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Background:Cancers arise from genetic and epigenetic abnormalities that affect
oncogenes and tumor suppressor genes, compounded by gene mutations. The
N6-methyladenosine (m6A) RNA modification, regulated by methylation
regulators, has been implicated in tumor proliferation, differentiation,
tumorigenesis, invasion, and metastasis. However, the role of m6A
modification patterns in the tumor microenvironment of gastric cancer (GC)
remains poorly understood.

Materials and methods: In this study, we analyzed m6A modification patterns in
267 GC samples utilizing 31 m6A regulators. Using consensus clustering, we
identified two unique subgroups of GC. Patients with GC were segregated into
high- and low-infiltration cohorts to evaluate the infiltration proportions of the
five prognostically significant immune cell types. Leveraging the differential genes
in GC, we identified a “green”module viaWeighted GeneCo-expression Network
Analysis. A risk prediction model was established using the LASSO
regression method.

Results: The “green” module was connected to both the m6A RNA methylation
cluster and immune infiltration patterns. Based on “Module Membership” and
“Gene Significance”, 37 hub genes were identified, and a risk prediction model
incorporating nine hub genes was established. Furthermore, methylated RNA
immunoprecipitation and RNA Immunoprecipitation assays revealed that
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YTHDF1 elevated the expression of DNMT3B, which synergistically promoted the
initiation and development of GC. We elucidated the molecular mechanism
underlying the regulation of DNMT3B by YTHDF1 and explored the crosstalk
between m6A and 5mC modification.

Conclusion: m6A RNA methylation regulators are instrumental in malignant
progression and the dynamics of tumor microenvironment infiltration of GC.
Assessing m6A modification patterns and tumor microenvironment infiltration
characteristics in patients with GC holds promise as a valuable prognostic
biomarker.
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1 Introduction

RNA methylation plays a significantly role in normal cellular
homeostasis and pathological conditions (Han et al., 2020), in which
N6-methyladenosine (m6A) is the most prevalent in eukaryotic cells
and has gained increasing attention because of its presence in
mRNA, lncRNAs, and miRNA (Dominissini et al., 2012; Meyer
et al., 2012; Ontiveros et al., 2019; Huang et al., 2020). Recently, m6A
modification, a dynamic and reversible epigenetic process, has
attracted considerable attention. This modification is orchestrated
by regulators commonly referred to as “writers”, “erasers”, and
“readers”. The methylation process is specifically catalyzed by
methyltransferases, or “writers”, which encompass enzymes such
as METTL3, METTL14, WTAP, and METTL16. Conversely, the
demethylation process is executed by demethylases such as FTO and
ALKBH5, termed “erasers”. Additionally, there is a set of RNA-
binding proteins encompassing, but not restricted to, YTHDC1,
YTHDC2, YTHDF1, YTHDF2, YTHDF3, IGF2BP1 (Zhang et al.,
2020). Numerous studies have reported that m6A modifications are
common in cancer. Such modifications profoundly influence
tumorigenesis and tumor progression by disrupting cellular
pathways; promoting cell proliferation, self-renewal, and tumor
metastasis; and leading to aberrations in immunomodulation
(Pinello et al., 2018; Tong et al., 2018; Chen et al., 2020; Dong
and Cui, 2020; Haruehanroengra et al., 2020). Furthermore,
programmed cell death pathways, which are closely associated
with the cancer initiation, progression, and resistance, have
highly complex links to m6A modification (Liu et al., 2022).

Gastric cancer (GC) is one of the most prevalent digestive tract
cancers globally, with an incidence rate of 5.6% and a mortality rate
of 7.7%, ranks the top five in both categories (Sung et al., 2021).With
progress in biological information technology and medical means,
genome analysis has become the main method for identifying new
biological targets in GC (Cancer Genome Atlas Research, 2014; Oh
et al., 2018). The overall abundance of m6A mRNA in human GC
tissues is significantly higher compared to normal tissue (Wang Q.
et al., 2020). Studies have found that tumor progression is not solely
attributed to genetic and epigenetic modifications in tumor cells.
The tumor microenvironment (TME), on which cancer cells rely for
growth and survival, plays a pivotal role. Cancer cells modify various
biological behaviors through direct and indirect interactions. As our
comprehension of the complexities and variations within TME
deepening, increasing evidence highlights the pivotal role in
tumor progression and immune evasion, as well as its influence

on responses to immunotherapy (Quail and Joyce, 2013; Ali et al.,
2016). Consequently, there is a growing emphasis on studying
biomarkers that can predict responses to immune checkpoint
blockade therapies, aiming to enhance precision immunotherapy
strategies. Virtually, m6A modification alterations intrinsically affect
immune cells and extrinsically affect immune cell responses in the
TME (Li et al., 2022). m6A is closely related to macrophage
phenotype and dysfunction (Zhu X. et al., 2023). In GC, m6A
modification plays a non-negligible role in characterizing TME
infiltration, both in terms of diversity and complexity (Zhang
et al., 2020).

In this study patient samples are divided into two subgroups by
conducting a consistent cluster analysis of the expression profiles of
31 m6A RNA methylation factors from patients with GC found in
the TCGA database. Based on the proportion of infiltration from the
five immune cell types related to prognosis, patients with GC were
categorized into high-infiltration and low-infiltration groups, where
there was a significant difference in prognosis. Using WGCNA
analysis of the differential genes in GC, we identified a module
associated with both the m6A methylation cluster and the immune
infiltration classification. Hub genes were isolated from this module
using module membership (MM) and gene significance (GS). By
leveraging these hub genes, we employed LASSO regression to
develop a risk prediction model. Based on the risk score of this
model, we further categorized the samples into high-risk and low-
risk groups. Furthermore, we validated the isolated hub genes and
found that the m6A reader, YTHDF1, elevated the expression of
DNMT3B, synergistically promoting the initiation and
development of GC.

2 Materials and methods

2.1 GC datasets source and preprocessing

We extracted gene expression datasets and associated clinical
annotations from two renowned repositories: UCSC Xena
(accessible at https://xenabrowser.net/datapages/) and cBioportal
(available at http://www.cbioportal.org/). We included a cohort of
267 gastric cancer patient samples along with 32 samples derived
from healthy individuals. These samples were repleted with
pertinent survival data and detailed tumor staging, all sourced
from The Cancer Genome Atlas-Stomach Adenocarcinoma
(TCGA-STAD) database download from UCSC Xena. A
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comprehensive list of these details is provided in Table 1. We also
integrated the GC dataset GSE62254 from the Gene Expression
Omnibus, constituting an additional 300 GC patient samples;
patients without survival information were excluded from
further evaluation. The comprehensive sample data are
presented in Table 2. The workflow of data analysis is shown
in Figure 1.

2.2 Consistent cluster analysis

A list of the 31 m6A regulators is provided in the Supplementary
Material (Table S1). Utilizing the R package “ConsensusClusterPlus”
(Wilkerson and Hayes, 2010), we performed a consistent clustering
analysis with a robust setting of 100 iterations and an 80%
resampling rate, leveraging the Pearson correlation as the chosen

distance metric. This rigorous analysis stratified the samples into
two distinct clusters: Cluster 1 and Cluster 2.

A Principal Component Analysis (PCA) was performed to
visually discern and compare the underlying variations between
the two clusters. This dimensionality reduction technique allowed us
to capture the essence of variance in the data and offered a clearer
perspective on the differences in expression patterns. The Wilcoxon
test was used to ascertain the specific m6A RNA methylation
regulators that exhibited significant differential expression
between Cluster 1 and Cluster 2. This non-parametric statistical
test, tailored for datasets that did not necessarily follow a normal
distribution, enabled us to rigorously compare the expression levels
of each regulator between the two defined clusters.

2.3 Survival analysis of m6A cluster and
subgroup functional pathway analysis

Survival analysis encompasses statistical methods dedicated to
exploring the expected time until one or more events occur. We used
the Kaplan-Meier method to generate survival curves, and the log-
rank test was used to identify prognostic factors correlated with
survival, with significance determined at a threshold of p < 0.05.
Furthermore, for enrichment analysis, we leveraged the “GSVA”
package in R, which employs an unsupervised, non-parametric
approach (Hanzelmann et al., 2013; Shen et al., 2022).
Significance level of p < 0.05 was considered statistically significance.

2.4 Estimation of the proportion of TME cell
infiltration in GC

CIBERSORT (accessible at https://cibersort.stanford.edu/) was
synergistically paired with the LM22 signature matrix, facilitating
the estimation of the proportion of human hematopoietic cell
phenotypes within the 22 samples categorized from both the
high-risk and low-risk patient cohorts. Notably, the cumulative
proportion of all the inferred immune cell types within each
sample was 1. Subsequently, to identify the immune cells with
significant prognostic implications, the proportions of these
various immune cells were subjected to univariate Cox
regression analyses.

2.5 Identification of differentially expressed
genes (DEGs)

Differentially expressed genes between 267 tumor samples and
32 normal samples were identified using the Limma R package
(Smyth, 2004). Genes were considered differentially expressed based
on thresholds of |log2FC| > 0.585 and FDR < 0.01.

2.6 Weighted gene co-expression network
analysis (WGCNA)

WGCNA is an advanced bioinformatics approach aimed at
deciphering the complex patterns of gene expression data (Yin

TABLE 1 Clinical characteristics of the patients from TCGA-STAD.

Characteristics Subtype Case, n Ratio, n (%)

Total 267 100

Gender Female 94 35.20

Male 173 54.80

Stage I 42 15.73

II 94 35.21

III 108 40.45

IV 23 8.61

Grade G1 7 2.62

G2 97 36.33

G3 158 59.18

G4 5 1.87

Age ≥60 169 63.30

<60 95 35.58

NA 3 1.12

TABLE 2 Clinical characteristics of the patients from GSE62254.

Characteristics Subtype Case, n Ratio, n (%)

Total 300 100

Age ≥60 194 64.67

<60 106 35.33

Gender Male 199 63.33

Female 101 33.67

Stage I 30 10

II 97 32.33

III 96 32.00

IV 77 25.67
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et al., 2020). By calculating the correlation between the module
eigengenes and the clinical traits of interest, biologically relevant
modules were identified.Within themodules significantly associated

with clinical traits, hub genes were identified based on their
connectivity, highlighting those with potential key roles in the
module’s biological function.

FIGURE 1
Flow chart of analysis.
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FIGURE 2
Landscape of TME in gastric cancer and infiltration characteristics in distinct m6A modification patterns. (A) All gastric cancer samples were divided
into two groups (K = 2); (B) Under PCA algorithm, the two subgroups cluster 1 and cluster 2 showed significant difference; (C) The expression of 31 m6A
regulators between 2 m6A regulators genes cluster: cluster 1 and cluster 2. Cluster 1, Orange; Cluster 2, blue. The upper and lower ends of the boxes
represented inter quartile range of values. The lines in the boxes representedmedian value, and black dots showed outliers; (D) Kaplan-Meier curves
for disease progress probability gastric cancer patients from two clusters; (E) Subgroup analysis estimating clinical prognostic value in different types of
immune cell infiltration. The length of the horizontal line represents the 95% confidence interval for each group; (F) Kaplan-Meier curves for patients with

(Continued )
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2.7 Construction and validation of the
prognosis model

For the identified hub genes, the LASSO method was employed
to select prognostically relevant genes and construct a prognostic
model. The systematically derived risk-scoring formula was
as follows:

RiskScore RS( ) � EXPZFP64* −0.044( ) + EXPTOMM34* −0.041( )
+ EXPDNMT3B * 0.131( )
+ EXPCSTF1* −0.273( ) + EXPTM9SF4* 0.264( )
+ EXPTTI1 * 0.136( ) + EXPACTR5* −0.255( )
+ EXPSTK35* −0.006( ) + EXPSS18L1* −0.047( )

Based on the median risk score derived from the model or the
optimal cutoff value calculated using the surv_cutpoint function,
patient samples were stratified into high-risk and low-risk groups.
Kaplan-Meier survival analysis was used to assess the predictive
capability of the model.

2.8 Cell culture and transfection

Cell lines AGS, BGC-823 and HGC-27 were obtained from
Shanghai Institute of Biochemical Cell Science, Chinese Academy of
Sciences. BGC-823 cells were cultured in Dulbecco’s modified
Eagle’s medium (DMEM) and AGS cells were cultured in
DMEM/F12. All the culture mediums were supplemented with
10% fetal bovine serum (FBS), 100 units/mL penicillin, and
100 mg/mL streptomycin (Gibco, 15140-122, United States). The
cells were cultured in a constant temperature incubator equilibrated
with 5% CO2 at 37°C. The sources and culture conditions of other
cell lines are detailed in Supplementary Table S2. All experiments
were performed with mycoplasma-free cells.

All plasmids were verified by DNA sequencing and transfected
using TurboFect™ reagent (ThermoFisher, R0531, USA). SiRNAs
for gene knockdown were transfected using Lipofectamine
RNAiMAX reagent (Invitrogen, 13778-150, United States). The
siRNA sequences used are listed in the Supplementary Table S3.

2.9 Real-time quantitative polymerase chain
reaction (real-time qPCR) analysis

Total RNA was extracted using TRIzol reagent. Subsequently,
reverse transcription was performed using the PrimeScript™ RT
Master Mix (Takara, RR036A, Japan), according to the
manufacturer’s instructions. qPCR was conducted using FastStart
Universal SYBR Green Master (Roche, 4913914001, United States),
where β-actin was analyzed as the loading control. The relative

expression of target genes was calculated using the 2−ΔΔCT method.
The primers used are listed in Supplementary Table S4.

2.10 Western blot

Total proteins were separated via SDS-PAGE. The proteins were
transferred onto the PVDF membrane and blocked using 5% skim
milk at room temperature for 1 h, followed by immunoblotting with
the indicated antibodies overnight, including anti-YTHDF1
(Proteintech, Cat No.17479-1-AP, China) and anti-DNMT3B
(Cell Signaling Technology, 57868S, United States). After
incubation with secondary antibodies for 1 h at room
temperature, the membranes were washed and transferred onto
an X-ray radiographic cassette and treated with ECL Super Signal™
West Pico PLUS (ThermoFisher, 34580, USA). Subsequently, the
membranes were blotted onto X-ray films for visualization.

2.11 Methylated RNA immunoprecipitation
(MeRIP) and RIP

TheMeRIP-qPCR assay was conducted using a MeRIP assay kit,
according to the manufacturer’s instructions (Bersinbio, China).
The RIP assay was performed using approximately 2 × 107 cells per
sample, and the specific experimental steps were based on previously
methods reported (Gagliardi andMatarazzo, 2016). The m6A sites of
DNMT3B were predicted using SRAMP (http://www.cuilab.cn/
sramp) (Zhou et al., 2016), and primers containing m6A sites
were subsequently designed. The primers used are listed in
Supplementary Table S5.

2.12 EdU assay

GC cells with overexpression or depletion of the indicated genes
and control were seeded into 96-well plates at a density of 6 × 104

cells per well. DNA proliferation was detected after the cells were
cultured overnight using an EdU assay kit (RiboBio, Bes5203-1,
China). Images were acquired using an inverted fluorescence
microscope and statistically analyzed using ImageJ software.

2.13 Cell migration and invasion assay

For the cell migration assay, Transwell chamber filters were
placed in 24-well plates. Cells transfected with indicated siRNAs
were suspended in serum-free medium, and 8 × 104 cells were seeded
into the upper chamber of the wall, whereas the lower chamber was
cultured in medium containing 15% FBS. Following incubation for
24 h, the cells were fixed with 4% paraformaldehyde for 20 min, then

FIGURE 2 (Continued)

high and low cohort. Log-rank test shows an overall p = 0.023; (G) Heat map of distribution of five kinds of immune cells in different immune
invasion groups; (H)Gene expression level ofm6Amethylation regulator in different immune infiltration groups; (I)Correlation between the expression of
m6A regulator and the proportion of immune cells. pp < 0.05, ppp < 0.01, pppp < 0.001; two-tailed unpaired t-test.
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stained with 0.1% crystal violet after which the cells in the upper
chamber were removed. Images were acquired under an inverted
microscope and statistically analyzed using ImageJ software. For the
cell invasion assay, Transwell chamber filters wrapped in 10%
Matrigel (Corning, 354234, United States) were used.

2.14 Statistical analysis

Data analyses were performed using GraphPad Prism (version
9.1.1) and results are displayed as the mean ± SD. Student’s t-test
was used to compare differences between the two groups. Potential
m6A modification sites were predicted using SRAMP (http://www.
cuilab.cn/sramp). Survival curves were plotted using the Kaplan-
Meier “survival” package in R (version 3.4.3), where the log-rank test
was used to assess statistical significance. Statistical significance was
set at p < 0.05.

3 Results

3.1 Landscape of TME in GC and infiltration
characteristics in distinct m6A
modification patterns

m6A methylation modification patterns mediated by
31 regulators were analyzed in patient-derived GC samples.
The m6A methylation mediated by regulators classified as
“writers”, “erasers” and “readers” is a dynamic reversible
process (Supplementary Figure S1A). We employed the R
package “ConsensusClusterPlus”, a tool specifically designed
for the robust class discovery and visualization of gene
expression datasets, and all GC samples into two distinct
groups (Figure 2A). PCA was used to evaluate these groups,
revealing significant differences between them (Figure 2B). We
utilized the PAM clustering method, with the sample correlation
coefficient calculated using Pearson correlation. As depicted in
the cumulative consistency distribution map (Supplementary
Figures S1B, S1C), there was a noticeable increase in the
broken line beyond K = 2, prompting us to categorize all GC
samples into two distinct groups. We conducted a Wilcoxon test
on the expression levels of 31 m6A regulators across both groups.
The findings highlighted that 17 methylation factors, including
YTHDC2, IGF2BP2, YTHDC1, and HNRNPC, exhibited
significant variance in expression between two sample
groups (Figure 2C).

Survival outcomes were assessed using the Kaplan-Meier log-
rank test. Factors defined as p < 0.05 were determined to be
prognostic determinants pertinent to survival rates. Incorporating
the survival data of the patients, a pronounced disparity in prognosis
was observed between the two sample clusters: cluster 1 (N = 46) and
cluster 2 (N = 221) (Figure 2D). Interestingly, no significant variance
in mutational count was observed between these clusters
(Supplementary Figure S1D). Pathway enrichment analysis was
performed on distinct subgroups using the GSVA package in R,
with significance adjusted to p < 0.05. The findings revealed
associations of distinct subgroups with several pathways and
functional modalities, including the p53 pathway, interferon γ

response, and reactive oxygen species pathways (Table 3;
Supplementary Figure S1E).

Using the CIBERSORT algorithm in tandem with the
LM22 signature matrix, we ascertained the proportional
abundance of 22 immune cell subtypes within GC specimens.
Univariate Cox regression analysis was performed on 19 immune
cell categories. Three immune cell types, namely CD4 naïve
(detected in only three samples), T cell gamma delta (present in
18 samples), and eosinophils (identified in 21 samples), were
excluded from the analysis because of their infrequent
occurrence, rendering them unsuitable for a statistically robust
Cox regression analysis. Our investigation revealed that naïve
B cells, plasma cells, activated CD4+ memory T cells, and five
additional immune cell types exhibited a pronounced correlation
with prognosis (Figure 2E). By incorporating patient survival
information, we observed a pronounced difference in prognosis
between the two sample types characterized by distinct immune
infiltration (Figure 2F). Subsequently, based on the infiltration
metrics of these five salient immune cells, patient specimens were
stratified into two discrete clusters, termed high-infiltration and low-
infiltration, using the K-means unsupervised clustering technique.
Within these classifications, the sample distribution was 196 with
high infiltration and 71 with low infiltration (Figure 2G).

According to the immune infiltration grouping, Wilcoxon test
was performed on the expression of 31 m6A regulators in the two
groups of samples. Our analysis revealed that the expression of m6A
methylation factors, notably YTHDC2, METTL16, and YTHDF1,
was significantly different between the two groups (Figure 2H).
Subsequently, the Pearson correlation coefficient between the
31 m6A RNA methylation factors and the infiltration proportion
of the 22 immune cell types was calculated using the R package
psych. Remarkably, most m6A methylation factors were correlated
with the infiltration proportions of certain immune cells,
particularly CD4 memory-activated T cells and follicular helper
T cells (Figure 2I).

3.2 Correlation of hub genes with m6A
regulators and immune infiltration

The gene expression profile data of 267 patient samples and
32 control samples from the TCGA database were used for
differential gene screening and differential gene expression
analysis. According to the multiple differences (|log2FC| > 0.585)

TABLE 3 Pathway enrichment analysis of distinct subgroups.

Pathways Log2FC p-value

p53 pathway 0.228439016 0.000840047

Interferon Gama response pathway 0.270472645 0.001019054

Reactive oxygen species pathway 0.24754051 0.001019054

IL6/JAK/STAT3 signaling pathway 0.223662681 0.004037033

Allograft rejection pathway 0.234698376 0.004037033

Inflammatory response pathway 0.198208664 0.010601234

Interferon alpha response pathway 0.22826432 0.012046511
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FIGURE 3
Correlation of hub genes with m6A regulators and immune infiltration. (A) Display of differential gene volcano map; (B) The heat map shows the top
100 |log2FC| of differential genes; (C)Gene dendrogram andmodule colors; (D)Module-trait relationship; (E) Correlations between hub genes. Negative
correlation was marked with blue and positive correlation with red; (F) The correlation between immune infiltration types and hub genes DNMT3B,
ZNF64, CSTF1; (G) The correlation between m6A regulators and hub genes DNMT3B, ZNF64, CSTF1; (H) Analysis of the differences in immune
infiltration and SCNAs among hub genes. pp < 0.05, ppp < 0.01, pppp < 0.001; two-tailed unpaired t-test.
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FIGURE 4
Construction and validation of a prognostic model based on hub genes. (A) The trajectory of independent variables in Least Absolute Shrinkage and Selection
Operator (LASSO) regressionanalysisof9hubgenes ingastriccancer; (B)LineplotLASSOregressionanalysisof9hubgenes ingastriccancer; (C)Kaplan-Meieranalysisof
DNMT3Bhigh-and low-expressiongroups forgastriccancer fromTCGA; (D)ROCcurveof 1-year, 3-year and5-year survivalprobability ingastriccancer fromTCGA; (E)
Kaplan-Meier analysis of high-risk and low-risk groups for gastric cancer from TCGA; (F)Classify gastric cancer patients into different risk groups according to the
median risk score; (G)Distributionof risk score ingastric cancer; (H)Heatmapof the9prognosis-relatedhubgenesexpressionprofiles combinedwithclinical traits in the
high-risk and low-risk groups in the prognostic model; (I) Kaplan-Meier analysis of high-risk and low-risk groups for gastric cancer fromGSE62254 dataset; (J)Classify
gastric cancer patients fromGSE62254dataset intodifferent risk groups according to themedian risk score; (K)Distributionof risk score in gastric cancer; (L)Heatmapof
the 9 prognosis-related hub genes expression profiles GSE62254 dataset; (M) ROC curve of RiskScore, Age, Gender and Stage in gastric cancer from TCGA.
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and significance threshold (FDR < 0.01), 4,391 DEGs were screened
using the R package Lima, including 3,232 upregulated and
1,159 downregulated genes (Figures 3A, B).

Leveraging 4,391 DEGs, we constructed a weighted gene co-
expression network using the R package WGCNA. Cluster analysis
indicated the presence of an outlier sample; therefore, subsequent
analyses focused on the remaining 266 samples. Our analysis
confirmed that the constructed co-expression network adhered to
a scale-free topology. Specifically, the logarithm log (k) of nodes with
connectivity k exhibited a negative correlation with the logarithm
log [P (k)] of the node occurrence probability, achieving a
correlation coefficient exceeding 0.8. To ensure the scale-free
nature of the network, the optimal soft-thresholding power was
determined to be β = 4 (Supplementary Figures S2A, S2B).
Subsequently, the expression matrix was transformed into an
adjacency matrix, which was then converted into a TOM.

Genes were clustered using the average link hierarchical
clustering method. By adhering to the hybrid dynamic tree-
cutting standard, a minimum module size of 30 genes was
established. After determining the gene modules using the
dynamic tree-cutting approach, the eigenvectors for each module
were computed. Module clustering was then performed,
amalgamating closely related modules into unified modules with
a set threshold of height = 0.25. This process resulted in the
identification of 13 distinct modules (Figure 3C). The statistics
for the number of genes in each module are shown in
Supplementary Figure S2C. We assessed the Pearson correlation
coefficient between the ME of eachmodule and the phenotypic traits
of the samples. The significance of the module increased with
increasing correlation coefficients. Supplementary Figure S2D
shows the eigengenes of each module with the accompanying list
denoting the phenotypic characteristics of each sample.
Subsequently, the significance value for each gene module was
calculated (Figure 3D). A heightened GS value underscores a
module’s increased relevance to cluster1 samples. The “Green”
module was the most significant module, and the related genes
were displayed in pathway enrichment analysis (Supplementary
Figure S2E). From the amalgamated insights derived from the
module-phenotypic correlation analyses, the green module
emerged as the most pertinent module in relation to m6A
clusters and immune infiltration. Using the criteria of
MM >0.7 and GS > 0.1, 37 hub genes were identified in the
green module, which exhibited strong interrelations (Figure 3E).

Subsequently, we evaluated the correlation between the
identified 37 hub genes and the proportion of immune-
infiltrating cells and m6A methylation regulators. Most hub genes
demonstrated significant correlations with the proportions of
Macrophages M0, as exemplified by DNMT3B, ZNF64, and
CSTF1 (Figure 3F; Supplementary Figures S2F, S3A).
Furthermore, m6A regulators were also correlated with the hub
genes DNMT3B, ZNF64, and CSTF1 (Figure 3G; Supplementary
Figures S2G, S3B). Most of the hub genes were significantly
correlated with YTHDF1 and IGF2BP1. Notably, DNMT3B was
positively correlated with IGF2BP1, YTHDF1, and VIRMA, and
negatively correlated with YTHDC2. Furthermore, we investigated
the effects of the hub genes on immune cell infiltration using the
TIMER database. Different types of somatic copy number
alterations regulate immune cell infiltration into the GC

microenvironment. Hub genes and YTHDF1, which are
significantly associated with these genes, markedly affected
various types of immune-infiltrating cells Figure 3H;
Supplementary Figure S2H).

3.3 Construction of a prognostic model
based on hub genes

LASSO regression analysis was used to analyze the trajectory of
the independent variables, where the x-axis represents the logarithm
of the variable λ and the y-axis denotes the coefficients of the
independent variables (Figure 4A). Figure 4B shows the
confidence intervals corresponding to each lambda value within
the LASSO regression framework. In our subsequent analyses, the
survival information of the nine hub genes identified in GC were
analyzed, among which the expression of DNMT3B is significantly
associated with poor prognosis (Figure 4C).

The risk prediction model was assessed using a ROC curve
analysis, and the area under the ROC curve values for GC patient
samples at 1, 3, and 5 years were 0.645, 0.678, and 0.748, respectively
(Figure 4D). We computed the risk score for each sample, and the
samples were divided into high- and low-risk group based on the
median score. The two groups showed significant difference in
prognosis. Kaplan-Meier curve analysis of disease progression
probability was conducted to evaluate the effects of the low- and
high-risk score groups on prognosis (Figure 4E). Results indicated
that the prognosis of high-risk group was worse than that of low-risk
one (Figures 4F, G). The heatmap generated from the expression
profiles of the nine hub genes in the prognostic model illustrate the
expression trends of the differential hub genes as the risk score of the
sample increased (Figure 4H).

To validate the efficacy of the risk-scoring model, we conducted
a validation using the GSE6254 dataset. Risk scores were computed,
based on the optimal cutoff value, samples were categorized into
high- and low-risk groups. Similarly, a significant prognostic
difference was observed between groups. Kaplan-Meier curve
analysis of disease progression probability depicted the low- and
high-risk score groups for prognosis in GSE62254 (Figure 4I). The
prognosis of high-risk patients was worse than that of low-risk ones
(Figures 4J, K). The expression profiles from the GSE62254 dataset
of the nine hub genes in the prognostic model are presented in a
heatmap (Figure 4L). Compared to Figure 4H, the differential hub
genes displayed similar trends as the risk score of the sample
increased. Using ROC curves to display different clinical factors
and the “RiskScore” to distinguish the survival probability of
samples, the results showed that “RiskScore” had the best
classification effect (Figure 4M).

3.4 Validation of hub genes

To verify the outcome prediction value of these nine hub genes
in GC, we obtained their expression patterns in GC samples from the
HPA database (https://www.proteinatlas.org/). Consistent with the
above results, high expression of DNMT3B, TM9SF4, and TTI1 was
observed in GC, whereas the expression of ZFP64, TOMM34,
CSTF1, ACTR5, STK35, and SS18L1 was lower in GC
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FIGURE 5
Validation of hub genes. (A) Immunohistochemistry (IHC) of 9 hub genes in gastric cancer and normal samples from theHPA database (https://www.
proteinatlas.org/); (B) Expression profile of 9 hub genes (ZFP64, TOMM34, DNMT3B, CSTF1, TM9SF4, TTI1, ACTR5, STK35, SS18L); (C) The mRNA
expression of DNMT3B in the normal human gastric epithelial cell line GES-1 and gastric cancer cell lines SNU-5, AGS, BGC-823, SGC-7901, MGC-803,
HGC-27; (D) m6A dot blot of total RNA in the normal human gastric epithelial cell line GES-1 and gastric cancer cell lines SNU-5, AGS, BGC-823,
SGC-7901, MGC-803, HGC-27; (E) m6A dot blot of total RNA in the in adjacent and tumor tissues of gastric cancer samples; (F) Analysis of the mRNA
expression of YTHDF1 and IGF2BP1 in the normal human gastric epithelial cell line GES-1 and gastric cancer cell lines SNU-5, AGS, BGC-823, SGC-7901,

(Continued )
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(Figure 5A). Among these, DNMT3B, ACTR5 and
TM9SF4 demonstrated significant prognostic differences when
expressed at high or low levels (Supplementary Figure S4). To
further investigate the expression of these nine hub genes in GC,
we measured their expression in the normal human gastric epithelial
cell GES-1 and in the cancer cell SNU-5, AGS, BGC-823, SGC-7901,
MGC-803, and HGC-27 by qPCR. DNMT3B expression was
significantly higher in tumor cells than normal epithelial cell
GES-1 (Figures 5B, C).

We analyzed the modification levels of m6A in normal epithelial
and GC cells using m6A dot blot experiments. Interestingly, the
modification level of m6A was higher than that in normal epithelial
cells (Figure 5D). Similarly, in RNA extracted from clinical tissue
samples, m6A modification in tumor tissue was observed to be
higher than in adjacent tissues (Figure 5E). Based on these findings,
we hypothesize that in the pathogenesis of gastric cancer, there is an
upregulation of m6A modifications, which in turn regulates key
genes critical to the oncogenic processes, thereby facilitating the
progression of cancer.

Previous results reported a positive correlation between the
expression of DNMT3B and that of m6A “reader” YTHDF1 and
IGF2BP1. We speculate that the modification of m6A may lead to
an increase in the expression of DNMT3B, during which
YTHDF1 or IGF2BP1 recognizes the m6A modification site of
DNMT3B mRNA, thus stabilizing DNMT3B mRNA and
promoting the occurrence and development of GC. Therefore,
the relationship between m6A modification and DNMT3B
expression should be further investigated in future research.
We detected the expression of YTHDF1 or IGF2BP1 in
normal epithelial and tumor cell lines. YTHDF1 was highly
expressed in cancer cells, while IGF2BP1 did not exhibit
statistically significant differences (Figures 5F, G). To further
investigate the molecular mechanism by which
YTHDF1 regulates DNMT3B, YTHDF1 was overexpressed and
knocked down in AGS and BGC-823 cells. As expected,
DNMT3B exhibited changes consistent with those of YTHDF1
(Figures 5H–J). Similarly, we also examined the expression
changes of DNMT3B after overexpression or knockdown of
IGF2BP1. The results showed that IGF2BP1 did not
significantly affect the mRNA expression levels of DNMT3B
(Supplementary Figure S5A). Furthermore, by overexpressing
or knocking down the m6A methyltransferase METTL3 to alter
the overall m6A modification level in cells, we examined nine hub
genes, including DNMT3B. The results showed that an increase
in the overall m6A modification level upregulated ZFP64,
TOMM34, DNMT3B, TM9SF4, whereas a decrease
downregulated DNMT3B (Supplementary Figure S5B, S5C).

To validate the association between YTHDF1 and DNMT3B
mRNA, RIP and MeRIP assays were conducted. Two pairs of
primers were designed respectively, according to the two highest
confidence m6A methylation sites predicted by SRAMP.
Subsequently, primer #1 and primer #2 were identified by qPCR
(Figure 5K). Then, a direct interaction between YTHDF1 and
DNMT3B mRNA was validated by RIP-qPCR with anti-YTHDF1
antibody (Figure 5L). Then we detected the DNA methylation levels
in cells overexpressed or knocked down YTHDF1 using 5mC dot
blot. We also performed methylene blue staining as a nucleic acid
loading control. Accompanied by the overexpression of YTHDF,
DNMT3B protein also increases, leading to DNAmethylation levels
increasing. Similarly, knocking down YTHDF1 also led to a decrease
in DNA methylation levels in AGS and BGC-823 cell lines
(Figure 5M). Collectively, YTHDF1 promotes DNMT3B protein
expression by a direct interaction with DNMT3B mRNA, which
resulting a crosstalk between RNA methylation and DNA
methylation in GC.

3.5 YTHDF1 promotes the progression of GC
by regulating DNMT3B

Studies have shown that both YTHDF1 and DNMT3B facilitate
the tumorigenesis in GC (Wong et al., 2019; Chen et al., 2021; Bai
et al., 2022). Consistent with previous reports, the overexpression of
YTHDF1 and DNMT3B, respectively, promotes the proliferation of
GC cells AGS and BGC-823. Simultaneously, knocking down
YTHDF1 results in an inhibition of GC cells (Figures 6A, B).
The efficiency of gene overexpression or knockdown is depicted
on the right side of the figure. EdU incorporation assays were
conducted in AGS and BGC-823 cells transfected with the vector,
YTHDF1, DNMT3B, as well as two different siRNAs targeting
YTHDF1 or DNMT3B, to assess DNA proliferation. Both
YTHDF1 and DNMT3B promoted GC cell proliferation, and the
cell proliferation promoted by YTHDF1 overexpression can be
reversed by knocking down DNMT3B. On the contrary,
knocking down YTHDF1 also attenuated the cell proliferation
promotion ability of DNMT3B (Figure 6C).

To further validate the functions of YTHDF1 and DNMT3B in
GC, we conducted migration and invasion experiments in AGS and
BGC-823 cells. The findings demonstrate that overexpression of
YTHDF1 and DNMT3B enhances the migration and invasion of GC
cells. Moreover, the migration and invasion abilities promoted by
YTHDF1 overexpression can be reversed by knocking down
DNMT3B, and knocking down YTHDF1 also reduced the
migration and invasion promotion by DNMT3B (Figures 6D, E).

FIGURE 5 (Continued)

MGC-803, HGC-27 via RT-qPCR; (G)Analysis of expression of YTHDF1 and IGF2BP1 in the normal human gastric epithelial cell line GES-1 and gastric
cancer cell lines SNU-5, AGS, BGC-823, SGC-7901, MGC-803, HGC-27, β-actin served as a loading control; (H) Analysis of the proteins from AGS and
BGC-823 cells transfected with vector, YTHDF1, or NC, two different siRNA against YTHDF1 were analyzed by Western blot; (I) Analysis of the mRNA
expression of YTHDF1 in AGS and BGC-823 cells transfected with vector, YTHDF1, or NC, two different siRNA against YTHDF1 were analyzed by RT-
qPCR; (J) Analysis of the mRNA expression of DNMT3B in AGS and BGC-823 cells transfected with vector, YTHDF1, or NC, two different siRNA against
YTHDF1 were analyzed by RT-qPCR; (K) Me-RIP assays; (L) RIP assays; (M) 5mC DNA were analyzed in AGS and BGC-823 cells transfected with vector,
YTHDF1, or NC, two different siRNA against YTHDF1 by 5mC dot blot. Error bars represent the mean ± SD of three independent experiments. pp < 0.05,
ppp < 0.01, pppp < 0.001; two-tailed unpaired t-test.
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To investigate the effects of YTHDF1 and DNMT3B on cell
apoptosis, we stained cells transfected with the vector, YTHDF1,
DNMT3B, as well as two different siRNAs targeting YTHDF1 or

DNMT3B with dUTP labeled with a red fluorescent probe Cyanine
3. The results showed that both YTHDF1 and DNMT3B can inhibit
cell apoptosis, while knocking down YTHDF1 or DNMT3B can

FIGURE 6
YTHDF1 promotes the occurrence and development of gastric cancer by regulating DNMT3B. (A,B) Growth curve analysis was performed in AGS
cells transfected with indicated genes; (C) EdU incorporation assays were performed in AGS and BGC-823 cells transfected with indicated genes; (D)
Migration assays assay; (E) Invasion assays; (F)One step TUNEL apoptosis assays. Error bars represent the mean ± SD of three independent experiments.
pp < 0.05, ppp < 0.01, pppp < 0.001; two-tailed unpaired t-test.
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accelerate cell apoptosis caused by YTHDF1 and DNMT3B
(Figure 6F). Thus, YTHDF1 promotes the progression of GC by
upregulating DNMT3B, and inhibiting DNMT3B contributes to
reduce the tumor promotion ability of YTHDF1.

4 Discussion

Cancer progression, driven by genetic and epigenetic
aberrations, has received considerable attention. Our exploration
of the role of m6A modification in GC has further underscored the
functions of m6A methylation factors, both in the realm of genetic
modulation and their interplay with the tumor microenvironment.
Controlled by methylation regulators, m6A RNA modification
patterns influence many key oncological processes, such as tumor
proliferation, differentiation, and metastasis, with profound
implications (Wang T. et al., 2020; Jiang et al., 2021). Analyzing
m6A modification patterns in GC samples revealed distinct
subgroups for diagnosis, guiding therapeutic strategies and
ensuring personalized patient care.

Our findings highlight the critical role of immune cell
infiltration in GC prognosis. The differences in prognosis
between the high- and low-infiltration cohorts highlight the
crucial influence of the TME on disease outcomes. This is
congruent with current oncology paradigms that emphasize the
significance of immune-tumor interactions. The identification of the
“green”module viaWGCNA showcases a direct association between
the m6A RNAmethylation cluster and immune infiltration patterns.
This intersection of epigenetic regulation and immune dynamics
underscores the holistic nature of cancer progression.

Establishing a risk prediction model based on a selected group of
hub genes has potential clinical utility. Upon validation in larger and
more diverse patient cohorts, this model could emerge as a reliable
tool for risk stratification in patients with GC. The nine hub genes
used to establish the risk prediction model are vital for cancer
progression. ZFP64 enhances the activation of the p65 subunit,
thereby promoting the production of pro-inflammatory and type-I
interferons by Toll-like receptor-activated macrophages (Wang
et al., 2013). Overexpression of ZFP64 promotes the proliferation
of lung adenocarcinoma cells through activating the Notch pathway
and is associated with poor prognosis (Jiang et al., 2020).
ZFP64 functions as a transcription factor that promotes the
expression of Galectin-1 (GAL-1), contributing to stem-cell-like
properties and an immunosuppressive tumor environment. This
activity enhances resistance to the chemotherapy drug nab-
paclitaxel, playing a key role in the progression and
chemoresistance of gastric cancer (Zhu et al., 2022). CD4+ T cells
specifically induce the expression of mitochondrial TOMM34
(Gerner et al., 2019), and the role of TOMM34 in cancer cell
growth suggests its potential in anti-cancer drug development or
colorectal cancer diagnosis (Shimokawa et al., 2006). TOMM34 was
identified as differentially expressed between intestinal-type and
diffuse-type gastric cancer, suggesting it plays a role in the distinct
molecular pathways of these cancer subtypes. This involvement may
relate to processes important in cancer progression, such as
adaptation to stress and resistance to therapy (Tanabe et al.,
2020). DNMT3B is widely overexpressed in non-small cell lung
cancer (NSCLC) and may be a potential molecular biomarker for

personalized therapy (Samakoglu et al., 2012). DNMT3B influences
tumor development through its enzymatic activity. Specifically,
S-nitrosylation of DNMT3B reduces its enzymatic activity,
leading to an abnormal upregulation of the Cyclin D2 gene
(CCND2), which is necessary for the proliferation of certain
tumor cells (Okuda et al., 2023). In gastric cancer, DNMT3B
promotes tumor progression by methylating the MYH11 gene,
thereby decreasing its expression and allowing the increase of
TNFRSF14, which supports cancer development. This highlights
DNMT3B as a potential target for cancer therapy (Wang et al.,
2021). CSTF1, pivotal in DNA damage repair, is linked to increased
breast cancer risk in BRCA2 mutation carriers due to CSTF1
mutations (Paolillo et al., 2015). In the study on gastrointestinal
stromal tumors (GISTs), CSTF1 was involved in a fusion with
Aurora kinase A (AURKA). This suggests that CSTF1, through
this fusion, could play a role in the progression or behavior of GISTs,
although specific mechanisms were not detailed (Denu et al., 2024).
TM9SF4, primarily involved in cell adhesion and innate immunity,
is overexpressed in a small subset of patients with metastatic
melanoma, acute myeloid leukemia, and myelodysplastic
syndromes (Paolillo et al., 2015). TM9SF4 was identified as a key
gene in the regulatory network affecting response to cisplatin and
fluorouracil treatment. Its specific role isn’t detailed, but its
prominence in the network suggests it may influence
mechanisms underlying chemoresistance (Sun et al., 2021). The
interaction of Tti1 with mTOR in both mTORC1 and
mTORC2 complexes regulates autophagy suppression (Kaizuka
et al., 2010). ACTR5 has a pro-tumorigenic effect in
neuroblastoma, and the knockdown of ACTR5 reduces cell
proliferation and differentiation abilities (Veschi et al., 2017).
STK35 regulates apoptosis and proliferation in osteosarcoma cells
in osteosarcoma, exhibiting oncogenic properties (Wu et al., 2018).
STK35 has been linked to immune signatures in gastric cancer,
suggesting it may impact the immune response and effectiveness of
immunotherapy. This connection highlights STK35 as a potential
target for improving treatment outcomes (He and Wang, 2020).
SS18L1 is associated with the occurrence and development of
endometrial serous carcinoma (Saglam et al., 2020). SS18L1 has
been identified as having copy number variations significantly linked
to tumor metastasis. This association suggests that SS18L1 may
influence the spread of gastric cancer, making it a potential marker
or target for therapeutic strategies (Zhu et al., 2020).While these genes
are implicated in tumor development and progression, their specific
mechanisms in GC remain incompletely understood. Therefore, the
nine hub genes identified through integration of m6A modification
characteristics and the TME may play important roles in the
prognostic assessment of patients with GC.

Furthermore, we found that DNMT3B was positively correlated
with IGF2BP1 and YTHDF1, upon evaluating the correlation of
these 37 hub genes with m6A methylation regulators and the
proportion of immune-infiltrating cells. In a series of molecular
experiments and cellular phenotypic validations, we demonstrated
that DNMT3B and YTHDF1 cooperate to promote the proliferation,
invasion, and metastasis of GC cells. YTHDF1 plays an important
role in GC progression, and its functions andmolecular mechanisms
have been extensively investigated. High expression of YTHDF1 is
associated with more aggressive tumor progression and poor
prognosis in GC. Engineered small extracellular vesicles targeting
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YTHDF1 efficiently suppress GC progression and metastasis
through epigenetic and immune modulation (You et al., 2023).
The loss of YTHDF1 in gastric tumors potentiates the antitumor
immune response by promoting the infiltration of mature dendritic
cells (Bai et al., 2022). Elevated YTHDF1 expression also acts as a
shield against the antitumor effects of chemotherapy and
immunotherapy (Chen et al., 2022). Moreover,
YTHDF1 overexpression holds clinical diagnostic significance
across various cancers, including NSCLC, breast cancer, cervical
cancer, GC, and colorectal cancer (Zhu Y. et al., 2023). YTHDF1 is
significantly associated with metastatic gene signatures through
ARHGEF2 translation and RhoA signaling activation in
colorectal cancer (Wang et al., 2022). YTHDF1 directly targets
p65 mRNA, promoting p65 protein overexpression without
altering mRNA levels in Ythdf1-KO cells (Bao et al., 2023).
YTHDF1 promotes cancer stem cell renewal and resistance to
tyrosine kinase inhibitors in hepatocellular carcinoma (HCC),
which enhances the stability and translation of m6A-modified
NOTCH1 mRNA, leading to increased expression of
NOTCH1 target genes. YTHDF1 drives HCC stemness and drug
resistance, making it a potential therapeutic target for HCC
treatment (Zhang et al., 2024). YTHDF1 promotes migration,
invasion, and osteoblast adhesion and induces osteoclast
differentiation of cancer cells in vitro and in vivo by inducing
EZH2 and CDH11 translation (Wang et al., 2024).

In conclusion, our study highlights the intricate ties between
m6A RNA methylation and TME dynamics in GC. As we move
toward precision medicine, such insights will be pivotal in driving
therapeutic innovations and improving patient outcomes. In
addition, utilizing MeRIP and RIP experiments, we elucidated the
molecular mechanism underlying the regulation of DNMT3B
expression by m6A “reader”.

YTHDF1 and explored the crosstalk between m6A modification
and 5mC modification in GC cells. Although our findings are
promising, further investigations are essential to fully understand
the mechanistic underpinnings and translate these insights into
applicable clinical strategies.
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