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Keloid scars (keloids), a prototypical form of aberrant scar tissue formation,
continue to pose a significant therapeutic challenge within dermatology and
plastic surgery due to suboptimal treatment outcomes. Gelatinases are a
subgroup of matrix metalloproteinases (MMPs), a family of enzymes that play
an important role in the degradation and remodeling of the ECM (a pivotal factor
for keloids development). Gelatinases include gelatinase A (MMP-2) and
gelatinase B (MMP-9). Since accumulating evidence has shown that
gelatinases played a crucial role in the process of keloid formation, we
summarized the current knowledge on the association between MMP-2 and
MMP-9 expression and the pathological process of keloids through a
comprehensive review. This review demonstrated that the interplay between
MMP-2, MMP-9, and their regulators, such as TGF-β1/Smad, PI3K/AKT, and
LncRNA-ZNF252P-AS1/miR-15b-5p/BTF3 signaling cascades, involved in the
intricate balance governing ECM homeostasis, collectively driving the
excessive collagen deposition and altered tissue architecture observed in
keloids. In summary, this review consolidates the current understanding of
MMP-2 and MMP-9 in keloid pathogenesis, shedding light on their intricate
involvement in the dysregulated keloids processes. The potential for targeted
therapeutic interventions presents promising opportunities for advancing keloid
management strategies.
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1 Introduction

Keloid scars (keloids), a type of abnormal scar tissue formation, remain a therapeutic
challenge in the field of dermatology and plastic surgery. The characteristic of keloids is the
dysregulated fibroproliferation, excessive production of extracellular matrix (ECM), and
extension beyond the initial wound (Khattab et al., 2022). Patients suffering from keloids
often feel pruritus and pain, which cause immense physical and mental problems and
profoundly impair the quality of life (Tian et al., 2023). Epidemiological studies have
demonstrated a higher prevalence of keloids among females. Furthermore, individuals of
African and Asian descent, particularly those with darker skin complexions, exhibit a
greater incidence of keloid formation. The estimated prevalence of excessive scarring was
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2.4%, 1.1% and 0.4% in Black, Asians and Caucasians, respectively
(Lee et al., 2023). Therefore, an in-depth study on keloids is of
profound significance. Currently, the pathogenesis of keloids
remains unclear. Although there are various clinical treatment
methods available, none of them can fundamentally cure keloids.
In addition, keloids are highly susceptible to recurrence, and the
keloids continue to grow and invade surrounding normal tissues.

The pathogenesis of keloids is complex, which is a confluence of
multiple contributing factors. A lack of animal models has limited
investigational studies into exact pathological mechanism of keloid
formation (Ekstein et al., 2021). Scar formation and tissue
regeneration are essential processes of organism repair injury
(Wei et al., 2020). The wound healing processes leading to tissue
repair and regeneration are generally divided into four phases:
hemostasis, inflammation, proliferation, and remodeling
(Sathiyaseelan et al., 2023). The recruitment of inflammatory
cells and fibroblasts contribute to scar remodeling in the early
phase of wound healing (Perez et al., 2017). Specifically,
fibroblasts create a collagen-containing ECM that is balance of
synthesis and degradation (Li et al., 2023; Van Haaften et al.,
2020). Therefore, an imbalance between collagen production and
ECM degradation contributes to scar formation. Many researchers
have found that the excessive ECM production is closely associated
with a decrease or increase of matrix metalloproteinases (MMPs),
especially gelatinases (Panichakul et al., 2022; Seyed et al., 2023).

MMPs are a family of zinc-dependent endopeptidases, and
they share a common structural motif, known as the catalytic
domain (Anchan et al., 2022). This domain contains a catalytic
zinc ion required for their enzymatic activity (Bonvicini et al.,
2014). MMPs are divided into different subgroups based on their
substrate specificity and domain structure. Some common
subgroups include collagenases, gelatinases, stromelysins, and
membrane-type MMPs (Li et al., 2022). MMPs play a crucial role
in the degradation and remodeling of the ECM. The ECM is a
complex network of proteins and carbohydrates that provides
structural and biochemical support to cells (Caon et al., 2020).
MMPs are responsible for breaking down various components of
the ECM, allowing for tissue remodeling, wound healing, and
other physiological processes (Kim et al., 2022; Zhang et al.,
2023). Recently, MMPs have been shown to participated in the
pathogenesis of many diseases, including keloids, idiopathic
pulmonary fibrosis and various tumors (Chen et al., 2022; de
Almeida et al., 2022; Herzog et al., 2019). Meanwhile, MMPs have
been proposed as appropriate therapeutic targets for many
diseases (Craig et al., 2015; Liu et al., 2023). Luo et al. (2023)
reported that oleanolic acid significantly suppressed keloid
fibroblast proliferation and reduced ECM deposition by
increasing the level of MMP-1, suggesting that oleanolic acid
might be a potent drug for treatment of keloids. Similarly, Jeon
et al. (2016) also found that hepatocyte growth factor can be used
to treat keloids by increasing MMP-1 expression. Further study
showed that rats were treated with MMP-1 by intraperitoneal
injection significantly reduced scar formation (Keskin et al.,
2021). Some studies showed that gelatinases were also
involved in the progression of keloids. In recent years, the role
of gelatinases in keloids have received increasing attention of
researchers. In this review, we mainly summarize the current
knowledge about gelatinases in the progress of keloids.

2 The overview of gelatinases

Gelatinases are a subgroup of MMPs, a family of enzymes that
play an important role in the degradation and remodeling of the
ECM (Kalev-Altman et al., 2022). Gelatinases specifically degrade
both gelatins and collagens, and they are involved in various
physiological and pathological processes (Sukhonthasilakun et al.,
2023). Gelatinases include gelatinase A (MMP-2) and gelatinase B
(MMP-9). MMP-2 is a key enzyme involved in the degradation of
gelatin, collagen, and other ECM components (Ekstein et al., 2021).
MMP-2 is produced in a latent form and needs to be activated to
perform its enzymatic function (Ekstein et al., 2021). MMP-9 is
another enzyme that specifically targets gelatin and other ECM
proteins (Hur et al., 2022). Like MMP-2, MMP-9 is secreted in an
inactive form (Hur et al., 2022). The activation of MMP-2 and
MMP-9 typically involves the removal of a propeptide domain (Jang
et al., 2022). Several factors, including tissue inhibitors of
metalloproteinases (TIMPs) and other proteases, are involved in
this activation process (Eiro et al., 2023). TIMPs are a specific
endogenous inhibitor and block access to ECM substrates by
binding to the active site of MMPs (Robert et al., 2016). As a
receptor of MMPs, TIMP-2 connects MMPs with membrane-type
matrix metalloproteinase-1 (MT1-MMP) (Sato and Takino, 2010).
TIMP-2 can promote the activation of MMPs proenzyme when
MT1-MMP is removed from the binding of TIMP-2 (Sato and
Takino, 2010). Gelatinases play essential roles in tissue remodeling,
wound healing, and organ homeostasis by effecting angiogenesis,
tissue repair, and cell migration (Aksoy et al., 2019; Ravanti and
Kahari, 2000). Dysregulation of gelatinases is associated with various
diseases, including keloids (Hao et al., 2018; Ulrich et al., 2010). For
example, overactivity of gelatinases has been linked to excessive
tissue degradation in diseases such as cancer metastasis, arthritis,
and tissue fibrosis (Orsolic et al., 2020). On the other hand,
insufficient gelatinase activity can lead to abnormal tissue repair
and chronic inflammation (Brilha et al., 2018).

The regulation mechanism of gelatinases involves a complex
interplay of various factors. The expression of gelatinases, like other
MMPs, is modulated by transcriptional and posttranscriptional
regulation. It was reported that inflammatory signals could increase
MMP-2 andMMP-9 gene expression by activating transcription factors
like AP-1, NF-κB, and SP-1 (Aljada et al., 2001; Shen et al., 2022; Yang
et al., 2022). Fan et al. (2022) found that Kangfuxiaoyanshuan, a
Traditional Chinese Medicine formulation, alleviated inflammation
by inhibiting the NF-κB activation through decreasing
phosphorylation of p65, resulting in reduced expression of TGF-β
andMMP-2. In addition, growth factors and cytokines, such as TGF-β,
EGF, and TNF-α, were also reported to modulate the expression and
activity of gelatinases (Kondapaka et al., 1997; Rajashekhar et al., 2014;
Tian et al., 2007). They can stimulate or inhibit MMP-2 and MMP-9
production through various signaling pathways, depending on the
context and cell type (Kondapaka et al., 1997; Rajashekhar et al.,
2014; Tian et al., 2007). For example, TNF-α has been proven to
play an essential role in herpes simplex keratitis by stimulating MMP-2
and MMP-9 activities through the activation of FAK/ERK signaling in
human corneal epithelial cells (Yang et al., 2012). It has also been shown
that epigenetic modifications, such as DNA methylation and histone
acetylation, affect gelatinase expression by influencing the accessibility
of the MMPs gene promoter regions to transcription factors
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(Duraisamy et al., 2017; Liang et al., 2022). Studies showed thatMMP-2
and MMP-9 can influence the overall MMPs activity by cleaving and
activating latent forms of other MMPs, which indicated that gelatinases
themselves, along with other MMPs, can participate in feedback loops
(Kim et al., 2014).

Numerous studies have demonstrated that MMP-2 and MMP-9
are critical in cell proliferation, differentiation, apoptosis and
angiogenesis, and are extensively implicated in the pathogenesis
of various diseases, including neurological diseases, diverse tumors,
and inflammatory conditions. Studies suggested that level ofMMP-2
and MMP-9 significantly increases in the brain after stroke (Kumar
and Patnaik, 2018). However, inhibition of MMP-2 and MMP-9
confers neuroprotection in stroke (Kumar and Patnaik, 2018).
Lambert et al. (2003) reported that the expression of MMP-2 and
MMP-9 were increased in human choroidal neovascularization
occurring during the exudative most aggressive form of age-
related macular degeneration. Additionally, inhibition of MMP-2
and MMP-9 could reduce angiogenesis (Lambert et al., 2003).
Further, Hwang et al. (2021) demonstrated that salinomycin
suppressed TGF-β1-induced EMT by inhibiting MMP-2 and
MMP-9 via AMPK/SIRT pathway, thereby inhibiting the cell
migration and invasion of lung cancer. Consequently, MMP-2
and MMP-9 may influence the progression of keloids through
multiple signaling pathways, either promoting or inhibiting their
development. Figure 1 shows the interactions between MMP-2 and
MMP-9 and their targeted gene/proteins and signal pathways.

3 The roles of gelatinases in the
progress of keloids

3.1 Regulation of extracellular matrix (ECM)
and collagen

3.1.1 Positive association between TGF-β1 and
MMP-2/MMP-9

The ECM plays an important role in the development of keloids
for its functions of structural support, cell adhesion, regulation of cell
signaling, mechanical stress response, and impaired remodeling (Kim
and Kim, 2024). Collagen plays multiple crucial roles in the ECM
through tensile strength, shape and integrity maintenance, and
regulation of cell adhesion and cellular signaling. Currently,
mounting studies have identified the potential effects of MMP-2
and MMP-9 and their targeted proteins/signal pathways on the
interactions of ECM or collagen molecules. TGF-β1 plays a
significant role in the development and progression of keloids.
TGF-β1 is a cytokine that is involved in various cellular processes,
including tissue repair and fibrosis. TGF-β1 is a potent stimulator of
fibroblast proliferation and collagen production. As we all known, the
overactivation of fibroblasts can lead to excessive collagen deposition.
TGF-β1 has been proved to a key factor in promoting this abnormal
fibroblast activity. Additionally, TGF-β1 induces the synthesis of
collagen, particularly type I and type III collagen, which are major
components of the ECM. Studies showed that TGF-β1 is involved in

FIGURE 1
The interactions between MMP-2 and MMP-9 and their targeted gene/proteins and signal pathways.
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the remodeling of the ECM by upregulating the expression of MMPs
and TIMPs. Zhang et al. (2017) demonstrated that activation of the
TGF-β1 by eithermechanical stress significantly attenuated fibroblasts
cell proliferation and ECM components by increasing the MMP2/
TIMP2 mRNA ratio. Increasing evidence suggests that CCN3 is a
negative regulator of the ECM (Ren et al., 2014; Yin et al., 2023). Liu
et al. (2018) reported that TGF-β1 significantly decreased the
expression of MMP-2 and MMP-9, and increased the expression
of TIMP-1 in human mesangial cells. Furthermore, TGF-β1
significantly increased the accumulation of ECM (Liu et al., 2018).
Importantly, overexpression of CCN3 attenuated TGF-β1-induced
changes in MMP-2, MMP-9 and TIMP-1 (Liu et al., 2018). These
results indicated that CCN3 inhibits accumulation of ECM by
regulating the expression of MMP-2, MMP-9 and TIMP-1 via the
regulation of TGF-β1. A recent study reported that TGF-β1 inhibitor
significantly inhibited the development of cardiac fibrosis in mutant
mice by blocking the expression of SMAD proteins, MMP-2 and
MMP-9 (Subramanian et al., 2022). Sadick et al. (2008) demonstrated
an increased expression of TGF-β1 andMMP-2 andMMP-9 in tissue
samples from keloids. Further study found that antisense TGF-β1
oligonucleotide treatment significantly decreased MMP-9 secretion,
but had no effect on MMP-2 in vitro (Sadick et al., 2008). Activating
transcription factor 3 (ATF3) is the ATF/CREB family and plays
critical roles in modulating cellular behaviors by activating or
repressing downstream genes (Wang et al., 2022). Wang et al.
(2021) demonstrated the expression of ATF3 was upregulated in
human keloid tissues. ATF3 has also been showed to suppress
apoptosis and promote invasion of keloid fibroblast cells (Wang
et al., 2021). In addition, upregulation of ATF3 significantly
elevated the level of TGF-β1 and the phosphorylation of
Smad2 and Smad3, while inhibition of ATF3 decreased TGF-β1
level and the phosphorylation of Smad2 and Smad3 in keloid
fibroblast cells (Wang et al., 2021). Meanwhile, the mRNA and
protein levels of MMP2 and MMP9 were elevated in ATF3-
overexpressing cells, and ATF3 knockdown significantly
downregulated MMP2 and MMP9 expression (Wang et al., 2021).
Consistently, Jiang et al. (2016) also reported that growth
differentiation factor-9 (GDF-9), a member of the TGF-β family,
promoted the proliferation and migration of keloid fibroblasts by
upregulating MMP-2 and MMP-9 expression, and enhancing
Smad2 and Smad3 phosphorylation. Also, other studies reach
similar conclusions (Bran et al., 2010; Lee et al., 2013; Zhao et al.,
2019). Study showed that TGF-β1 controlled cell migration and
invasion by regulating MMP-2 and MMP-9 activities (Muscella
et al., 2020). These findings suggest that the TGF-β1/Smad
signaling pathway may facilitate keloid growth by upregulating the
expression of MMP-2 and MMP-9.

3.1.2 Negative association between TGF-β1 and
MMP-2/MMP-9

Conversely, the upregulation of MMP-2 and MMP-9 have also
been reported to inhibit keloid formation. Silibinin, a natural
polyphenolic flavonoid, has been reported to possess anti-
inflammatory, antioxidant, antiapoptotic and anti-fibrotic properties
(Tuli et al., 2021). Cho et al. (2013) demonstrated that silibinin induced
the downregulation of type I collagen and inhibited the activation of
Smad2/3. Meanwhile, silibinin significantly promoted the expression of
MMP-2 (Cho et al., 2013). Therefore, silibininmay prevent fibrotic skin

changes by downregulating type I collagen expression through the
upregulation of MMP-2 and the inhibition of the Smad2/3 signaling
pathway. Accumulating evidences have indicated that thalidomide,
a-N-phthalimidoglutarimide, is important in fibrotic diseases, mainly
due to its anti-fibrotic properties (Bajwah et al., 2013; Bose and
Verstovsek, 2018). Liang et al. (2013) found that TGF-β1 could
induce fibronectin expression in keloid fibroblasts and the effect was
suppressed by pretreatmentwith thalidomide. In addition, pretreatment
with thalidomide suppressed the TGF-β1-induced phosphorylation of
Smad3 (Liang et al., 2013). Furthermore, thalidomide increased the
activity of MMP-9, leading to fibronectin degradation (Liang et al.,
2013). The findings are in consist with results obtained from results
from Spiekman et al. (2014). These results indicated that thalidomide
might inhibit keloids formation by upregulating MMP-9 expression
through the inhibition of the TGF-β1/Smad3 signaling pathway.

In the early stage of skin wound healing, the expression ofMMP-
9 is important for the removal of ECM components from damaged
tissues, which can help to create an environment conducive to cell
migration and proliferation (Banerjee et al., 2024). TGF - β1 is also
involved in the regulation of cell proliferation, differentiation, and
migration during this time period. TGF - β1 can regulate the activity
and expression of MMP-9 to a certain degree, so as to bring the
remodeling of extracellular matrix into a dynamic balance, neither
excessive degradation nor excessive deposition, and promote the
normal repair of tissues (Li et al., 2022). TGF-β1 can regulate the
activity and expression of MMP-9 to a certain extent, so that the
remodeling of the ECM is in a state of dynamic equilibrium, neither
over-degraded nor over-deposited, and the normal repair of tissues
is promoted. MMP-2 is involved in the degradation of ECM, which
is necessary for cell migration and tissue remodeling (D’Abadia
et al., 2020). TGF-β1 can indirectly inhibit MMP-2 activity by
upregulating the expression of TIMPs. A fine balance exists
between TGF-β1 and MMP-2/MMP-9 to ensure that tissue repair
occurs properly. Therefore, the relationship between them is not a
simple positive or negative correlation, but a relationship of mutual
cooperation and mutual constraint during keloid formation.

3.1.3 Roles of TIMPs in keloid formation
TIMPs are the endogenous inhibitors of MMPs.

Downregulation of TIMPs in keloid fibroblasts is found to
elevate degradation of the excessive collagen bundles in keloid
ECM. Aoki et al. found that the expression of MMP-2 was
increased in keloids expressing small interfering RNA of TIMP-1
or TIMP-2, regulating ECM degradation and remodeling through
the Collagen types I and III (Aoki et al., 2014). Fujiwara et al. (2005)
revealed that keloid-derived fibroblasts exhibited an increased
secretion of factors associated with collagen turnover and relied
on matrix metalloproteinase (i.e., MMP-1 and MMP-2) for
migration. Monocyte chemoattractant protein - 1 (MCP - 1),
which is a C–C chemokine, has been demonstrated to prompt
the recruitment of monocytes to the injured tissue and to play a
crucial role in wound healing. Yeh et al. (2009) showed that IL-1β
could induce a significant increase in MCP-1 and MMP-2
production in keloid-derived fibroblasts, which contributed to an
imbalance in ECM formation and excess deposition of collagen in
keloid. Imaizumi et al. (2009) reported that MMP-2 activity
cooperated with TIMP-2 and MT1-MMP might contribute to the
remodeling of collagen bundle areas and the invasion of fibroblasts
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into the surrounding normal regions via the promoted degradation
of the ECM. Hepatocyte growth factor (HGF) functions to
suppresses collagen synthesis. Lee et al. (2011) indicated that the
enzymatic activities of MMP-2 was positively associated with HGF
protein in the pathologic keloids, which was mediated by the
regulation of type I and III collagen. Therefore, one of the main
molecular mechanisms underlying the effects of MMP-2 and MMP-
9 might attributed to their regulation on the ECM and collagens.

3.2 miR-188-5p inhibits keloids formation by
suppressing MMP-2 and MMP-9 through
inhibition of PI3K/AKT signaling pathway

Previous studies have shown that miRNAsmay be involved in the
development of keloids (Yu et al., 2015). Recent data have shown that
miR-188-5p plays a crucial role in keloid formation. Vascular
endothelial growth factor (VEGF), a specific provascular
endothelial growth factor, is involved in keloids formation by
modulating angiogenesis (Song et al., 2018). Zhou et al. (2022)
reported that the inhibition of miR-188-5p promoted the
proliferation, migration and cell cycle process, and inhibited the
apoptosis of keloid fibroblasts. Furthermore, miR-188-5p inhibitor
positively regulate VEGFA expression (Zhou et al., 2022). In addition,
downregulation of VEGFA also abolished the promotive effect of
miR-188-5p inhibitor (Zhou et al., 2022). Therefore, miR-188-5pmay
inhibit keloids formation by repressing the expression of VEGFA. It
was reported miR-188-5p promoted tumor growth of pediatric acute
promyelocytic leukemia by activating the PI3K/AKT signaling
pathway (Wang et al., 2020). Yao et al. (2019) demonstrated that
luteolin, a naturally occurring flavonoid, induced the apoptosis and
inhibited the proliferation of humanmelanoma cells by decreasing the
expressions of MMP-2 and MMP-9 via the PI3K/AKT pathway. A
recent study from Zhu et al. (2019) indicated that miR-188-5p was
significantly downregulated in keloid tissue compared with normal
skin tissues. Upregulated expression of miR-188-5p inhibited keloids
fibroblasts proliferation, migration, and invasion (Zhu et al., 2019).
Furthermore, miR-188-5p mimics repressed the expression levels of
MMP- 2, MMP-9, PI3K, and p-AKT in keloids fibroblasts (Zhu et al.,
2019). In contrast, miR-188-5p inhibitor significantly increased the
expression of MMP-2, MMP-9, PI3K, and p-AKT. Importantly,
PI3K/AKT inhibitor reversed the promotive effect of miR-188-5p
onMMP-2 andMMP-9 in keloids fibroblasts (Zhu et al., 2019). These
findings together demonstrated that miR-188-5p inhibited keloids
formation by suppressing PI3K/AKT/MMP-2/9 signaling pathway.

3.3 Platelets (PL) may promote keloid
formation by upregulating MMP-9
expression through the regulation of
p38 and ERK1/2 pathway

As is well known, growth factors play essential roles in the tissue
neoformation and healing process (Miricescu et al., 2021). Growth
factors are involved in many of the processes to tissue repair,
including angiogenesis and cell proliferation, while they also
influence l the synthesis and degradation of ECM proteins
(Nagarkoti et al., 2023; Pot et al., 2023). Platelets contain

different growth factors and cytokines, contributing to the
formation of clot at sites of vascular injury by preventing blood
loss (Schmidt et al., 2019). In the past several decades, the research
on the physiological characteristics of platelets gradually deepened
in tissue injury, which made it possible to treat keloids with platelets.
A recent meta-analysis showed that platelet-rich plasma has a 23%
response rate in the management of scars, and it were 22% and 23%
in patients with laser or micro-needling, respectively (Ebrahimi
et al., 2022). This suggests that platelet-rich plasma seems to be a
safe and effective treatment for keloids. Tsai et al. (2023) reported
that type A platelet-derived growth factor (PDGF-AA), an
important growth factors in regulating cell growth and function,
inhibits Leydig cell growth, migration, and invasion by activating
ERK. In addition, PDGF has also been shown to facilitate the
invasion and metastasis of cholangiocarcinoma cells by
upregulating the expression of MMP-2/MMP-9 and inducing
epithelial-mesenchymal transition (EMT) through activating the
p38/MAPK signaling pathway (Pan et al., 2020). Scopelliti et al.
(2020) demonstrated that platelet lysate (PL) promoted wound
healing by increasing fibroblast production of ECM components
and keratinocyte migration. However, whether PL is involved in the
development of keloids remains unknown. Ranzato et al. (2011)
showed that PL upregulated the expression of MMP-9 rather than
MMP-2 in human keratinocyte cell line. Furthermore, both
inhibitor of ERK1⁄2 pathway and inhibitor of p38 significantly
inhibited MMP-9 activity induced by PL (Ranzato et al., 2011).
As is well known, collagen type I is a major component of ECM and
skin connective tissue, while collagen type III is secreted in the
granulation tissue that is formed during wound healing (Li et al.,
2023). PL has been reported to increase the production of collagen
type III, but has no effect on the production of collagen type I
(Ranzato et al., 2011). Taken together, PL may promote keratinocyte
epithelialization and enhancing fibroblast matrix deposition by
upregulating MMP-9 expression through p38 and ERK1/
2 pathway, leading to keloid formation. Platelets initiate a
cascade of events that lead to fibroblast activation and ECM
production, while MMP - 2 and MMP - 9 play a role in the
abnormal ECM remodeling and cell-related processes that are
characteristic of keloid formation. The interplay between these
factors is complex. At present, however, the available relevant
studies were limited, which needs further validation in future.

3.4 LncRNA-ZNF252P-AS1/miR-15b-5p/
BTF3 promotes keloid progression by up-
regulating MMP2 and MMP9 through
inhibiting JAK2/STAT3 signaling pathway

Keloids is highly heterogeneous and its cells display Warburg
metabolism (Sun, 2022). Warburg metabolism was firstly found in
neoplastic cells by Dr. Otto H (Li et al., 2020). Warburg and this
discovery led to the awarding of the Nobel Prize (Li et al., 2020).
Recently, JAK/STAT signaling pathways has been reported to be an
inducer of Warburg metabolism. Chen et al. (2023) reported that
tofacitinib decreased the volume and dermis thickness of the keloid
by inhibiting fibroblast proliferation and collagen I synthesis
through the suppression of STAT3. In addition, IL-6
(interleukin-6) and sIL-6r (soluble IL-6 receptor) are involved in

Frontiers in Pharmacology frontiersin.org05

Wang et al. 10.3389/fphar.2024.1444653

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1444653


joint cartilage destruction by stimulating the production of MMPs
via JAK/STAT signaling pathway in chondrocytes (Aida et al., 2012).
Zhou et al. (2020) found that JAK/STAT signaling pathway inhibitor
inhibited the invasion and progression of keloid fibroblasts by
downregulating the expression of MMP-2 and upregulating the
expression of TIMP-2. Mounting studies have shown that
microRNAs play an important role in the mechanism of keloid
formation. Kuai and Jian (2022) demonstrated that miR-23b-3p was
upregulated in keloid fibroblasts. Further study found that inhibition
of miR-23b-3p significantly inhibited keloids by facilitating
A20 expression (Kuai and Jian, 2022). The basic transcription
factor 3 (BTF3) has been reported to be closely associated with
cell proliferation and apoptosis. Wu et al. (2020) showed that the
BTF3 promoted the migratory and invasive abilities of cervical
cancer cells via interaction with MMP-2 and MMP-9. Recently,
the expression of lncRNA-ZNF252P-AS1, pJAK2, p-STAT3,
BTF3 MMP-2 and MMP-9 were found to be upregulated,
whereas miR-15b-5p expression is downregulated in keloid tissue
and keloid fibroblasts (Guo et al., 2022). Furthermore, miR-15b-5p
overexpression significantly downregulated proliferation and
migration ability of KFs, while this phenomenon was reversed by
BTF3 overexpression (Guo et al., 2022). In addition, miR-15b-5p
overexpression downregulated MMP-2, MMP-9 and collagen I
protein levels, while the overexpression of BTF3 upregulated
these proteins levels (Guo et al., 2022). Luciferase reporting
experiments confirmed that BFT3 was targeted by miR-15b-5p

and negatively modulated in keloid fibroblasts (Guo et al., 2022).
Moreover, BTF3 knockdown has been reported to inhibit the JAK/
STAT3 signaling pathway (Guo et al., 2022). It was reported that
lncRNA-ZNF252P-AS1 overexpression significantly downregulated
miR-15b-5p level and upregulated BTF3 level (Guo et al., 2022).
Furthermore, lncRNA-ZNF252P-AS1 overexpression significantly
increased the proliferation and migration ability of keloid fibroblasts
and upregulated MMP-2 and MMP-9 levels (Guo et al., 2022).
Importantly, silencing lncRNA-ZNF252P-AS1 inhibited keloid
progression and decreased p-JAK2 and p-STAT3 expression
(Guo et al., 2022). These studies suggested that lncRNA-
ZNF252P-AS1/miR-15b-5p/BTF3 might promote keloid
progression by up-regulating MMP2, MMP9 and collagen I
protein levels through inhibiting JAK2/STAT3 signaling pathway.
Therefore, inactivation of lncRNA-ZNF252P-AS1 may be a
potential therapeutic target for keloid.

Figure 2 shows the underlying molecular mechanisms of MMP-
2 and MMP-9 and their associated genes and signal cascades in the
pathological process of keloids.

3.5 Roles of MMP-2 and MMP-9 in some
treatment modalities on keloids

Since both MMP-2 and MMP-9 have been found to be involved
in the pathogenesis of keloids development, several potential drugs

FIGURE 2
Molecular mechanisms of MMP-2 and MMP-9 and their associated genes and signal cascades in the pathological process of keloids.
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or substances that targeted the two genes are found to be effective
on the treatments or preventions of keloids. Intralesional steroid
injection (i.e., triamcinolone) is a widely used treatment for keloids.
Besides, 5-fluorouracil (5-FU) has also been found to be one of the
promising drugs for treating keloids. Huang et al. (2013) reported
that a combination of triamcinolone and 5-FU could improve the
scar regression and declined the recurrence of keloids by
modulating keloid fibroblasts through the regulation of MMP-2
expression. Starfish hatching enzyme was reported to have diverse
functions, including hydrolyze type I collagen. Li et al. (2014)
demonstrated that the starfish hatching enzyme treatment could
improve the scar and keloid by decreasing the proliferation of
fibroblasts. Mechanistically, the starfish hatching enzyme exerted
the anti-keloid effects by regulating the fibroblast-populated
collagen gel conditions via the interaction of MMP-2 and MMP-
9 and the inflammatory genes. Cryotherapy is also one of the
promising therapeutic methods to treat keloid scars. Based on the
observations of that CD163+ M2 macrophages and MMP-9 were
dramatically elevated in cryotherapy-treated tissue, Lee et al. (2020)
concluded that cryotherapy improved keloids by recruiting tissue
re-modeling M2 macrophages with accompanying MMP-9. Dispel-
Scar Ointment (DSO), a common-used in the traditional Chinese
medicine, has been found to effectively treat keloids. Li et al. (2024)
explored the molecular mechanisms underlying the influence of
DSO on keloid by performing a network pharmacology, molecular
docking analysis, and experiment validations. They found that
MMP2-flavoxanthin, MMP9-luteolin, and MMP-9-kaempferol
bound best to DSO, which might be associated with the
reduction of TGF-β1, pSMAD2, and CoL1a1 expression.
Tranilast, an anti-allergic agent, has been found to inhibit keloid
and hypertrophic scar formation. Shimizu et al. (2006) implied that
tranilast could suppress the formation of keloid scarring by
inhibiting the expression of MMPs (i.e., MMP-7, MMP-8, and
MMP-9) and TIMP (i.e., TIMP-1) in neutrophils. Clinical data
showed that botulinum toxin type A (BTXA) could inhibit the
development of hypertrophic scarring, while the potential
mechanisms were unclear. Hao et al. (2018) found that BTXA
promoted the healing of scars by suppressing the proliferation of
keloid fibroblasts as well as regulating the expression of TGF-β1 and
MMP-2. These studies demonstrated that the therapeutic effect of
existing therapies for keloids might be partially attributed to the
regulation of both MMP-2 and MMP-9. All the drugs and
substances mentioned above were marketing approval. The
researchers found that these drugs can alleviate keloids
formation by elaborately regulating MMP-2 and MMP-9
expressions. However, the inhibitors of MMP-2 and MMP-9 for
treating keloids are not yet available in human trials. Nevertheless,
the present study revealed that developing more efficient drug
delivery systems on MMP-2 and MMP-9 may be one of the
successful treatments for managing keloids. Liposomes or
polymeric nanoparticles can be designed to encapsulate anti-
MMP2/9 drugs and deliver them directly to the fibroblasts or
ECM in the keloid tissue. On the other hand, by analyzing the
expression patterns of MMP-2, MMP-9 in a patient’s keloid tissue,
it may be possible to predict the response to different
pharmacological interventions and tailor the treatment
accordingly.

4 Clinical research

In addition to the above experimental research, the roles of
MMP-2 and MMP-9 have also been explored in clinical tissue
specimens of keloids. A previous pilot study demonstrated that
the medians levels of both MMP-2 and MMP-9 were increased in
the hypertrophic scar and keloid groups as compared to the
donor skin (Tanriverdi-Akhisaroglu et al., 2009). Paltatzidou
et al. (2017) assessed the expression of MMP-9 in the lesional
skin biopsies taken from patients who received 5-fluorouracil
treatment with skin keloids. They found that MMP - 9 was
strongly expressed in the multinuclear giant cells of keloid
biopsies, while it was significantly decreased after adding
cryotherapy (P < 0.05). The above results revealed that both
MMP-2 and MMP-9 was validation by the clinical settings, which
made it possible to achieve clinical transformation by targeting
the two genes. Up to date, only two eligible studies belonging to
clinical researches implied the roles of MMP-2/MMP-9 on keloid
formation. Therefore, more future clinical studies are still
warranted to better evaluate the association between MMP-2/
MMP-9 and keloid formation.

5 Limitations

It is important to acknowledge certain limitations in the
current body of literature, including variations in study
methodologies and potential gaps in our understanding of the
intricate signaling networks involved. Based on the above
findings, MMP-9 expression may have contrasting effects on
keloid formation. According to the experimental and clinical
data, MMP-9 expression levels are usually elevated in keloid
tissue. High level of MMP-9 is found to degrade collagen, elastin,
and other components of the extracellular matrix and promotes
the migration and proliferation of fibroblasts, which leads to the
continuous expansion of keloid tissue. The expression levels of
some inflammatory cytokines and growth factors are also often
elevated in keloid tissues, and these factors may stimulate
fibroblasts to secrete MMP-9, further exacerbating keloid
fibrosis. Therefore, downregulating MMP-9 expression may
significantly inhibit keloid development. For example, Zhou
et al. (2022) found that miR-188-5p inhibited keloids
formation by suppressing MMP-9 expression. However, a
previous study conducted by Liang et al. (2013) demonstrated
that thalidomide might inhibit keloids formation by upregulating
MMP-9 expression. The inconsistent results from different
studies might be attributed to different stages and progress of
the disease, or the complexity of regulatory networks. Keloids
formation is usually a dynamic process and different stages may
involve different pathophysiologic mechanisms. In addition,
MMP-9 may be regulated by multiple transcription factors,
and different transcription factors may have different activities
at different stages of keloids formation, causing the MMP-9
expression to exhibit opposite effects in this disease. As a
result, more studies are still warranted to confirm the exact
role of MMP-9 in the development and progression of
keloid formation.
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6 Conclusion

This comprehensive review extensively illustrates intricate roles of
MMP-2 andMMP-9 in the regulation of keloids. The reviewed studies
demonstrate elevated expression levels of MMP-2 and MMP-9 in
keloid tissue compared to normal skin, suggesting their pivotal role in
driving the excessive collagen deposition and altered tissue
architecture observed in keloids. Furthermore, the interplay
between MMP-2, MMP-9, and their regulators, such as TGF-β1/
Smad, PI3K/AKT and LncRNA-ZNF252P-AS1/miR-15b-5p/
BTF3 signaling pathways, highlights the intricate balance
governing ECM homeostasis. Dysregulation of this balance not
only underscores the significance of MMP-2 and MMP-9 but also
opens new avenues for exploring targeted therapies for keloids. In
summary, this review consolidates our current understanding of
MMP-2 and MMP-9 in keloid pathogenesis, shedding light on
their intricate involvement in the dysregulated keloids processes.
The potential for targeted therapeutic interventions offers
promising avenues for advancing keloid management strategies.
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