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Background: Hepatocellular carcinoma accounts for 80% of primary liver
cancers, is the most common primary liver malignancy. Hepatocellular
carcinoma is the third leading cause of tumor-related deaths worldwide, with
a 5-year survival rate of approximately 18%. Chemotherapy, although commonly
used for hepatocellular carcinoma treatment, is limited by systemic toxicity and
drug resistance. Improving targeted delivery of chemotherapy drugs to tumor
cells without causing systemic side effects is a current research focus. Chitosan, a
biopolymer derived from chitin, possesses good biocompatibility and
biodegradability, making it suitable for drug delivery. Enhanced chitosan
formulations retain the anti-tumor properties while improving stability.
Chitosan-based biomaterials promote hepatocellular carcinoma apoptosis,
exhibit antioxidant and anti-inflammatory effects, inhibit tumor angiogenesis,
and improve extracellular matrix remodeling for enhanced anti-tumor therapy.

Methods: We summarized published experimental papers by querying them.

Results and Conclusions: This review discusses the physicochemical properties
of chitosan, its application in hepatocellular carcinoma treatment, and the
challenges faced by chitosan-based biomaterials.
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1 Introduction

Hepatocellular carcinoma (HCC) is the predominant form of primary liver cancer,
accounting for over 80% of liver cancer cases (Valderrama-Treviño et al., 2017). HCC is
closely associated with hepatitis B, hepatitis C, alcoholic liver disease, and fatty liver disease
(Kulik and El-Serag, 2019). The incidence of HCC is higher in men, predominantly due to
higher rates of alcohol consumption (Villanueva, 2019). Globally, the incidence of HCC is
steadily increasing, projecting over 1 million new cases per year by 2025 (Rahib et al., 2014).
HCC is often asymptomatic in its early stages, leading to diagnosis at advanced stages with
limited treatment options, poor prognosis, and short survival times (Fan et al., 2023). HCC
ranks as the third leading cause of cancer-related deaths globally, with a 5-year survival rate
of approximately 18% (Siegel et al., 2022). In the United States, the average 5-year survival
rate for HCC patients is 19.6% (Chidambaranathan-Reghupaty et al., 2021).
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TABLE 1 Chitosan-enhanced antitumor therapy for hepatocellular carcinoma.

Function Name Main composition Material properties Results References

Induce apoptosis Chitosan core-shell
nanoparticles

Carboxymethyl chitosan,
lactobionic acid, glycyrrhetinic
acid and doxorubicin

The core-shell nanoparticles
have a diameter of 274 nm

Chitosan nucleoshell
nanoparticles selectively
deliver chemotherapy drugs
to liver tumors, inducing
apoptosis of tumor cells

Hefnawy et al.
(2020)

DOX- TPP-CS NPs Triphenylphosphine, chitosan,
doxorubicin

DOX-TPP-CS NPS have a
particle size of 70–110 nm

DOX-TPP-CS NPS
effectively target DOX to
liver tumor mitochondria to
induce apoptosis

Arafa et al. (2022)

DOX-Fe3O4@CGA Graphene, chitosan, doxorubicin The encapsulation efficiency
of DOX is
approximately 85%

DOX-Fe3O4@CGA shows
strong synergistic oncology
therapeutic potential

Chen et al. (2022a)

GC-TP-NPs Twtolide lactone, galactosylated
chitosan

The particle size of GC-TP-
NPs is 204.2 ± 1.2 nm

GC-TP-NPs induce
apoptosis in HCC cancer
cells by blocking TNF/NF-
κB/BCL2 signaling

Zhang et al.
(2019a)

Chitosan nanoliposomes Niacin, curcumin, chitosan The particle size of Chitosan
nanoliposomes is 96 ±
1.2 μm

Chitosan liposomes (the
chitosan liposome with
curcumin) can induce
autophagy by activating the
GPR109A/AMPK/NRF-
2 signaling pathway

Hanafy et al.
(2023)

Antioxidant CS-5FU-CeO2 NPs 5-fluorouracil, chitosan, cerium
oxide

The drug loading rate of CS-
5FU-CeO2NPs was
16.17% ± 0.55%

CS-5FU-CeO2NPs
synergistically enhance the
anticancer activity of
HepG2 cells by
regulating ROS.

Sathiyaseelan et al.
(2022)

phosphorylated
galactosylated
chitosan (PGC)

5-Fluorouracil, galactosylated
chitosan, cerium oxide

The average particle size of
PGC is 197 nm

PGC can inhibit lipid
peroxidation and
superoxide scavenging
ability and enhance
glutathione levels

U et al. (2022)

Chitosan co-encapsulation
to make cur-cumin
nanoparticles (CSCNP)

Chitosan, curcumin, 5-
fluorouracil

The average size of CSCNP
is 75.0 ± 14.62 nm

Compared to curcumin,
CSCNP has a stronger
oxidant free radical
scavenging effect

Kong et al. (2019)

Cela/GCTR PMs Celastrol, glycyrrhetinic acid
(GA) and carboxymethyl
chitosan

The particle size of Cela/
GCTR PMs is 220.17 ±
5.50 nm

Cela/GCTR PMs can target
ROS in HCC cells to achieve
antioxidant effects in vivo

Zhang et al. (2023)

SF-CS NPs chitosan, SF, tripolyphosphate The largest spherical
particles with an average
diameter of 212.4 ± 59.7 nm

SF-CS NPs could
continuously release SF for
169 h

Albalawi et al.
(2023)

Galactosylated chitosan
nanoparticles

Chitosan, gemcitabine The zeta potential values
(19–22 mV) of
galactosylated chitosan
nanoparticles

The accumulation of
galactosylated chitosan
nanoparticles in the liver is
significantly higher than
that of other organs

Nair et al. (2019)

Anti-inflammatory Chitosan-coated liposomes Butyric acid, chitosan The average chitosan
liposome size of
encapsulated BA is 126 nm

Chitosan-coated liposomes
have important anti-
inflammatory effects by
inhibiting the production of
cytokines

Quagliariello et al.
(2019)

5-FACN Chitosan, aspirin and 5-
fluororacil

The average particle size of
5-FACN is 109.2 ± 5.2 nm

5-FACN is able to reduce
COX-2 and prostaglandin
expression around tumors

Wang et al. (2020)

CMCS/SF-CLN Sorafenib, carboxymethyl
chitosan, lipids

The load ratio of CMCS/SF-
CLN to SF is 7.43% ± 0.51%

CMCS/SF-CLN reduces
TGF-β1 and IL-10 secreted
by M2-TAM and M2-TAM

Wang et al. (2019b)

(Continued on following page)
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Patients with HCC have various treatment options, including liver
transplantation, surgical resection, percutaneous ablation, radiotherapy,
chemotherapy, and targeted or systemic therapy (Vogel et al., 2022).
Surgical resection is the preferred andmost effective treatment for early-
stageHCC (Sugawara andHibi, 2021; Duong et al., 2022). However, it is
unsuitable for unresectable and metastatic HCC. Chemotherapy is
commonly used but often accompanied by systemic side effects
(Bhatt and Wu, 2023). Advanced HCC patients who cannot
undergo surgery face challenges due to tumor lesions and the
development of treatment resistance (Zhao et al., 2022a; Zhao et al.,
2022b). Conventional systemic chemotherapy lacks target selectivity,
leading to high recurrence risks, multidrug resistance, and severe side
effects. Transcatheter arterial chemoembolization (TACE) selectively
blocks tumor blood supply to induce tumor cell necrosis through
ischemia and hypoxia (Chang et al., 2021). Local delivery of
chemotherapy drugs also enhances their anti-tumor effects (Qin
et al., 2022). The combination of TACE with portal embolization or
portal chemoembolization in patients with HCC improves efficacy and
reduces recurrence rates (Shao et al., 2021). Although TACE is the
preferred method of palliative care for HCC, the choice of a
chemotherapy agent and the timing between administrations require
further study (Ando et al., 2021). For HCC that cannot be cured, a liver
transplant is the best way to restore liver function (Reichman et al.,
2019). However, the shortage of liver transplant donors, immune
rejection after liver transplantation, and prevention and treatment of
liver cancer recurrence andmetastasis after liver transplantation are still
the direction of unremitting efforts in the future (Fan et al., 2023).

In recent years, nano-delivery strategies have shown promise in
enhancing anti-tumor effects and have become a potential trend in

cancer treatment. Chitosan, a biopolymer derived from chitin, is non-
toxic and exhibits good histocompatibility and biodegradability
(Mallakuntla et al., 2021; Abourehab et al., 2022; Saran et al., 2022;
Kim et al., 2023; Matloob et al., 2023; Unal et al., 2023; El-Araby et al.,
2024). It has been extensively studied as a delivery strategy for various
tumors, including lung cancer, breast cancer, pancreatic cancer, and
HCC (Xia Y. et al., 2022; Bashir et al., 2022; Karimi et al., 2023).
Chitosan-based nanomaterials have shown significant anti-tumor
effects, leveraging their ability to selectively enter cancer cells
through the enhanced permeability and retention (EPR) effect (Xin
et al., 2017). This article provides an overview of the physicochemical
properties of chitosan. It also summarizes the anti-tumor effects of
chitosan-based nanomaterials in HCC, as highlighted in Table 1;
Scheme 1. Additionally, the challenges associated with the use of
chitosan nanomaterials in HCC treatment are discussed.

2 Physical and chemical properties
of chitosan

Chitosan is a natural polysaccharide obtained by deacetylation
of chitin (Xia Y. L. et al., 2022). When chitinin deacetylation reaches
at least 50%, it is called chitosan (Hallmann and Gerngroß, 2022).
The main component of chitosan is a mixture between N-acetyl-d-
glucosamine and β-(1,4)-linked-d-glucosamine (Satitsri and
Muanprasat, 2020). Due to its amino groups in the backbone,
chitosan often exhibits positively charged cationic copolymers.
Chitosan itself has been reported to have antitumor, antioxidant,
and wound-healing effects (Manna et al., 2023). Chitosan is soluble

TABLE 1 (Continued) Chitosan-enhanced antitumor therapy for hepatocellular carcinoma.

Function Name Main composition Material properties Results References

Inhibits tumor
angiogenesis

CAN Chitosan, polyacrylic acid and
Rutin

The diameter of CAN is
116.7 nm

CAN reduces the expression
of VEGF and inhibits tumor
vascular formation

Radwan and Ali
(2021)

TLM-LCH NPs Telmisartan, lactose-modified
chitosan

TLM-LCH NPs have a
diameter of 145.46 ± 0.7 nm

The TLM-LCH NPs group
significantly reduced the
expression levels of VEGF
and MMP-2

Nasr et al. (2023)

CMCS nanoparticles Tim-3 siRNA, SF and CMCS CMCS nanoparticles have a
diameter of 50.49 ± 5.34 nm

CMCS nanoparticles induce
a 95% reduction in tumor
vascular density

Song et al. (2022)

CMCS nanoparticles CMCS, VEGF-siRNA and SF — VEGF-siRNA can target to
lower VEGF around HCC
cells, reduce tumor vascular
production and induce early
apoptosis

Yao et al. (2019)

CS-SS-9R NPs Nonaarginine, chitosan, VEGF-
siRNA

— VEGF expression decreased
by 78.9%, tumor cell
proliferation inhibited
by 81.2%

Xu et al. (2018)

Promotes
extracellular matrix
remodeling

Chitosan-chondroitin
nanoparticles

Chitosan, chondroitin, 5-FU Chitosan-chondroitin
nanoparticles have a particle
size of 244.7 ± 16.3 nm

Chitosan-chondroitin
nanoparticles can delay the
degradation of ECM

Varshosaz et al.
(2020)

Chitosan nanoparticles Apigenin, chitosan Chitosan nanoparticles have
a particle size of 189 nm

The Apigenin released by
chitosan nanoparticles can
downregulate the
expression level of MMP-9
and delay HCC cell transfer

Mabrouk Zayed
et al. (2022)
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in organic acids but insoluble in neutral and alkaline solutions. The
solubility of chitosan depends on the amount of free amino group
and N-acetyl group (Hallmann and Gerngroß, 2022). The
physicochemical properties of CS are inversely affected by its
degree of deacetylation and molecular weight (Ardean et al.,
2021). Chitosan has active hydroxyl, amino, and linear
polyamines at positions C2, C3, and C6, and these functional
groups can be modified to confer different functions on chitosan
(Balagangadharan et al., 2017). For example, the conversion of
primary amine groups on chitosan C2 into quaternary salts is the
main mechanism for enhancing its antibacterial, antioxidant,
anticoagulant, and mucus adhesion properties (Piras et al., 2019).
Therefore, chitosan plays an important role in tissue engineering
and regenerative medicine. In tumor treatment, chitosan can target
the tumor microenvironment, increase the Enhanced permeability
and retention (EPR) effect, improve the delivery ability of anti-
tumor drugs, and reduce the off-target and abscopal effect of cancer

nano drugs (Xia Y. et al., 2022; Zaiki et al., 2023). Chitosan can also
reduce cell proliferation, eliminate tumor angiogenesis, and inhibit
HCC growth (Satitsri and Muanprasat, 2020). Chitosan-based
nanostructures can characterize the pharmacokinetics of natural
and synthetic drugs, thereby increasing the effectiveness of HCC
therapy (Karimi et al., 2023). Nanomedicine developed using
functionalized chitosan becomes a potential trend in
tumor treatment.

3 Chitosan-based materials enhance
antitumor therapy

3.1 Promote apoptosis of tumor cells

Apoptosis is triggered by a series of mitochondria dysfunction,
including the collapse of the intimal potential, swelling of the

SCHEME 1
Mechanism of action of chitosan in hepatocellular carcinoma: Chitosan-basedmaterials induce apoptosis of HCC cells by promotingmitochondrial
pathway, promote downregulation of expression of anti-inflammatory cytokines, and upregulation of expression of inflammatory cytokines, promote
ROS degradation, scavenge oxygen radicals around HCC cells. Reducing tumor angiogenesis, reduce MMP and protease expression and remodel the
tumor extracellular matrix to achieve anti-tumor effects.
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mitochondria, and increased permeability (Chipuk et al., 2006).
Mitochondria control a variety of cellular physiological processes,
including cell respiration, metabolism, signaling, differentiation,
apoptosis, and intracellular calcium levels (Smith et al., 2011).
Chitosan can induce apoptosis. The specific mechanism is that
chitosan competitively blocks the integral proteins on tumor
cells, so that the tumor loses the ability to adhere to normal
tissues, thereby inhibiting tumor metastasis, and it can also
directly enter the cell and activate the caspase-3 at the end of the
apoptosis pathway, thereby causing the degradation of structural
proteins and functional proteins, and finally disintegrating the cell
(Atmaca et al., 2024). Mitochondrial function is associated with
anabolic, unlimited multiplication and decreased apoptosis
autophagy in cancer cells (Wang et al., 2017). Doxorubicin
(DOX) is a mitotically active cyto-toxic agent that binds
specifically to phospholipid cardiolipin and could accumulate
mitochondria. Studies have shown that DOX-mediated
membrane perturbation can inhibit mitochondrial membrane
potential disruption of complex I and II disordered electron

transport chains, thereby affecting cellular energy transfer (Gorini
et al., 2018). Lactobionic (LA) has HCC cell targeting by binding to
Asiatica protein (ASGP) receptors that are overexpressed on the
HCC cell surface (Zhang et al., 2011). The grafting of LA and
chitosan can enhance the HCC cell targeting ability of chitosan.
Hefnawy et al. used carboxymethyl chitosan to complexe poly-
acrylate, and glycyrrhetinic acid (GA) and LA grafted onto the
complex to make a two-ligand nanoshell structure for the delivery of
DOX (Figure 1) (Hefnawy et al., 2020). GA and LA double ligands
enhance the HCC cell targeting ability of core-shell nanoparticles,
and precisely release DOX into tumor cells to achieve their anti-
tumor effects (Li et al., 2019). Studies have shown that nanoparticles
larger than 150 nm are able to maximize the benefit of EPR effects in
HCC cells (Torchilin, 2011). The core-shell nanoparticles have a
diameter of 274 nm and are capable of loading DOX for more than
10 days. The ability of HCC cells to phagocytose DOX is greatly
improved, and the significantly increased apoptotic genes are
caspase 3, p53, and Bax. Triphenylphosphine (TPP) is one of the
polymers commonly used to target mitochondria, and TPP has a

FIGURE 1
Carboxymethyl chitosan to complexe polyacrylate, and glycyrrhetinic acid (GA) and LA grafted onto the complex to make a two-ligand nanoshell
structure for the delivery of DOX. After intravenous injection of nanoparticles, it can actively target liver cancer cells to achieve anti-tumor effects.
Reproduced with permission from (Hefnawy et al., 2020).
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unique structure composed of lipophilic phenyl groups and
phosphine cations, which allows it to be deposited in
mitochondria (Mossalam et al., 2010). Arisifa et al. grafted TPP
with chitosan to deliver DOX to make DOX-TPP-CS NPS for the
treatment of HCC (Arafa et al., 2022). The particle size of DOX-
TPP-CS NPS is 70–110 nm, and the spherical and positive surface
charge structure of DOX-TPP-CS NPTs enhances mitochondrial
uptake. DOX-TPP-CS NPS continuously releases DOX at 168 h and
reduces systemic toxicity. The co-incubation of DOX-TPP-CS NPS
with HCC cells for 48 h compared with the blank control group
promoted the programmed death of HCC cells by 7.86 times higher
than that of the control group.

Coated magnetic Fe3O4 can absorb more drug molecules,
increasing the dispersion and stability of chitosan nanoparticles
(He et al., 2010). Coated chitosan nanoparticles can enhance the
drug loading rate of chitosan nanoparticles, making chitosan
nanoparticles a good choice for nano drug loading (Jędrzak et al.,
2020). Chen L. et al. (2022) used Fe3O4-coated chitosan, DOX was
loaded into CS by the aldehyde group, and GQD was prepared into
DOX-Fe3O4@CGA on the surface of magnetic CS by amide bonds.
The encapsulation efficiency of DOX is about 85%, and the loading
efficiency is about 12% on average. The DOX-Fe3O4@CGA is
injected into tumor-bearing mice and collected at the tumor site
for 6 h to treat the tumor more effectively. TwHFOLIDE (TP) is the
main component of Chinese herbal medicine and has anti-
inflammatory and antitumor effects (Gali-Muhtasib et al., 2015).
TP has been shown to have anti-tumor effects in hematologic
tumors, lung cancer, liver cancer (Zhao et al., 2020; Gao et al.,
2021). TP limits its clinical application due to its high toxicity and
low water solubility. Galactosylated chitosan also has the ability to
target HCC cells, binding to TP to deliver TP to tumor cells (Yu
et al., 2014). Zhang Y-Q. et al. (2019) combined galactosylated
chitosan with TP to make GC-TP-NPTs to enhance the targeting of
HCC cells. The particle size of GC-TP-NPs was 204.2 ± 1.2 nm, GC-
TP-NPs released about 70% TP within 2 h, and GC-TP-NPs released
nearly 80.0% TP after 24 h of incubation. The precise targeting
of GC-TP-NPs not only reduced hepatic and renal toxicity but
also induced apoptosis of HCC cells through TNF/NF-κB/
BCL2 signaling. Niacin can increase the NAD+/NADH ratio in
the body and promote autophagy in tumor cells by inducing NAD+/
NADH balance (Song et al., 2013). Hanafy et al. (2023) developed
chitosan liposomes loaded with niacin and curcumin to achieve
autophagy in HCC cells. The diameter of the nanoliposomes is 96 ±
1.2 μm. In vivo, chitosan liposomes can induce autophagy by
activating the GPR109A/AMPK/NRF-2 signaling pathway.
Sorafenib (SF) is an oral multi-kinase inhibitor with significant
anticancer effects through antiproliferative, antiangiogenic and pro-
apoptotic mechanisms (Juaid et al., 2021). Fahad Albalawi et al.
fabricated chitosan nanoparticles (SF-CS NPs) for SF delivery using
CS and sodium tripolyphosphate (TPP) (Albalawi et al., 2023). At
the lowest concentration of TPP of 2.5 mg/mL, SF-CS NPs showed
the largest spherical particles with an average diameter of 212.4 ±
59.7 nm. In vitro experiments confirmed that SF-CS NPs could
continuously release SF for 169 h. Gemcitabine is a pyrimidine
nucleoside antimetabolite that is effective in the treatment of HCC in
combination with other anticancer drugs, including sorafenib,
oxaliplatin, carboplatin, and bevacizumab (Fan et al., 2023).
However, adverse effects associated with gemcitabine and

myelosuppression and pulmonary toxicity remain a problem (Chi
et al., 2012). Nair et al. (2019) designed galactosylated chitosan
nanoparticles for delivery of gemcitabine to reduce its toxic side
effects. The zeta potential values (19–22 mV) of galactosylated
chitosan nanoparticles increase modest rejection and electrostatic
stabilization between galactosylated chitosan nanoparticles to
provide stability. In vivo experiments have proved that
galactosylated chitosan nanoparticles can release about 85% of
gemcitabine within 24 h, and the drug distribution in vivo has
proved that the accumulation of galactosylated chitosan
nanoparticles in the liver is significantly higher than that of other
organs, reducing the adverse reactions in the whole body. The study
of chitosan-based nanomaterials to promote apoptosis in HCC cells
has been widely confirmed (Priya et al., 2020).

3.2 Antioxidant

After mitochondrial dysfunction, tumor cells are in a hypoxic
state. Long-term hypoxia leads to enhanced glycolytic pathways,
enhanced hypoxia-inducible factor (HIF-1α), and the production of
Reactive oxygen species (ROS) (Zhang W. et al., 2019). The
imbalance between ROS and antioxidants in the body is one of
the factors that promote the proliferation of tumor cells (Snezhkina
et al., 2019). Mitochondria are the main organs for ROS production,
and most anti-cancer drugs alter excess ROS production in cancer
cells, thereby activating mitochondrial intrinsic pathways, releasing
pro-apoptotic factors, and leading to apoptosis (Perillo et al., 2020).
Cerium oxide (CeO2) exerts antioxidant activity by removing ROS
from the body (Siposova et al., 2022). Sathiyaseelan et al. (2022) used
CeO2 modified 5-fluorouracil (5FU)-loaded chitosan nanoparticles
to make CS-5FU-CeO2NPs for HCC cell therapy. 5FU binds to
chitosan through hydrogen bonding and intermolecular force,
which greatly increases the drug loading rate of CS-5FU-
CeO2NPs (16.17% ± 0.55%). In vitro experiments, CS-5FU-
CeO2NPs released 21.88% of 5-FU within 8 h and sustained
release within 6 months. Compared with CeO2NPs, CS-5FU-
CeO2NPs greatly improved the scavenging capacity of free
radicals and promoted HCC apoptosis (apoptotic cell mortality
was 26.04%). Although mitochondria are the main site of ROS
production, CS-5FU-CeO2NPs clearance of ROS does not cause
damage to cellular structures (nuclear andmitochondrial membrane
potentials). This also makes CS-5FU-CeO2NPs have good
biocompatibility and low toxicity. Scavenging of oxidative free
radicals in the body can promote apoptosis of tumor cells.
Targeted induction of ROS production also induces apoptosis in
tumor cells. Chitosan nanoparticles can induce increased ROS
production, leading to ROS-induced activation of mitochondrial
disease and endoplasmic reticulum stress (Jiang et al., 2019).
Anushree et al. developed phosphorylated galactosylated chitosan
(PGC) for antioxidant use in HCC cells (U et al., 2022). The average
particle size of PGC is 197 nm, and PGC has a high affinity with
ASGPR on the surface of HCC cells, which can enhance the HCC
cell targeting ability of PGC (Zhu et al., 2022). In vivo experiments
have confirmed that PGC can inhibit lipid peroxidation and
superoxide scavenging ability and enhance glutathione levels
compared with chitosan. PGC exhibits stronger anti-tumor
effects than chitosan.
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Curcumin is a polyphenolic compound whose clinical effects
have been widely proven, including anti-inflammatory, antioxidant,
antitumor, antiviral, antibacterial and analgesic effects (Hewlings
and Kalman, 2017). Studies have shown that curcumin’s anti-
inflammatory properties are achieved by blocking IκBα
phosphorylation and degradation (Wilken et al., 2011). In
addition to this, curcumin scavenges superoxide, nitric oxide, and
hydrogen peroxide free radicals and reduces inflammation by
lowering histamine levels (Alok et al., 2015). Due to low water
solubility, low bioavailability, chemical instability, rapid metabolism
in the gastrointestinal tract, and other factors, the clinical
application of curcumin is limited. Kong et al. (2019) used silica
encapsulation curcumin nanoparticles (SCNP) and chitosan co-
encapsulation to make cur-cumin nanoparticles (CSCNP). The
average size of CSCNP is 75.0 ± 14.62 nm and capable of
loading 28.9% curcumin. In vitro experiments have confirmed
that CSCNP does not affect the physiological activity of normal
cells. Compared to curcumin, CSCNP has a stronger oxidant free
radical scavenging effect. Celastrol is a natural proteasome inhibitor
extracted from Chinese herbal medicine, according to a wide range
of antitumor effects (Wang et al., 2019). However, the low solubility,
low bioavailability and systemic toxicity of Celastrol hinder its
clinical application (Chen et al., 2022). Zhang et al. (2023) used
glycyrrhetinic acid (GA) and carboxymethylchitosan (CMCS) to
make polymer micelles Cela/GCTR PMs for the delivery of
Celastrol. HCC cells showed high expression of GA receptors,
and GC-made Cela/GCTR PMs have good HCC cell targeting,
thereby increasing HCC cell accumulation in Celastrol. The
particle size of Cela/GCTR PMs is 220.17 ± 5.50 nm. Cela/GCTR
PMs release Celastrol continuously, with a cumulative release rate
of >12% at 70 h. Studies have shown that Cela/GCTR PMs can target
ROS in HCC cells to achieve antioxidant effects in vivo. Compared
with Celastrol, Cela/GCTR PMs showed good proliferation
inhibition in hepatoma cells. Not only that, Cela/GCTR PMs
have a stronger tumor suppression rate. This shows that Cela/
GCTR PMs have great potential as an anti-liver cancer drug
delivery system.

3.3 Anti-inflammatory

Inflammation is one of the important features of tumor-
contributing markers and plays an important role in
tumorigenesis (Hanahan, 2022). Inflammation can regulate and
induce cell polarization in the tumor microenvironment and
induce the development of tumor cell drug resistance (Denk and
Greten, 2022; Kennel et al., 2023). Factors released by inflammatory
cells (transforming growth factor (TGF)-β, tumor necrosis factor
(TNF)-α, and interleukin (IL)-6) stimulate tumor cell survival and
proliferation through nuclear factor (NF)-κB and signal
transductors and transcriptional activators (STAT) 3 (Greten and
Grivennikov, 2019; Kruse et al., 2023). M2-macrophages, fibroblasts,
and myeloid-derived suppressor cells can induce
immunosuppressive blocker antitumor effects of T cells (Kuo
et al., 2022). Extended activation of the IL-6/IL-6-R signaling
pathway is critical in the occurrence and progression of HCC
(Hatting et al., 2015). Therefore, reducing the inflammatory
response in the tumor microenvironment has a degree of

antitumor effect. Butyric acid (BA) reduces the production of
cytokines (IL-6, IL-8, TNF-α, and TGF-β) to achieve anti-
inflammatory effects in HCC (Meijer et al., 2010). In addition,
BA shows anticancer properties against HCC cells mainly based on
its histone deacetylase (HDAC) inhibitory activity (Coradini and
Speranza, 2005). However, the low bioavailability of BA and poor
intestinal absorption after oral administration limit its clinical use
(Clemente et al., 2012). Quagliariello et al. (2019) prepared chitosan
liposomes, which were legally loaded with BA by membrane water
for BA delivery. The chitosan liposomes that encapsulate BA have an
average size of 126 nm and can continuously release BA around
tumor cells. Chitosan liposomes that encapsulate BA have good
cytocompatibility and do not cause toxicity to normal cells. In vitro,
experimental results showed that chitosan liposomes encapsulated
BA could reduce the production of IL-8, IL-6, TGF-β, and TNF-α to
achieve anti-inflammatory effects.

Aspirin is a commonly used nonsteroidal anti-inflammatory
drug in clinical practice, and the most well-known biological target
of aspirin is cyclooxygenase 2 (COX-2) (Menter and Bresalier,
2023). COX-2 is highly expressed in HCC to convert arachidonic
acid to prostaglandins, thereby helping to promote HCC cell
proliferation and inhibit apoptosis (Kern et al., 2004). Aspirin
inhibits cell migration and induces apoptosis in human HCC
cells by inhibiting the activation of the NF-κB pathway,
downregulating COX-2 levels (Dong et al., 2014). A meta-
analysis by Zeng et al. (2023) has confirmed that aspirin use is
associated with a reduced risk of hepatocellular carcinoma. Wang
et al. (2020) developed a chitosan nanoparticle for the delivery of
aspirin and 5-fluororacil (5-FACN). The average particle size of 5-
FACN is 109.2 ± 5.2 nm. The encapsulation efficiency of 5-FACN
for 5-Fu and aspirin was 88.6% and 91.0%, respectively. 5-FACN can
continuously release 5-Fu and aspirin around tumor cells. Studies
have shown that 5-FACN is able to reduce COX-2 and prostaglandin
expression around tumors. Macrophages are involved in all stages of
tumor progression and are associated with poor prognosis and
chemotherapy resistance (Bohn et al., 2018). Tumor-associated
macrophages (TAMs) are mainly divided into anti-tumor M1-
TAM and protumor M2-TAM (Sica et al., 2008). In tumor
progression, the pro-tumor function of TAM is caused by NF-κB
activation (Li et al., 2017). It has been reported that NF-κB can
promote the polarization of TAM from M1 to M2, and inhibiting
NF-κB activation can enhance the ratio of M1/M2 (Taniguchi and
Karin, 2018). Fan et al. (2021) designed chitosan nanopole capsules
for the delivery of cisplatin, named PC-CP. PC-CP can cause less
fibroblast response and less macrophage response in the tumor
microenvironment.

Wang T. et al. (2019) prepared cationic lipid-based
nanoparticles (SF-CLN) loaded with SF, and coated CMCS in SF-
CLN to prepare CMCS/SF-CLN for targeting HCC cells. The load
ratio of CMCS/SF-CLN to SF is 7.43% ± 0.51%. CMCS with a
negative charge can make CMCS/SF-CLN repel from normal cell
membranes and reduce the cytotoxicity of CMCS/SF-CLN. In HCC
cells, CMCS/SF-CLN has charge-inversion properties and can adapt
to the acidic environment of tumor cells and aggregate in large
quantities. In vivo, experiments confirmed that CMCS/SF-CLN has
a good ability to target HCC and reduce TGF-β1 and IL-10 secreted
byM2-TAM andM2-TAM. Compared with SF, CMCS/SF-CLN has
better anti-inflammatory and anti-tumor effects.
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3.4 Inhibits tumor angiogenesis

Tumor angiogenesis plays an important role in the growth and
metastasis of tumor cells (Park et al., 2007). Tumor blood vessels
provide nutrients and oxygen to tumor cells and carry away
metabolic waste products produced by tumor cell metabolism
(Miura et al., 2010). The formation of new blood vessels is the
result of the intermodulation of proangiogenic compounds such as
vascular endothelial growth factor (VEGF), transforming growth
factor-β (TGF-β), basic fibroblast growth factor (bFGF), matrix
metalloproteinases (MMP), platelet-derived growth factor
(PDGF), and antiangiogenic factors such as tissue inhibitors of
angiostatin, endostatin, and metalloproteinases (Zhou et al.,
2022). Inhibition of tumor angiogenesis inhibits tumor cell
proliferation. CMCS has been shown to inhibit tumor
angiogenesis and downregulate levels of VEGF and TIMP-1,
inhibitors of MMP (Jiang et al., 2015). Rutin has antioxidant,
anti-inflammatory, antithrombotic and cytoprotective activities
(Ma et al., 2018). However, Rutin’s poor water solubility and low
bioavailability limit its clinical use. Radwan and Ali (2021) used
chitosan and poly (acrylic) to make nano gels (CANs) for the
delivery of Rutin. CAN has a diameter of 116.7 nm and is
connected to Rutin by hydrogen bonding. CAN release Rutin
around HCC cells, upsetting the balance of angiogenesis and
disruption. Compared to Rutin, CAN reduced the expression of
VEGF and inhibited tumor vascular formation. Not only that, CAN
also reduces the proliferation of HCC cells and promotes
HCC apoptosis.

Telmisartan (TLM) alleviates malignant cell proliferation by
activating peroxisome proliferator-activated receptor γ (Li et al.,
2014). Nasr et al. (2023) designed lactose-modified chitosan

nanoparticles to deliver TLM (TLM-LCH NPTs) to enhance
the uptake of TLM by HCC cells (Figure 2 (1, 2)). TLM-LCH
NPs have a diameter of 145.46 ± 0.7 nm. Studies have confirmed
that lactose-modified chitosan nanoparticles actively target
ASGPR and enhance the up-take of nanoparticles by HCC
cells. TLM-LCH NPs released TLM aggregates in HCC cells at
a content 232.92 times higher than that of TLM alone. Compared
with the common TLM group, the TLM-LCH NPTs group
significantly reduced the expression levels of VEGF and MMP-
2. Not only that, TLM-LCH NPs also reduce inflammation
around tumor cells and reduce the expression level of alpha-
fetoprotein. T cell immunoglobulin mucin-3 (Tim-3) is a
promising immune checkpoint molecule for HCC therapy
(Romero, 2016). Inhibition of Tim-3 expression may be a
novel therapeutic strategy for HCC. Song et al. (2022) grafted
Tim-3 siRNA and SF to CMCS nanoparticles by a single
emulsification method. Tim-3 siRNA can target and inhibit
Tim-3 expression in HCC cells. The diameter of the
nanoparticles is 50.49 ± 5.34 nm, and 90% of SF can be
released in vivo for 40 h. In vivo experiments have shown that
CMCS nanoparticles induce a 95% reduction in tumor vascular
density and enhance the recruitment of cytotoxic T cells to kill
tumor cells. In another study, Yao et al. (2019) used CMCS
nanoparticles to deliver VEGF-siRNA and SF. VEGF-siRNA can
target lower VEGF around HCC cells, reduce tumor vascular
production, and induce early apoptosis. Xu et al. (2018) grafted
nonaarginine (9R) onto chitosan (CS) and constructed a positively
charged kernel (CS-SS-9R) for delivery of VEGF-siRNA. In vivo
experiments confirmed that siVEGF was rapidly released into the
cytoplasm, resulting in a 78.9% decrease in VEGF expression and
81.2% inhibition of tumor cell proliferation.

FIGURE 2
Lactose-modified chitosan nanoparticles (LCH NPs) were used as a delivery system for the delivery of telmisartan. After intravenous injection of
nanoparticles, the nanoparticles can enhance the targeting effect on the liver, release telmisartan, and enhance its anti-tumor effect. Reproduced with
permission from (Nasr et al., 2023).
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3.5 Extracellular matrix remodeling

The extracellular matrix (ECM) is composed of proteins,
glycoproteins, and polysaccharides and is an important
component of the tumor microenvironment (TME) (Lu et al.,
2012). The ECM is a dynamically changing system that provides
nutrients to the tumor cell parenchyma and regulates tumor cell
growth and metabolism (Bissell and Hines, 2011). ECM is an

important factor for tumor cells to escape attack by the immune
system (Roy et al., 2023). Chronic inflammation and dysregulation
of ECM remodeling work together to contribute to an
immunosuppressive environment, which in turn promotes HCC
proliferation, invasion, and metastasis (Chen et al., 2023). In
addition, ECM, which also has a large number of
immunosuppressive cells (regulatory T cells, myeloid-derived
suppressor cells, tumor-associated fibroblasts, etc.) and cytokines

FIGURE 3
5-FU and Nitroxoline (NIT) were loaded in chitosan-chondroitin nanoparticles. To target the CD44 receptors of HepG2 cells, Hyaluronic Acid (HA)
was conjugated to the chondroitin by adipic acid dihydrazide and the conjugationwas confirmed by FTIR and 1HNMR. Target nanoparticles co-delivery of
5-FU and NIT to enhance the 5-FU cytotoxic effects and reduce the metastatic properties of HepG2 cells. Reproduced with permission from (Varshosaz
et al., 2020).

Frontiers in Pharmacology frontiersin.org09

Wang et al. 10.3389/fphar.2024.1446030

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1446030


(TGF-β, VEGF, or IL-10), promotes tumor cells to escape attack by
the immune system (Chiang et al., 2008). Studies have shown that
HCC cells are able to cause abnormal ECM deposition through the
WNT/TGFB signaling pathway, leading to intratumor fibrosis
(Desert et al., 2023). Liu et al. (2023) confirmed that HCC cells
participate in the regulation of ECM through the PI3K/AKT
signaling pathway, which leads to tumor cell proliferation,
migration, and invasion. Xu et al. (2022) confirmed that MMP in
ECM is associated with poor prognosis of HCC. Therefore,
regulatory ECM remodeling is a potential clinical mechanism for
the treatment of HCC.

Delaying the degradation of host proteins in ECM has
advantages in inhibiting tumor cell proliferation (Lu et al.,
2012). Nitrotrixine (NIT) is a potent inhibitor of cathepsin B
that impairs tumor progression by reducing extracellular matrix
degradation (Spottiswoode et al., 2023). Varshosaz et al. (2020)
loaded 5-FU and NIT in chitosan-chondroitin nanoparticles
(Figure 3 (1–4)). Chondroitin binds to hyaluronic acid in ECM
to enhance the targeting of HCC cells by nanoparticles. The
particle size of chitosan-chondroitin nanoparticles is 244.7 ±
16.3 nm, the loading rate of 5-FU is 3.5% ± 0.5%, and the
loading rate of NIT is 75.1% ± 0.9%. Chitosan-chondroitin
nanoparticles can continuously release the carrier, releasing
about 6.0% ± 9.5% of 5-FU and 62.9% ± 0.7% of NIT at 8 h. In
vivo experiments have shown that chitosan-chondroitin
nanoparticles can delay the degradation of ECM and reduce the
proliferation and migration of HCC cells compared with NIT.
MMP9 plays an important role in proteolysis, membrane peptide
degradation, and extracellular protein denaturation of
extracellular matrices. This protein denaturation promotes
cancer cell proliferation, which promotes metastasis (Deryugina
and Quigley, 2006). Zayed et al. developed chitosan nanoparticles
for the delivery of Apigenin (Mabrouk Zayed et al., 2022).
Apigenin has powerful anticancer, anti-inflammatory and
antioxidant activities (Yan et al., 2017). Chitosan nanoparticles
have a particle size of 189 nm and are capable of continuous release
of Apigenin in vitro, with a 40-h drug release rate of 24%. The
Apigenin released by chitosan nanoparticles can downregulate the
expression level of MMP-9 and delay HCC cell transfer.

4 Challenges for chitosan-
based materials

Although chitosan-based biomaterials have achieved
excellent results in tumor delivery, the clinical application of
chitosan-based materials also presents certain challenges (Patel
and Goyal, 2017). Chitosan and chitin are almost inseparable,
and chitin, when the deacetylation of chitin reaches at least 50%,
is called chitosan (Hallmann and Gerngroß, 2022). Chitin
has more protein components than chitosan and therefore
has a stronger ability to activate the immune system
(Thambiliyagodage et al., 2023). However, too much protein
makes chitosan enhance anti-tumor by inducing activation of
the immune system, but also causes allergic symptoms in some
patients (Taokaew and Kriangkrai, 2023). The purification of
chitosan mainly includes strong acid, strong base and enzymatic
degradation (Harish Prashanth and Tharanathan, 2007; Islam

et al., 2022). Enzymatic degradation is extremely expensive, and
large-scale production of high-purity chitosan is still a problem
to be solved (Herdiana et al., 2023). Secondly, the biggest
challenge of chitosan is its low solubility and poor mechanical
properties (Szymańska and Winnicka, 2015). Chitosan is
incompatible with hydrophobic chemotherapy drugs and,
therefore, has limitations in chemotherapy drug delivery
(Herdiana et al., 2023). This necessitates the modification of
chitosan materials (Huang et al., 2023). Stability is another
challenge affecting chitosan applications. There are significant
differences in the effects of molecular weight, degree of
acetylation, and purity level of chitosan materials on the
stability of chitosan-based materials (Szymańska and
Winnicka, 2015). Negatively charged components (gelatin,
hyaluronic acid, alginate, etc.) are often crosslinked with
chitosan to improve their stability (Hamman, 2010).
Therefore, more preclinical studies are needed to improve the
stability of chitosan-based materials.

5 Conclusion and outlook

Biomaterials drug delivery strategies to improve anti-tumor
therapy have become a research hotspot in recent years. As a type
of natural polysaccharide, chitosan has been shown to have
antitumor activity due to its biological histocompatibility, low
toxicity and positive charge. However, the anti-tumor properties
of chitosan are not as significant as one might expect. Due to
unfavorable factors such as low solubility, poor mechanical
properties, low yield, and poor stability of chitosan, its clinical
application is limited. There is an urgent clinical need for a
bioactive material with low toxicity, target specificity and
excellent drug delivery properties. To this end, a variety of
improved chitosan-based biomaterials have been designed for
anti-tumor therapy in preclinical studies. Studies have
confirmed that chitosan-based biomaterials can promote
mitochondria-induced apoptosis, promote tumor cell
antioxidants, and reduce the production of IL-8, IL-6, TGF-β,
and TNF-α to achieve anti-inflammatory effects. In addition,
chitosan-based materials can enhance anti-tumor therapy by
inhibiting the expression of VEGF to reduce tumor
angiogenesis and promote extracellular matrix remodeling.
However, the treatment of HCC by chitosan-based biomaterials
is still only in preclinical studies and has not been reported
clinically. Therefore, future research should focus on addressing
the above difficulties to realize the full potential of chitosan-based
biomaterials.
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