS (p < 0.05). Turicibacter, Blautia,
and Clostridium_sensu_stricto_1 were negatively correlated with
IN (p < 0.05). In addition, it can also be found that the differential
microflora has a higher correlation with IN, ATR, and DYS and a
lower correlation with IM.

4.9.3 Correlation analysis between gastric mucosal
microflora and inflammatory factors

The results of Spearman correlation index analysis on gastric
mucosal microflora and inflammatory factors indicate that there is a
high correlation between them, see Figure 4C. Specifically,
Proteobacteria, Ralstonia, and Vibrio were positively correlated
with IL-2, IL-4, IL-13, and MCP-1 (p < 0.05). Firmicutes,
Actinobacteriota, Bacteroides, Lactobacillus, and Clostridium_
sensu_stricto_1 were negatively correlated with IL-2, IL-4, IL-13,
and MCP-1 (p < 0.05).

4.10 Functional abundance prediction

4.10.1 Functional abundance prediction of gastric
mucosal microflora in rats

The functional abundance prediction of gastric mucosal
microflora was performed by PICRUSt2 based on the 16S rDNA
sequencing data and the COG. First, functional abundance
annotation and relative abundance clustering were conducted for
the preliminary assessment of common and unique functional
information between groups. The histograms (top 10), heat maps
(top 35), PCA, and flower plot can be referred to Figure 5A. Then,
the functional difference in gastric mucosal microflora in each group
was analyzed by the t test. The results showed that compared with
the NRG, the BCG, MDG, and HDG had significant differences (p <
0.05, p < 0.01). Especially, there were 2,123 different functions in the
BCG, 2,198 in the MDG, and 2,160 in the HDG. See Figure 5B for
the differential function with relatively high enrichment (top 10). It
can be found that compared with the NRG, the DNA-binding
transcriptional regulators such as OmpR family, AcrR family, and
MarR family, ABC-type multidrug transport system and lipoprotein
export system, and the activity of related enzymes were upregulated
substantially in the BCG, MDG, and HDG. The related gastric
mucosal microflora includes Lactobacillus, Pseudomonas, and
Faecalibacterium. Refer to Table 5 for details.

4.10.2 Functional abundance prediction of gastric
mucosal inflammatory factors in rats

The functional abundance prediction of differential
inflammatory factors was performed by the KEGG enrichment
analysis, which can screen out the biological regulatory pathways
with significant differences between groups. It adopts the Fisher
exact test, and the data package is clusterProfiler from R/
Bioconductor. The criterion is that the count of genes of the
pathway is ≥5, p < 0.05. The details are shown in Figure 5C (top
20). The results suggest that compared with the NRG, the signaling
pathways significantly changed in the BCG, LDG, and HDG (p <
0.05, p < 0.01), such as viral protein interaction with cytokine and
cytokine receptor, T cell receptor signaling pathway, intestinal
immune network for lgA production, inflammatory bowel
disease, and IL-17 signaling pathway. The related inflammatory
factors include IL-1β, IL-2, IL-4, IL-13, TNF-α, IL-10, and MCP-1.

5 Discussion

GC is a serious threat to global human health. Fortunately, the
PLGC is the effective intervention period for preventing GC. Several
research studies have reported that TCM has many advantages in
treating PLGC, such as individualization, good efficacy, economy,
and non-invasiveness. As the empirical formula of our research
group, Weizhuan’an prescription has been applied in the clinic for
many years and has received satisfactory therapeutic feedback. We
strictly standardize the basic experiments of botanical drugs and
strive to combine modern medical research methods with TCM. In
this experiment, 16S rDNA amplicon sequencing, cytokine antibody
microarray, andWestern blotting were applied to analyze the gastric
mucosal microflora and inflammatory factors of rats to explore the
biological mechanisms of Weizhuan’an prescription.
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The results suggest that the pathological manifestations of
gastric mucosa, the gastric mucosal microflora, and inflammatory
factors in rats with PLGC have changed greatly compared with those
of the BCG. With the intervention of Weizhuan’an prescription, the
pathological improvement of the gastric mucosa was remarkable,
especially in the MDG and HDG. The results of 16S rDNA amplicon
sequencing showed that there were significant differences in the
BCG, MDG, and HDG compared with the abundance and diversity
of gastric mucosal microflora in the NRG. Specifically, at the phylum
level, the abundance of Firmicutes increased significantly in the BCG
(p < 0.01), and that of Proteobacteria decreased significantly in the
BCG and MDG (p < 0.01). At the genus level, the abundance of
Romboutsia, Lactobacillus, and Turicibacter increased in the BCG,
and that of Pseudomonas decreased significantly in the BCG and
MDG (p < 0.01). The abundance of Lactobacillus and Veillonella
increased significantly in the HDG (p < 0.01). The results of cytokine
antibody microarray and Western blotting indicated that compared
with the NRG, the contents of IL-2, IL-4, IL-13, and MCP-1 were
significantly decreased in the BCG, LDG, MDG, and
HDG (p < 0.05).

Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria are
symbiotic bacteria in healthy intestines, which may turn into
pathogenic bacteria in the unbalanced internal environment (Liu
et al., 2022). Proteobacteria with high content can promote
gastrointestinal inflammation by producing stimulating flagellin
and lipopolysaccharide (Shin et al., 2015; Guo et al., 2022). This
study also suggests that Firmicutes and Bacteroides can reduce
inflammation, atrophy, and dysplasia of the gastric mucosa, while
Proteobacteriamay aggravate such lesions. Pseudomonas is a Gram-
negative bacterium with a wide variety and distribution (Zha et al.,
2015), including a variety of pathogens such as Pseudomonas
aeruginosa, which is common in mucosal membrane damage and
infection (Zhang XY. et al., 2021). This study found that
Pseudomonas may promote gastric mucosa atrophy. Romboutsia
is generally regarded as a probiotic, which can resist inflammation
and protect mucosal barrier (Wu et al., 2021). Turicibacter can
participate in metabolism and resist fatigue (Kemis et al., 2019;
Chung et al., 2021). This study found that it can alleviate gastric
mucosal inflammation. Lactobacillus is widely distributed in the
digestive tract (Hindieh et al., 2022). As one of the most widely used

FIGURE 5
(A)Histograms, heatmaps, PCA analysis, and flower plot of COGof rats in each group. (B)Bar charts of COG functional enrichment analysis of gastric
mucosal microflora of rats in each group. (C) KEGG function enrichment analysis of gastric mucosal inflammatory factors of rats in each group.
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probiotics in the clinic, Lactobacillus can reduce infection and
inflammation, strengthen immunity, and maintain
gastrointestinal health (Garcia et al., 2022; Hu et al., 2022).
Lactobacillus can also inhibit the proliferation of cancer cells by
producing anticancer metabolites and inducing apoptosis of cancer
cells (Yue et al., 2021). This study found that Lactobacillus can
alleviate gastric mucosal dysplasia. Veillonella is a kind of Gram-
negative anerobicmicrococcus, which can play an anti-inflammatory
role and enhance the body’s immunity (Xiao et al., 2022; Daniel
et al., 2022). In addition, the study found that the related microflora
can significantly upregulate the activities of DNA-binding
transcriptional regulators, ABC-type multidrug transport system,
related enzymes, etc.; promote the synthesis of gastric epithelial cells
and the absorption and utilization of effective drug metabolites; and
help repair the damaged gastric mucosa to treat PLGC
and prevent GC.

In recent years, with the progress of immunotherapy and the
exploration of new targets in GC, significant breakthroughs have
been made in the immunotherapy of GC. The molecular markers
for the diagnosis and prognosis of GC include m1A, microRNAs,
lncRNAs, and JMJD3 (Xu et al., 2019; Zhao et al., 2019; Chen Y.
et al., 2021; Zhang HY. et al., 2021). It is also worth looking
forward to whether immunotherapy can play a role in the
treatment of PLGC. Moreover, it is suggested that
Proteobacteria can increase the relative contents of IL-2, IL-4,
IL-13, and MCP-1, while Firmicutes, Bacteroides, and
Lactobacillus can decrease the contents of IL-2, IL-4, IL-13,
and MCP-1 significantly. There is a close relationship between
gastric mucosal inflammation and the generation of PLGC.
Studies have shown that many botanical drug metabolites
inhibit inflammatory reactions effectively (Chen QL. et al.,
2021). Interleukin-2 (IL-2) is a pleiotropic cytokine, which has
dual regulatory effects on immune activation and immune
tolerance (Yui et al., 2004; Hershko et al., 2011). IL-2 can

activate cytotoxic T cells and NK cells to participate in the
inflammatory reaction (Sockolosky et al., 2018). Furthermore,
IL-2 can promote the proliferation and differentiation of Treg
cells (Sharma et al., 2020), and Treg cells can inhibit the activity
of cytotoxic T cells to induce immune escape, tumor recurrence,
or metastasis (Najafi et al., 2019). The sustained high levels of IL-
2 can also induce toxicity (Dutcher et al., 2014). Interleukin-4
(IL-4) is also a “double-edged sword” as a kind of pleiotropic
cytokine. On one hand, it can play an anti-tumor role, such as
promote the differentiation of B cells (Zubiaga et al., 1992) and
stimulate the production of CD8

+ T cells (Schultze et al., 1997).
On the other hand, studies (Suzuki et al., 2015; May and Fung,
2015) confirmed that the level of IL-4 in cancer patients is higher,
and there is a high level of IL-4R receptor expression on the
surface of tumor cells. Tumor cells can also produce IL-4 (Todaro
et al., 2008), which can activate tumor-associated macrophages
(TAMs) and myeloid-derived suppressor cells (MDSCs), thus
enhancing the invasion of tumors (Suzuki et al., 2015).
Interleukin-13 (IL-13) is a pleiotropic Th2 cytokine (Heeb
et al., 2020; Moran and Pavord, 2020). It can activate
eosinophils, enhance the inflammatory response, and damage
the mucosal barrier (Tsou et al., 2015; Sato et al., 2017). In the
inflammatory microenvironment, IL-13 can also cooperate with
IL-4 to promote the development of tumors through autocrine
and paracrine paths (Surana et al., 2014; Bankaitis and Fingleton,
2015). Monocyte chemotactic protein-1 (MCP-1), also known as
CCL2, is an important pro-inflammatory factor (Qian et al.,
2011). It can activate monocytes, macrophages, and T cells
and actively chemotactic immune cells to participate in
inflammatory activities. In the inflammatory
microenvironment, MCP-1 can enhance the activity of tumor
cells and promote the generation of tumor microvessels and
lymphatic vessels (Qian et al., 2009; Tang and Tsai, 2012).
MCP-1 is also a potent chemokine of TAMs, resulting in

TABLE 5 COG hierarchy and function description with related gastric mucosal microflora.

Hierarchy Function description Gastric mucosal microflora

COG0745 DNA-binding response regulator, OmpR family, contains REC and
winged-helix (wHTH) domain

Firmicutes, Romboutsia, Lactobacillus, Pseudomonas, Ralstonia, Vibrio,
Prevotella, Faecalibacterium, Bacteroides, Blautia,

Clostridium_sensu_stricto_1, etc.
COG1132 ABC-type multidrug transport system, ATPase, and permease

component

COG0642 Signal transduction histidine kinase

COG1131 ABC-type multidrug transport system, ATPase component

COG1136 ABC-type lipoprotein export system, ATPase component

COG1309 DNA-binding transcriptional regulator, AcrR family

COG0534 Na+-driven multidrug efflux pump

COG1846 DNA-binding transcriptional regulator, MarR family

COG0438 Glycosyltransferase involved in cell wall biosynthesis

COG1609 DNA-binding transcriptional regulator, LacI/PurR family

COG4974 Site-specific recombinase XerD

COG0561 Hydroxymethylpyrimidine pyrophosphatase and other HAD family
phosphatases
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tumor immune escape (Roblek et al., 2016). This study also
suggests that inflammatory factors IL-2, IL-4, IL-13, and
MCP-1 are related to the change of multiple signaling
pathways, such as viral protein interaction with cytokine and
cytokine receptors, T cell receptor signaling pathway, intestinal
immune network for lgA production, inflammatory bowel
disease, and IL-17 signaling pathway.

However, the interaction mechanism between botanical drug,
microflora, and PLGC is complex, and the number of related genes,
proteins, and signal pathways is huge. Further exploration will be
carried out with the help of related technologies in order to further
clarify the molecular network mechanism of the effective
metabolites of botanical drug, key microflora, and PLGC and
provide more references for clinical practice.

6 Conclusion

Weizhuan’an prescription can significantly improve the gastric
mucosa pathology of rats with PLGC by regulating the gastric
mucosal microflora and inflammatory factors; increasing the
species and abundance of probiotics; reducing the content of
pathogenic bacteria and IL-2, IL-4, IL-13, and MCP-1; and
regulating multiple signal pathways.
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