Due to the high mortality rate and increasing severity of antibiotic resistance, there is a growing interest in new treatments for
The potential plant metabolites and molecular targets of SHQXW in the context of pneumonia were determined through ultra-high performance liquid chromatography-tandem mass-spectrometry (UHPLC-MS/MS) and bioinformatics analysis. The therapeutic effect of SHQXW was evaluated in a KP-induced pneumonia murine model with imipenem/cilastatin as a positive control. Transcriptomics and non-targeted metabolomics were carried out to unveil potential mechanisms and targets for anti-pneumonia effects. Additionally, an in-depth exploration on the PI3K/AKT signaling pathway was conducted in this study.
A total of 24 potential plant metabolites and 285 SHQXW-pneumonia-related targets selected by
The findings indicate that SHQXW effectively reduces inflammation in mice with KP-induced pneumonia by modulating inflammatory signaling pathways and metabolites, rather than by directly inhibiting the growth of KP. This study introduces a novel treatment approach for KP-induced pneumonia and presents a new outlook on drug development.