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Sarcoidosis, an enigmatic disease with unknown etiology, is characterized by
inflammation and the potential involvement of various organs, predominantly the
lungs and intrathoracic lymph nodes. Non-caseating granulomas can resolve
spontaneously in approximately 60% of cases within 2–3 years. However,
sarcoidosis-related mortality has increased. Lung fibrosis, affecting up to 20%
of sarcoidosis patients, stands out as a primary cause of mortality. Traditionally,
fibrosis is viewed because of prolonged inflammation, necessitating anti-
inflammatory treatment with systemic steroids, immunosuppressants, and
anti-TNF agents to manage the disease. The recent introduction of antifibrotic
drugs such as nintedanib and pirfenidone offers new avenues for treating fibrotic
sarcoidosis. Nintedanib, effective in idiopathic pulmonary fibrosis (IPF) and
systemic sclerosis-related interstitial lung disease (SSc-ILD), has shown
promise in patients with various progressive fibrosing interstitial lung diseases
(PF-ILD), including those with sarcoidosis. Pirfenidone, also effective in IPF, has
demonstrated potential in managing fibrotic sarcoidosis, though results have
been inconclusive due to limited participant numbers in studies. This review
explores the theoretical and empirical evidence supporting the use of antifibrotics
in sarcoidosis, weighing the benefits and drawbacks. While antifibrotics offer a
potential therapeutic approach, further randomized controlled trials are essential
to determine their efficacy in fibrotic sarcoidosis. Addressing fibrosis as a
continuum of chronic inflammation, the role of antifibrotics in managing
sarcoidosis remains an area requiring more in-depth research to improve
patient outcomes and advance treatment paradigms.
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Highlights

• Disease Overview: Sarcoidosis is characterized by inflammation and granuloma
formation in various organs, predominantly the lungs and intrathoracic lymph
nodes, with a generally favorable prognosis as granulomas resolve spontaneously in
60% of cases within 2–3 years.

• Mortality and Risk Factors: Recent data show increased sarcoidosis-related mortality,
especially among non-Hispanic black females aged 55 and older, challenging the
previous perception of the disease as benign. Lung fibrosis, affecting up to 20% of
patients, is a major cause of mortality, necessitating timely recognition and
management.

• Traditional Treatments: Anti-inflammatory drugs, including systemic steroids,
immunosuppressants, and anti-TNF agents, are the cornerstone of sarcoidosis
treatment, targeting inflammation to prevent fibrosis. Treatment is indicated for
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significant symptomatic disease, progressive lung changes,
critical organ involvement, and severe manifestations.

• Emergence of Antifibrotics: Nintedanib and pirfenidone,
effective in other fibrotic lung diseases, offer new avenues
for treating fibrotic sarcoidosis. Nintedanib has shown
promise in progressive fibrosing ILDs, including sarcoidosis,
but more randomized controlled trials (RCTs) are needed to
confirm its efficacy.

• Pathogenesis and Future Research: Sarcoidosis shares
pathophysiological characteristics with idiopathic pulmonary
fibrosis (IPF) and other fibrotic diseases. The role of
antifibrotics in sarcoidosis, particularly their impact on
granuloma formation and inflammation, requires further
investigation through RCTs to improve patient outcomes
and advance treatment paradigms.

Introduction

Sarcoidosis is an enigmatic disease with an unknown etiology,
characterized by inflammation and the potential involvement of
various organs within the body. In more than 90% of patients, non-
caseating granulomas develop in intrathoracic lymph nodes and
lungs. Fortunately, the overall prognosis is favorable; spontaneous
healing of granulomas occurs in approximately 60% of affected
individuals within 2–3 years. This often results in the complete
resolution of lung radiological changes or the presence of only minor
residual lesions. Deaths attributable to sarcoidosis are rare, and
historically, the condition has been perceived as not limiting
lifespan. However, recent data from the United States of America
reveal a significant increase in sarcoidosis-related mortality rates
between 1988 and 2007. This trend is particularly pronounced
among non-Hispanic black females aged 55 years or older. This
shift challenges previous perceptions of the disease as benign,
prompting a need for further research and understanding of the
factors contributing to this observed increase in mortality rates
(Swigris et al., 2011). Specific risk factors included lung fibrosis with
pulmonary hypertension and cardiac sarcoidosis (Casipit et al.,
2023). Similar trends have been reported from other regions of
the world (Harada et al., 2022; Ma et al., 2022).

Extensive lung fibrosis stands out as a primary cause of mortality
in sarcoidosis, affecting up to 20% of individuals with lung
involvement. This severe fibrotic transformation of lung tissue
poses a significant threat to the overall health and prognosis of
patients with sarcoidosis. Timely recognition and management of
such cases are essential for optimizing patient care and outcomes
(Patterson and Strek, 2013). Following a traditional perspective,
fibrosis is viewed as a continuum or a consequence of a prolonged
inflammatory process. This process results in an exaggerated and
uncontrolled collagen deposition, gradually replacing granulomas.
This understanding underscores the importance of addressing and
managing the underlying inflammatory mechanisms to potentially
mitigate or prevent the development of extensive fibrosis in
individuals with sarcoidosis.

Anti-inflammatory drugs constitute the cornerstone of
sarcoidosis treatment. The three primary lines of
therapy—systemic steroids, conventional immunosuppressive
drugs, and anti-TNF agents—are integral in reducing

inflammation, limiting granuloma volume, and preventing fibrosis
development. These therapeutic approaches aim to modulate the
immune response and manage the inflammatory cascade,
ultimately improving clinical outcomes for individuals with
sarcoidosis (Baughman et al., 2021a). Indications for treatment are
primarily reserved for cases characterized by significant symptomatic
disease, causing a notable impairment in the quality of life. Treatment
is also warranted in situations involving considerable progression of
lung changes, critical internal organ involvement (such as cardiac
sarcoidosis and neurosarcoidosis), severe eye manifestations, and the
presence of extensive and cosmetically significant skin lesions. These
criteria help guide healthcare professionals in determining therapeutic
interventions, ensuring that treatment is targeted toward managing
themost impactful aspects of sarcoidosis on an individual’s health and
wellbeing (Baughman et al., 2021a). The patient’s perspective should
always be given due consideration in the decision-making process.
This approach aligns with the principles of shared decision-making,
where healthcare providers work collaboratively with patients tomake
decisions informed by medical expertise and the individual’s unique
circumstances and preferences.

A recent addition to the spectrum of treatment options is the
emergence of nintedanib, an antifibrotic drug, following the
publication of results from the INBUILD study. This study
substantiates the efficacy of nintedanib in patients diagnosed with
progressively fibrosing interstitial lung disease (PF-ILD) (Flaherty
et al., 2019). Indeed, nintedanib has been previously employed in the
treatment of idiopathic pulmonary fibrosis (IPF), demonstrating its
efficacy in slowing disease progression. Notably, it has more recently
gained approval for the treatment of systemic sclerosis-related
interstitial lung disease (SSc-ILD). This approval is grounded in
the positive outcomes observed in several well-designed
randomized clinical trials, further expanding the therapeutic
applications of nintedanib in the realm of interstitial lung diseases.
Such advancements signify the ongoing efforts to identify effective
treatments for a broader spectrum of fibrotic lung conditions,
contributing to improved patient care and outcomes (Distler et al.,
2019; Richeldi et al., 2014). The INBUILD study encompassed a
diverse population of patients experiencing a range of progressively
fibrosing interstitial lung diseases (ILD). This included conditions
such as hypersensitivity pneumonitis (HP), autoimmune-related ILD,
unclassified ILD, and pneumoconiosis. Notably, individuals with
sarcoidosis who met the criteria for the progressive fibrosing
phenotype were also included in the study. It is worth mentioning,
however, that the number of participants with sarcoidosis in the study
was limited. This diversity in the patient population helps broaden our
understanding of the potential applications of nintedanib in various
fibrotic ILDs, although the specific impact on sarcoidosis may require
further investigation and additional research.

Pirfenidone, another antifibrotic agent, has demonstrated
efficacy in the treatment of idiopathic pulmonary fibrosis (IPF)
(King et al., 2014) and has also been investigated in the context of
unclassifiable progressively fibrosing ILD (Maher et al., 2020).While
a study on the latter did not meet its primary endpoint, as defined by
the change in forced vital capacity (FVC) measured by telemetry, a
significant improvement in FVC measured on-site was observed.
This suggests the potential efficacy of pirfenidone in this specific
indication. In the PIRFS study, pirfenidone or placebo was
introduced to patients with fibrotic sarcoidosis, but the results
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were inconclusive due to a low number of participants (Baughman
et al., 2021b).

This narrative review aims to provide a comprehensive
examination of the theoretical background and existing evidence
surrounding the consideration of antifibrotic agents, such as
pirfenidone and nintedanib, in the management of progressive
fibrosing pulmonary sarcoidosis. By weighing the pros and cons,
the review seeks to contribute to understanding whether
antifibrotics should be incorporated into the therapeutic
approach for progressive fibrosing pulmonary sarcoidosis.

Pathogenesis of sarcoidosis

Sarcoid antigens

Due to the activation of both the innate and adaptive immune
responses, it is plausible that certain antigens play a pivotal role in
the pathophysiology of granuloma formation and inflammation in
sarcoidosis. These antigens can be broadly categorized into two
groups: inorganic and organic. Inorganic antigens, such as silicates,
dusts, and metal fumes, have been implicated in sarcoidosis
pathogenesis. Notably, studies on construction workers with
occupational exposure to silica reported a higher risk of
sarcoidosis in two Swedish cohort studies (Vihlborg et al., 2017;
Jonsson et al., 2019). Following the collapse of the World Trade
Center (WTC) in 2001, individuals exposed to dust from destroyed
construction and furnishing materials containing components like
calcite, gypsum, bassanite, and silica, exhibited an increased
incidence of sarcoidosis, particularly among NYC firefighters
actively engaged during the WTC emergency response (McGee
et al., 2003; Izbicki et al., 2007). Lymphocyte proliferation tests in
metal dust and fumes exposure cases have demonstrated an elevated
risk of sarcoidosis (Fireman et al., 2016; Beijer et al., 2020).

Among organic factors, the potential involvement of
Mycobacterium tuberculosis and Cutibacterium acnes is
noteworthy. The Kveim test, involving the intradermal injection of
sarcoid lymphoid tissue, resulted in cutaneous granuloma formation
after 4–6 weeks, suggesting a potential link to an infectious agent.
Exposures to microbial heat shock proteins (HSPs), particularly
mycobacterial HSPs with similarities to human HSPs, have been
hypothesized to trigger a sarcoid-like immune response leading to
granuloma formation via innate and adaptive immune cells and
pattern recognition receptors (Eishi et al., 2002; Inaoka et al.,
2019). Studies have reported higher concentrations of specific
mycobacterial HSPs, such as Mtb-HSP70, Mtb-HSP65, and Mtb-
HSP16 in sarcoidosis patients’ lymph nodes, sera, and immune
complexes (Dubaniewicz, 2023). Additionally, Cutibacterium acnes
has been identified in granulomas and inflammatory cells of lymph
nodes, suggesting a potential role in the pathogenesis of sarcoidosis
(Negi et al., 2012; Zhou et al., 2015; Suzuki et al., 2018).

Early inflammation

The pathophysiological process of sarcoidosis primarily revolves
around granuloma formation, predominantly affecting the lungs,
lymph nodes, and other organs. Unlike infectious diseases like

tuberculosis, sarcoidosis entails the development of noncaseating
granulomas. Antigen-presenting cells (APCs), including
macrophages, dendritic cells, and epithelial cells, present antigens
via the MHC II-TCR complex to activated CD4+ T cells in
genetically predisposed individuals. These CD4+ T cells comprise
various subsets, including Th1, Th17, and Treg cells, which play
pivotal roles in the inflammatory cascade. Th1 cells are crucial for
granuloma formation and secrete cytokines such as IL-2, interferon-
gamma (IFN-gamma) (Robinson et al., 1985; Pinkston et al., 1983)
and CXCL10, CXCR3, IL-12R, IL-18R which help with APCs
migration and activation (Katchar et al., 2003; Miotto et al.,
2001; Szabo et al., 2000; Matsuda et al., 2007). Meanwhile,
Th17 cells, a newer aspect in sarcoidosis pathophysiology,
produce IL-17, contributing to the induction and maintenance of
the disease process (Berge et al., 2012) by producing cytokines such
as IL-17, IL-17F, IL-22, IL-26, IFN-gamma, and CCL20 (Boniface
et al., 2008). Additionally, a special subset of Th17 cells, Th17.1,
formed through IL-12 and IFN-gamma co-signaling (Duhen and
Campbell, 2014; Zielinski et al., 2012), further exacerbates
granuloma formation. The role of Th17.1 is crucial in granuloma
formation–there is a higher level of Th17.1 in peripheral blood,
BALF, and granuloma tissue (Broos et al., 2018; Richmond et al.,
2013; Tøndell et al., 2014) in group of sarcoidosis patients.
Regulatory T cells (Treg) provide immunosuppressive functions,
inhibiting TNF-alpha and exerting antiproliferative effects on other
Th cells (Miyara et al., 2006). While other immune cells like natural
killer (NK) cells play minor roles, they also contribute to the
inflammatory milieu with both pro- and anti-inflammatory
substances, especially a particular type of NK cells - CD56 – is
more frequent in BALF than in peripheral blood, which can also
produce TNF-alpha and IFN-gamma (Katchar et al., 2005).

Healing

The transition from early inflammation to healing in sarcoidosis
involves a shift in the composition and activation of lymphocytes
and macrophages. Macrophages, crucial in the inflammatory
process, can be divided into two groups: M1 and M2.
M1 macrophages exhibit proinflammatory activation, while
M2 macrophages display anti-inflammatory and profibrotic
properties (Italiani and Boraschi, 2014). In sarcoidosis, the
balance between M1 and M2 polarization remains ambiguous,
with mixed findings reported (Locke et al., 2019; Honda et al.,
2016; Wikén et al., 2010; Prokop et al., 2011). During the acute and
fibrotic phase of bleomycin-induced lung injury, the
M2 macrophages are overexpressed (Misharin et al., 2013).
Elevated M2 levels and significant transforming growth factor
(TGF-beta) expression are observed in muscular sarcoidosis,
contributing to granuloma formation and fibrosis development
(Prokop et al., 2011). Additionally, the recruitment and
differentiation of CD4+ T cell subgroups, particularly Th1, Th17,
and Treg cells, influence the healing process. Th1 cells continue to
play a role in granuloma formation during the healing phase, while
Th17 cells and their subset Th17.1 contribute to sustained
inflammation and granuloma development. Regulatory T cells
modulate the inflammatory response, albeit incompletely
inhibiting proinflammatory cytokines like TNF-alpha.
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Throughout this healing phase, the involvement of immune cells,
such as natural killer cells, persists, contributing to the intricate
balance between inflammation and resolution in sarcoidosis. We can
divide patients into two groups, based on the cytokine
profile–profibrotic, which mostly comprises M2 macrophages,
Th2 and Treg lymphocytes and their cytokines such as IL-4,
IL-5, IL-7, IL-10, IL-13, TGF-beta and CXCL18, and nonfibrotic,
which consists of M1 macrophages, Th1 and Th17.1 lymphocytes
and their cytokines such as IFN-gamma, TNF-alpha, IL-1Beta, IL-6,
IL-13, IL-17 and CXCL9/10/11 (Asif et al., 2023; Zhang et al., 2021).

Lung fibrosis in sarcoid patients

Clinical picture

In a group of patients with fibrotic sarcoidosis respiratory
symptoms are most common, such as cough and dyspnea. In
contrast with the majority of fibrotic ILD wheezing occurs more
frequently due to bronchial distortion and central airway
bronchiectasis. It may also relate to higher risk of bacterial
infections, sarcoidosis exacerbation and even hemoptysis (Judson,
2017). Hemoptysis may also be associated withmycetoma’s consisting
of Aspergillus fungi masses (Pena et al., 2011). Moreover, hemoptysis
and signs of hypoxemia, might be symptoms of sarcoidosis associated
pulmonary hypertension (SAPH). The incidence of SAPH is higher in
radiological stage IV and varies between 5% and 20% of patients with
sarcoidosis (Baughman et al., 2015). The mechanism of SAPH is
multifactorial, mostly comprise of fibrosis of interstitial space,
formation of granulomas nearby of vessels, which may result in
vascular obstruction, and granulomatous vascular inflammation
(Bandyopadhyay and Humbert, 2020). SAPH is the most crucial
predictor of mortality in fibrotic sarcoidosis and may be connected

even with an eight-fold higher risk of mortality, resulting in a median
survival of 5.7 years (Tiosano et al., 2019; Nardi et al., 2011). Risk
factors of SAPH are severe dyspnea, hypoxia, 6-minute walking
distance less than 300 m and forced vital capacity (FVC)/transfer
capacity for carbon monoxide (TLCO) over 1.5. Chronic fatigue
syndrome frequently occurs during sarcoidosis and might be
interpret by some clinicians as a symptom or manifestation of
depression (Górski and Piotrowski, 2016). Severe or fibrotic
sarcoidosis, like other fibrotic ILDs, frequently correlates with
depression, underscoring the importance of a comprehensive
approach to managing comorbidities like depression (Tzouvelekis
et al., 2020; Borson and Randall Curtis, 2001).

Historically, X-ray examination was used as diagnostic tool for
fibrotic sarcoidosis (stage IV sarcoidosis). Today, high resolution

FIGURE 1
Bronchial distortion pattern in fibrotic sarcoidosis with bronchial
angulation visible especially on right upper bronchi.

FIGURE 2
Linear scarring pattern in fibrotic sarcoidosis in right middle lobe.

FIGURE 3
“Honeycombing” pattern in fibrotic sarcoidosis–located in right
upper lobe.

Frontiers in Pharmacology frontiersin.org04

Bączek and Piotrowski 10.3389/fphar.2024.1445923

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1445923


tomography (HRCT) is the best tool for diagnosis of fibrotic
sarcoidosis. Three HRCT patterns: bronchial distortion, linear
scarring, and honeycombing have been distinguished (Sverzellati
et al., 2010). Bronchial distortion (Figure 1), which usually originates
from massive lymphadenopathy and consolidations of
inflammatory infiltrations nearby bronchi, is manifested by
bronchial angulation and bronchiectasis. Linear scarring
(Figure 2), which usually originates from broncho-vascular
bundles involvement, is mostly located in lower lobes.
Honeycombing (Figure 3), which in fibrotic sarcoidosis is
improperly called “UIP-like pattern”, consists of cysts, which are
bigger than in UIP pattern. It is mostly located in upper lobes and
originates from ground-glass opacities involvement. Moreover, UIP
pattern is present in other ILDs such as connective-tissue disease-
interstitial lung disease (CTD ILD). Due to this fact, some scientists
differentiate UIP pattern in IPF and in CTD-ILDs with new, three
radiological patterns – “straight edge” sign - isolation of fibrosis to
the lung bases without substantial extension along the lateral
margins of the lungs on coronal images, “anterior upper lobe”
sign - concentration of fibrosis within the anterior parts of the
upper lobes, and “exuberant honeycombing” sign - widespread
formation of honeycomb-like cysts in more than 70% of the
fibrotic areas of the lungs. These three signs were significantly
more common in patients with CTD-ILD UIP-pattern rather
than typical IPF UIP pattern (Chung et al., 2018). In case of
UIP-like pattern in sarcoidosis fibrosis there were no articles
about this three radiological signs, but “exuberant
honeycombing” sign seems to be more frequent in our single-
center observation and these signs need further evaluation in
other fibrotic diseases, such as sarcoidosis.

When it comes to pulmonary function test results (PFTs),
restrictive pattern is common, with TLC (total lung capacity),
VC (vital capacity) and TLCO reduction (Spagnolo et al., 2018).
In contrast to other ILDs obstructive disease is also frequent, mostly
due to bronchial distortion and bronchiectasis. In most fibrotic
sarcoidosis cases PFTs results are stable during whole process. In six-
minute walk tests, people with fibrotic sarcoidosis typically walk
shorter distances (Baughman et al., 2007). This reduced walking
ability is linked to several serious health issues, including pulmonary
hypertension associated with sarcoidosis, decreased FVC, and low
oxygen levels during exercise (Gupta et al., 2022).

Lung transplants for sarcoidosis patients constitute 2%–5% of all
lung transplant cases (Spagnolo et al., 2018). There are no available
data about which sarcoidosis patients are qualified, but probably
Scadding’s stage IV patients may overrepresent this small group. In
one study, mPAP of > = 30 mmHg in a group of sarcoidosis patients
is an independent risk factor of mortality on the waiting list and this
group has higher waitlist mortality than COPD patients. Patients
with sarcoidosis with mPAP less than 30 mmHg has the lowest
waitlist mortality comparing to COPD and IPF (Sosa et al., 2023).
Patients with fibrotic sarcoidosis with lung involvement over 20%
have higher mortality than other patients (Jeny et al., 2020).

Risk factors

Fibrotic sarcoidosis might be seen in up to 20% of patients with
sarcoidosis (Judson et al., 2012; Moller, 2003). The average age of

presentation with fibrotic pulmonary sarcoidosis is in the fourth
decade of life (Nardi et al., 2011). It is not clear if race is a risk factor
of fibrotic sarcoidosis. In one study African American patients were
less likely to present stage I disease, but rate of stage IV was similar
between African American and Caucasian (Rybicki et al., 1997). In
another study black race and females have significantly higher risk of
higher radiological Scadding grade (Judson et al., 2012).

Genetic risk factors of fibrotic sarcoidosis are focused on single
nucleotide polymorphisms (SNPs). Variations in certain genes,
specifically those encoding gremlin for tissue repair (GREM1)
(Heron et al., 2011), caspase recruitment domain-containing
protein 15 (CARD15) - also referred to as nucleotide-binding
oligomerization domain containing protein 2 (NOD2) (Sato
et al., 2010), and the cytokine transforming growth factor (TGF)
β3 (Kruit et al., 2006), increase susceptibility to fibrosis in
sarcoidosis. Also, one study on Caucasian patients revealed that a
promoter polymorphism in prostaglandin-endoperoxide synthetase
2 (PTGS2) was linked to a higher risk of SAPF (Hill et al., 2006).
Sarcoidosis associated pulmonary fibrosis has some unique features
such as variants of annexin A11 and PVT1. Annexin A11 (ANXA11)
is a calcium-dependent membrane-binding protein that has been
linked to the risk of developing fibrotic sarcoidosis (Mirsaeidi et al.,
2016a). In a small study involving African - American patients with
sarcoidosis, certain ANXA11 single nucleotide polymorphisms
(SNPs), namely rs1049550 and rs12779955, were associated with
an increased susceptibility to pulmonary fibrosis. Those carrying the
T genotype of rs1049550 had a 4.5 times higher risk of developing
pulmonary fibrosis (Mirsaeidi et al., 2016b). Also, SNPs variants of
PVT1 (plasmacytoma variant translocation 1) gene were associated
with increased susceptibility to fibrosis in group of patients of
African American descent with sarcoidosis (Garman et al., 2024).
Telomere’s length, and especially terminal restriction fragment
(TRF), are potentially new factor of fibrosis, like in other ILDs,
such as IPF (Prokop et al., 2011; Bilgili et al., 2019). A significant
decrease of TRF was observed in sarcoidosis comparing to control
group (Saito et al., 2018). In one study no significant difference was
shown in TRF length between stage I, II, and III, but stage IV was not
included (Ma and Meng, 2019). A specific genetic
variation, −765G>C, in the prostaglandin-endoperoxide synthase
2 (PTGS2) gene has been linked to an increased risk of fibrotic
sarcoidosis (Hill et al., 2006). PTGS2 is an enzyme that plays a
crucial role in producing prostaglandin E2, a substance known for its
antifibrotic activity. People with the −765C variant of this gene are
more susceptible to sarcoidosis, tend to have a worse prognosis, and
are more likely to develop fibrotic disease.

From occupational and environmental perspective of fibrotic
sarcoidosis silica exposure might relate to fibrotic process in patients
with sarcoidosis (Beijer et al., 2021a). Apart from that, there is lack of
evidence of any other factors that might play a role in the
pathogenesis of fibrotic sarcoidosis.

Pathogenesis

Fibrosis of the lungs in individuals with sarcoidosis typically
commences following the formation of granulomas. The gene
expression profiles of patients with progressive sarcoidosis, many
of whom exhibited fibrosis on imaging, closely resembled those with
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inflammatory hypersensitivity pneumonitis (Lockstone et al., 2010).
Initially, Th1 lymphocytes, in conjunction with M1 macrophages,
contribute to granuloma formation. However, there is a transition
towards Th2 lymphocytes and M2 macrophages, both of which
exhibit pro-fibrotic properties (Moller, 1999; Teirstein and
Morgenthau, 2009). Elevated levels of Th2 cytokines such as IL-
4, IL-5, IL-9, IL-10, IL-13, and TGF-beta have been linked to
increased extracellular matrix production. IL-13 can boost TGF-
beta production while reducing TNF-alpha release (Kunkel et al.,
1996). Studies have indicated higher levels of IL-13, IL-5, and IL-7 in
individuals with pulmonary fibrosis (Patterson et al., 2013; Hauber
et al., 2003). IL-4, CCL-2 and IL-13 encourage the proliferation of
M2macrophages, which in turn stimulate fibroblast activity through
the release of TGF-beta and other molecules (Locke et al., 2019; Liu
et al., 2011; Shamaei et al., 2018). The upregulation of CCL-8 and
CCL-18 during the Th2/M2 shift may also contribute to pulmonary
fibrosis and collagen production (Luzina et al., 2006; Prasse et al.,
2006). M2 macrophages produce arginase via the expression of the
Arg1 gene, which converts arginase into ornithine, a precursor of
collagen (Munder et al., 1998). Additionally, M2 activation has been
observed in the fibrosis of neuromuscular sarcoidosis through the
overexpression of CD206, CD301, and Arg-1 (Prokop et al., 2011).
Moreover, patients with fibrotic radiographic stages of sarcoidosis
have higher proportion of Tregs, and lower proportion of Th17.1
(Zhang et al., 2023). Also, platelet-derived growth factor (PDGF),
which is secreted by Tregs, regulates the proliferation of lung
fibroblasts and collagen deposition (Matsuse, 1998).

TGF-beta, potentially secreted by Th2 lymphocytes and
M2 macrophages, likely plays a pivotal role in lung fibrosis.
Overexpression of TGF-beta/Smad signaling has been observed
in various extrapulmonary fibrotic conditions (Saito et al., 2018;
Ma and Meng, 2019; Piotrowski et al., 2015a; Xu et al., 2016). TGF-
beta1 is primarily responsible for collagen deposition, fibroblast
recruitment, and myofibroblast transformation from epithelial
cells (Gharaee-Kermani et al., 2009; Coker et al., 2001;
Goodwin and Jenkins, 2009), while parenchymal involvement
has been linked to TGF-beta3 (Piotrowski et al., 2014).
Moreover, the frequencies of TGF-beta3 single nucleotide
polymorphisms (SNPs) varied between individuals with fibrotic
sarcoidosis and chronic sarcoidosis, where chronic sarcoidosis was
characterized by the persistence of symptoms for a minimum of
2 years or experiencing two or more disease flares (Pabst et al.,
2011). On the other hand, TGF-beta1 gene polymorphisms were
not associated with fibrosis (Kruit et al., 2006). Bone morphogenic
proteins (BMPs), which are like TGF-beta, stimulate tissue
regeneration, but they are not profibrotic comparing to TGF-
beta. The balance between BMPs and TGF-beta may play an
important role in fibrotic process. Inhibitors of BMPs, such as
gremlin, were associated with pulmonary sarcoidosis with fibrosis
(Heron et al., 2011).

The Wnt signaling pathway, particularly Wnt-beta, has been
identified in fibrotic foci of idiopathic pulmonary fibrosis (IPF)
(Bartczak et al., 2020; Königshoff et al., 2008; Chilosi et al., 2003). In
pulmonary sarcoidosis, there is an upregulation of Wnt5A, Wnt7A,
Wnt7B, and B-catenin signaling in bronchoalveolar lavage fluid cells
(Levänen et al., 2011). Furthermore, there is a correlation between
B-catenin signaling and epithelial-mesenchymal transition, which
sustains fibrosis (Huang et al., 2021).

Recent studies have conducted direct comparisons between
fibrotic sarcoidosis and other fibrotic interstitial lung diseases
(ILDs), yielding insightful findings. These investigations have
primarily focused on the repair and plasticity of alveolar
epithelial cells. MRP14 (myeloid-related protein 14), also known
as S100A9, is intracellular calcium-binding protein, was found to be
significantly elevated in bronchoalveolar lavage (BAL) samples from
both sarcoidosis and idiopathic pulmonary fibrosis (IPF) patients,
and its levels correlated with the stage of chest radiographs in
sarcoidosis (Korthagen et al., 2010). One study found the impact
of S100A9 on human embryo lung fibroblasts, revealing its role in
promoting fibroblast proliferation and the deposition of type III
collagen (Lewis and Kirkwood, 1990). Matrix metalloproteinases
(MMPs) play a crucial role in modifying the lung microarchitecture
through processes such as fibroblast expansion, myofibroblast
differentiation, and accumulation of extracellular matrix.
However, contrary to the observed elevation of MRP14/S100A9,
serum levels of MMP1 and MMP7 were notably higher in IPF
compared to fibrotic sarcoidosis (Morais et al., 2015). These
differing MMP signatures may have implications for lung
remodeling, especially concerning the development of usual
interstitial pneumonia (UIP) in IPF as opposed to other patterns
of fibrotic changes observed in non-IPF ILDs, like sarcoidosis.
Moreover, ILDs with fibrotic features share imbalance in
phosphatase/kinase activation which results in extracellular
matrix deposition. For example, Mitogen-activated protein kinase
(MAPK) phosphatase 5 (MKP-5) negatively regulates p38 MAPK.
In one study MKP-5-deficient mice were protected from the
development of lung fibrosis, expressed reduced levels of
hydroxyproline and fibrogenic genes, and displayed marked
polarization towards an M1-macrophage phenotype (Xylourgidis
et al., 2019). Moreover, profibrogenic effects of the transforming
growth factor-β1 (TGF-β1) were inhibited in MKP-5-deficient lung
fibroblasts. MKP-5-deficient fibroblasts exhibited enhanced
p38 MAPK activity, impaired Smad3 phosphorylation, increased
Smad7 levels, and decreased expression of fibrogenic genes.
Polarization towards M1 macrophages and their activation may
be influential on pathogenesis of fibrotic sarcoidosis. Also, enhanced
p38 signaling and bigger production of TNF-α and IL-12/IL-
23p40 on stimulation with NOD1 and TLR4 agonists in response
to microbial products is caused by abnormal regulation of MAPK
phosphatase and contributes to heightened inflammation in
sarcoidosis (Rastogi et al., 2011). A recent analysis of lung tissue
from sarcoidosis patients undergoing transplantation showed that
while most had fibrosis related to granulomatous inflammation, a
minority exhibited alternative mechanisms of lung fibrosis. This
included cases where granulomas were replaced by scar tissue or
where granulomatous inflammation ceased while other lung diseases
progressed. Some patients were misdiagnosed with sarcoidosis when
they had granulomatous lymphadenopathy alongside another lung
disease (Goodwin and Jenkins, 2009).

Different types of Toll-like receptors (TLRs) might also have a
significant role in fibrotic sarcoidosis. TLRs have the potential to
trigger the innate immune system, enabling it to recognize and
regulate interactions between the innate system and other antigens
(Fitzgerald and Kagan, 2020). In chronic sarcoidosis,
TLR2 polymorphisms appear to be more common (Veltkamp
et al., 2007). Additionally, the haplotype of single nucleotide
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polymorphism (SNP) variants that affect TLR1, TLR6, and
TLR10 genes—acting as co-receptors with TLR2—was found to
be absent in the fibrotic group (Veltkamp et al., 2012). The
TLR3 polymorphism Leu412Phe (rs3775291), previously linked
to accelerated disease progression and increased mortality risk in
idiopathic pulmonary fibrosis (IPF) (O’Dwyer et al., 2013), was
examined in sarcoidosis patients and correlated with the progression
of the disease to fibrosis (Cooke et al., 2018), in the mechanism of
reduced apoptosis of fibroblasts and increased production of CCL-
18, which also occurs in IPF. Serum amyloid antigen (SAA) is
another factor that is elevated in fibrotic pulmonary diseases,
including sarcoidosis (Beijer et al., 2021b; Chen et al., 2010).
Another aspect is dysregulation of the mammalian target of
rapamycin (mTOR). In cases of fibrotic pulmonary sarcoidosis
mTOR complex 1 (mTORC1) is upregulated, which results in
excess granuloma formation (Vukmirovic et al., 2021). Recent
studies have shown that the hypoxia-induced factor 1-alpha
(HIF1α) pathway is important in granulomatous diseases
(Piotrowski et al., 2015b). When monocyte-derived macrophages
are under low oxygen conditions, they increase their inflammatory
responses but are less effective at presenting antigens to T-cells,
which decreases the immune response. These macrophages also
release a substance called plasminogen activator inhibitor-1 (PAI-1).
PAI-1 can help granulomas to form, and it can also contribute to the
development of fibrotic disease (Jeny et al., 2021).

Antifibrotics; mechanisms of action,
possible points of interaction with
sarcoidosis pathophysiology

Pirfenidone (5-methyl-1-phenyl-2-[1H]-pyridone) was first
known as an anti-inflammatory and antioxidant agent (Iyer et al.,
1999a). Its antifibrotic properties were first shown in experimental
models of lung fibrosis, where it suppressed elevation of lung basic-
fibroblast growth factor (bFGF) and transforming growth factor
(TGF)-beta1 levels (Oku et al., 2008). In further studies it decreased
the expression of TGF-beta gene at the transcriptional level (Iyer
et al., 1999b) and significantly downregulated the bleomycin-
induced overexpression of procollagen genes (Iyer et al., 1999a).
Pirfenidone attenuated lung fibrosis in various animal models
(Schaefer et al., 2011). It was shown to reduce hydroxyproline
accumulation in the lung, both when treatment was concurrent
with bleomycin administration and when used after the instillation
of bleomycin (Oku et al., 2008). Pirfenidone also reduced the activity
of prolyl hydroxylase, a marker of collagen synthesis, and the
collagen mRNA expression in hamsters’ lungs subjected to single
bleomycin administration (Iyer et al., 1999a).

Many studies showed that pirfenidone can reduce the TGF-beta
expression effectively (Schaefer et al., 2011). The drug alleviates
pulmonary fibrosis by regulating Wnt/GSK-3β/β-catenin and TGF-
β1/Smad2/3 signaling pathways (Lv et al., 2020). Other important
mediators that may be important in the pathogenesis of lung fibrosis
and influenced by pirfenidone include metalloproteinases and
growth factors other than TGF-beta. Effects on growth factors
include the downregulation of PDGF and FGF. In models of
cardiac and liver fibrosis pirfenidone normalized expression of
MMP-2 and MMP-9 (Di Sario et al., 2004; Lee et al., 2006).

Its anti-inflammatory properties, as shown in in vitromodels are
multiple. It alleviated the bleomycin-induced production of IL-
1beta, IL-6, IL-12p40, and monocyte chemoattractant protein
(MCP)-1, stroma cell-derived factor (SCDF, CXCL12), and IL-18
(Oku et al., 2008). CXCL12 is responsible for fibrocyte trafficking to
the lung (Phillips et al., 2004).

Nintedanib is a small-molecule tyrosine kinase inhibitor, that
targets receptors of several growth factors, namely fibroblast growth
factor (FGF, receptors 1–3), platelet-derived growth factor (PDGF,
receptors alpha and beta), and vascular-endothelial growth factor
(VEGF, receptors 1–3). By inhibiting the above-mentioned
receptors, it exerts an indirect inhibitory effect on the main pro-
fibrotic cytokine, transforming growth factor beta (TGF-beta). In
addition, it inhibits the Src family kinase lymphocyte-specific
tyrosine protein kinase (Lck), colony-stimulating factor (CSF)-
1 receptor (CSF1R) and many other kinases (Wollin et al., 2019).

Nintedanib exerts direct antifibrotic activity by attenuating the
influx of fibrocytes from the blood to the lung and their
differentiation to fibroblasts (Sato et al., 2017). Nintedanib also
inhibits the motility of fibroblasts, as it was proven on cells from IPF
patients, and inhibits the PDGF-induced contraction of human lung
fibroblasts on collagen gels (Wollin et al., 2019). It inhibits fibroblast
to myofibroblast transmission induced by TGF-beta (Wollin et al.,
2014), and release of collagen from fibroblasts after stimulation with
TGF-beta (Wollin et al., 2019).

Nintedanib exerts anti-inflammatory activity in vitro, which
may be particularly important in sarcoidosis. It may interfere
with many molecular pathways involved in the pathogenesis of
sarcoid granulomatous inflammation. Lck is a 56 kD lymphocyte-
specific kinase, a member of the Src kinase family. It is responsible
for early propagation and modulation of T-cell receptor (TCR). It is
required for T-cell proliferation and production of interleukin-2 (IL-
2). Nintedanib was shown to inhibit Lck at IC50 comparable or even
lower than that of VEGF-R1,2,3 inhibition (Hilberg et al., 2008). It
inhibits a few cytokines of Th1-type of inflammation, such as IL-2,
IL-12p70 and interferon-gamma (Wollin et al., 2019). In this way, it
may influence the early stages of inflammation, shortly after the
contact of the sarcoid antigen with immune cells. Nintedanib was
also shown to inhibit many Th2-type of inflammation-related
cytokines, such as IL-4, IL-5, IL-10, and IL-13 (Wollin et al.,
2019). It also inhibits polarization of macrophages, preventing
transformation of M1 to M2. A marker of macrophage
polarization is a profibrotic chemokine, CCL18. The decrease in
CCL18 production may be related to an inhibitory activity of
nintedanib exerted on CSF1R. Nintedanib prevented the CSF1-
induced phosphorylation of CSF1R and activation of the
downstream signalling pathways, thus preventing the
transformation of macrophages to profibrotic M2a phenotype
(Bellamri et al., 2019). In animal models, Nintedanib attenuates
the accumulation of lymphocytes and IL-1beta in bronchoalveolar
lavage fluid and the proliferation of alveolar macrophages in the
bleomycin lung fibrosis model in a mouse (Ackermann et al., 2017).

Antifibrotics in sarcoidosis – to whom?

Antifibrotics in case of fibrotic sarcoidosis might be helpful by its
influence on the course of progresive pulmonary fibrosis. Progresive
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pulmonary fibrosis (PPF) is a term characterized by 3 aspects:
worsening respiratory symptoms, physiological evidence of
respiratory progression (absolute decline in FVC ≥5% predicted
within 1 year or absolute decline in TLCO (corrected for Hb) ≥10%
predicted within 1 year) and radiological evidence of disease
progression (increased extent or severity of traction
bronchiectasis and bronchiolectasis, new ground-glass opacity
with traction bronchiectasis, new fine reticulation, increased
extent or increased coarseness of reticular abnormality, new or
increased honeycombing, increased lobar volume loss) (Raghu
et al., 2022). From our point of view, worsening of PTFs results
seems to be less frequent in group of fibrotic sarcoidosis comparing
to other fibrotic ILDs. In fibrotic sarcoidosis criteria of radiological
progression play key role in PPF characteristics. In ILDs other than
IPF, such as fibrotic sarcoidosis, the progression pattern is variable
and may include the evolution of ground-glass abnormalities to
reticular abnormalities, reticular abnormalities to honeycombing,
and/or an increase in traction bronchiectasis/bronchiolectasis. For
example, the presence of honeycombing and traction bronchiectasis,
associated with worse prognosis, along with a greater extent of
fibrotic changes, is predictive of mortality in IPF, rheumatoid
arthritis-related ILD, systemic sclerosis-related ILD, fibrotic HP,
and fibrotic sarcoidosis (Walsh et al., 2014). For treatment of PPF
there were two potential antifibrotic substances, which were
mentioned before – pirfenidone and nintedanib. Pirfenidone,
which was evaluated in RELIEF trial, showed a slower decline in

percent predicted FVC, but the study was terminated prematurely
due to challenges related to slow recruitment in non-IPF progressive
fibrotic lung disease (Behr et al., 2021). Moreover, the study
excluded patients with sarcoidosis, limiting its applicability to
this cohort. Whereas nintedanib, which efficacy was evaluated
during INBUILD trial, proved its efficacy on lowering disease
progression measured by FVC decline both in patients with PPF
UIP-pattern and PPF non-UIP pattern (fibrotic sarcoidosis included
in this group) (Flaherty et al., 2019). In case of fibrotic sarcoidosis,
the limitation of this study was a small number of sarcoidosis
patients included in the study – 12. In this case, there is need for
new trials for assessment of nintedanib in fibrotic sarcoidosis with
bigger number of participants. Efficacy of nintedanib was proved in
other fibrotic ILDs, such as interstitial lung disease associated with
systemic sclerosis (Distler et al., 2019), and fibrotic hypersensitivity
pneumonitis (f-HP) (Tzilas et al., 2020) – in this case sarcoidosis
shares many characteristics with HP such as granuloma formation.
Although high-quality studies specifically focusing on populations
with sarcoidosis-related fibrosis are lacking, initiation of antifibrotic
therapy is suggested based on guidelines for manifestations of
progressive fibrotic phenotype (PPF). The use of antifibrotics,
such as nintedanib, may be justified to slow disease progression
and improve lung function in patients with pulmonary fibrosis,
including those with sarcoidosis.

Antifibrotics may interfere with many aspects and mechanisms
of sarcoidosis pathogenesis, from early stages of inflammation up to

FIGURE 4
The impact of pirfenidone and nintedanib on the pathogenesis of granuloma formation and fibrosis in pulmonary sarcoidosis. Molecules highlighted
in red - potential interaction with pirfenidone. Molecules highlighted in green - potential interaction with nintedanib. M, Macrophages (M1, M2),
APC, Antigen Presenting Cells, T, T-Lymphocytes (Th1, Th17.1, Th2), F, Fibroblasts, MF, Myofibroblasts.
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late stages, leading to irreversible scarring (Figure 4). The anti-
inflammatory properties of pirfenidone and nintedanib could help
treat sarcoid patients in the early stages of the disease. However, this
concept is very controversial and highly hypothetical. Clinical
studies should be conducted to compare their effectiveness with
all recommended anti-inflammatory drugs, such as steroids,
conventional immunosuppressants, and anti-TNF agents.
However, if we consider fibrosis as a continuum and
consequence of chronic and self-perpetuating granulomatous
inflammation, such an intervention would not be senseless if
antifibrotics were introduced in selected patients with the highest
risk of developing fibrosis.

In patients in whom fibrosis is an end-stage of the long-lasting
disease, and when the activity of inflammation is dubious or
negligible, such a treatment would be, without doubt, pointless.
PET examination would be highly desirable to answer this dilemma.
Therefore, the question is whether the fibrotic process in sarcoidosis
may be, at least in some cases, progressive and independent of
preceding inflammation. In these instances, fibrosis would be a self-
perpetuating process like IPF.

Based on the results of chest CT scans and PET examination,
fibrotic sarcoidosis could be divided into active progressive
pulmonary fibrosis and inactive, “burnt-out” disease
(Bandyopadhyay and Mirsaeidi, 2023). This intelligent and
reasonable approach would allow for an objective selection. Lack
of the effects of all three anti-inflammatory treatment grades should
be proven in the 3–6 months trial. The number of patients who meet
these criteria will probably be minimal.

Conclusion

Sarcoidosis, which is the most common interstitial lung disease,
is still a mystery for patients, clinicians, and scientists. Its
pathogenesis and multiorgan involvement question current
diagnostic and therapeutic approaches. Extracellular matrix
collagen, which starts during granuloma formation, states that
fibrosis is an integral part of the pathophysiology of sarcoidosis.
In a pathophysiological way, sarcoidosis shares many characteristics
with IPF and other fibrotic diseases, such as similar cytokines
secreted by fibroblasts and other cells. On the other hand,
primary granuloma formation and its persistence, which

constitutes sarcoidosis, varies from other ILDs such as IPF.
Pulmonary complications, poor prognosis, and lack of effective
treatment prompt new therapeutic approaches. Nintedanib,
which inhibits many profibrotic factors, is proven to be an
effective medication for patients with progressive pulmonary
fibrosis. Its other properties, such as influence on granuloma
formation, inflammation inhibition and interference with
subtypes of macrophages, are promising for effective antifibrotic
therapy in fibrotic sarcoidosis. However, it is still unknown whether
antifibrotic therapies might be helpful. More randomized controlled
trials (RCTs) still need to focus on antifibrotics in fibrotic
sarcoidosis. Without this, sarcoidosis will remain a
neglected disease.
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