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An in silico target discovery pipeline was developed by including a directional and
weighted molecular disease network for metabolic dysfunction-associated
steatohepatitis (MASH)-induced liver fibrosis. This approach integrates text
mining, network biology, and artificial intelligence/machine learning with
clinical transcriptome data for optimal translational power. At the mechanistic
level, the critical components influencing disease progression were identified
from the disease network using in silico knockouts. The top-ranked genes were
then subjected to a target efficacy analysis, following which the top-5 candidate
targets were validated in vitro. Three targets, including EP300, were confirmed for
their roles in liver fibrosis. EP300 gene-silencing was found to significantly reduce
collagen by 37%; compound intervention studies performed in human primary
hepatic stellate cells and the hepatic stellate cell line LX-2 showed significant
inhibition of collagen to the extent of 81% compared to the TGFβ-stimulated
control (1 μM inobrodib in LX-2 cells). The validated in silico pipeline presents a
unique approach for the identification of human-disease-mechanism-relevant
drug targets. The directionality of the network ensures adherence to
physiologically relevant signaling cascades, while the inclusion of clinical data
boosts its translational power and ensures identification of the most relevant
disease pathways. In silico knockouts thus provide crucial molecular insights for
successful target identification.
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1 Introduction

Population aging and increasingly unhealthy lifestyles have
resulted in an exponential growth in chronic diseases (Ansah and
Chiu, 2023). These chronic diseases often have complex
comorbidities and pose challenges to not only the society and
individuals but also the pharmaceutical and healthcare industries
(Palladino et al., 2016; Cabral et al., 2019; Fermini and Bell, 2022).
The increasing need for disease-modifying therapies is offset by the
high attrition rates of drugs, partly due to the multifactorial
etiologies of the prevalent diseases (Sun et al., 2022; March et al.,
2021). The primary source of failure of clinical trials is the lack of
demonstrated efficacy (Fogel, 2018; Yamaguchi et al., 2021;
Hingorani et al., 2019).

The unmet medical needs in the context of chronic diseases as
well as late-stage drug failures due to lack of therapeutic benefits
have resulted in a paradigm shift in drug development. The notion of
“one disease–one target–one drug” has largely been replaced by
biological network approaches (Barabási et al., 2011), where a
disease is viewed as a perturbed molecular system with intricate
dependencies. Disease progression in the mechanistic network
occurs via key nodes (proteins) that can cause system-wide
disruption upon intervention to rebalance the biological network
and achieve treatment of complex diseases. This approach benefits
from recent technological and in silico advancements by allowing
well-constructed networks with physiological relevance (Silverman
et al., 2020). In particular, novel disruptive in silico technologies (e.g.,
artificial intelligence, machine learning, and large language models
(LLMs)) and the increased scale of wet-lab capabilities (e.g., high-
throughput transcriptomics) that produce large datasets of
bioactivity data are critical to translational disease networks
(Noor et al., 2023; Brown et al., 2018; Ivanisevic and Sewduth,
2023). Furthermore, the importance of unbiased, data-driven

decisions in drug development has been illustrated by Pfizer
recently, stressing upon the need for a deeper understanding of
the biology of disease (Fernando et al., 2022).

In this study, we explored the feasibility of incorporating the best
practices described above into a generic pipeline for target discovery
(Figure 1); this pipeline integrates state-of-the-art technologies with
transcriptome data from clinical samples, enabling construction of a
contextual, weighted, and directional data-driven disease network.
Objective metrics are subsequently used to identify and rank the
candidate targets for complex diseases. To validate the proposed
approach, metabolic dysfunction-associated steatohepatitis
(MASH) and its associated liver fibrosis were selected as a case
study. MASH (previously known as non-alcoholic steatohepatitis or
NASH) (Rinella et al., 2023) is a severe form of metabolic
dysfunction-associated steatotic liver disease (MASLD) that is
characterized by steatosis, hepatocellular ballooning, and lobular
inflammation in addition to fibrosis (Friedman et al., 2018). A recent
study showed that global MASLD rates have increased from 25% to
38% over the past three decades (Younossi et al., 2023); this disease
constitutes the main cause of chronic liver disease and is the leading
indication for liver transplantation (Zeng et al., 2024; Younossi et al.,
2023). Advances have been made toward therapeutics targeting
MASH (Harrison et al., 2023), and the pioneer drug resmetirom
(Harrison et al., 2024) has only just been approved by the
United States Food and Drug Administration (USFDA)
earlier this year.

Herein, we propose an approach to construct a weighted and
directional liver fibrosis network. To identify the interventional
targets, we focused on the disease subnetwork involving growth
factor (GF)-related signaling, i.e., using GF receptor (GFR)
activation as the molecular initiating event. GFs are critical
regulators of wound healing and fibrosis (Seitz and Hellerbrand,
2021). As fibrosis is the most critical predictor of MASH stage and

FIGURE 1
Schematic representation of the major steps in the proposed data-driven pipeline for target discovery.
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prognosis, collagen deposition was considered the main functional
readout for fibrosis in an in vitro fibrosis model using either primary
hepatic stellate cells (HSCs) or the HSC line LX-2. Using the
proposed approach, we identified numerous targets affecting the
progression of liver fibrosis. One of these targets is histone
acetyltransferase (HAT) EP300, which is used to exemplify the
construction, analysis, and validation of the MASH-induced liver
fibrosis network for target discovery.

2 Materials and methods

2.1 In silico analyses

2.1.1 Text-mining-based selection of disease
network nodes for liver fibrosis

Two taxonomies were used to identify the proteins associated
with liver fibrosis. The first is a protein taxonomy as implemented in
our in-house target profiling platform TargetTri (www.targettri.
com; first accessed on 17/01/2022) (Venhorst and Kalkman,
2024). Briefly, the TargetTri platform contains all human-
reviewed proteins deposited in the UniProt database (Bateman
et al., 2023); the naming conventions are derived from this
database and enriched with additional data sources using
UniProt identifiers for cross-mapping of three databases: NCBI
(Sayers et al., 2022), ChEMBL (Zdrazil et al., 2023), and HGNC
(Seal et al., 2023). As our research group has a lengthy history of
performing target assessments both in-house and for third parties
(Venhorst et al., 2019), this taxonomy has been extended over the
years with manually curated terms to cover knockouts, isoforms,
and protein family names, among others. Further enrichment was
achieved by targeted efforts to include other sources, such as protein
complexes from the complex portal (Meldal et al., 2019).

The second taxonomy describes liver fibrosis at various levels.
Here, we relied on our expert knowledge of this metabolic disease as
well as recent observations described in literature. The resulting
taxonomy includes terms that reflect the cellular (e.g., HSC
activation), mechanistic (e.g., extracellular matrix (ECM) cross-
linking), and clinical (e.g., enhanced liver fibrosis (ELF) score)
aspects of liver fibrosis in subclusters (Supplementary Material
S1.1). Subsequently, sentence-level analysis was performed on all
PubMed abstracts from the year 2000 onward, which were
previously preprocessed, annotated, and stored in the TargetTri
platform using our in-house pipeline. This text-mining pipeline
downloads PubMed data from the PubMed FTP server (https://ftp.
ncbi.nlm.nih.gov/pubmed/updatefiles/) on a daily basis, following
which abstracts are tokenized into sentences and then words. Once
the word tokens are lemmatized, the two taxonomies are used to
automatically annotate the entities. In the preprocessing step, the
libraries from the Natural Language Toolkit were used for
tokenization of sentences and words, part-of-speech tagging, and
lemmatization (Bird et al., 2016). For accurate acronym detection in
texts, the algorithm introduced by Mohammed and Nazeer (2013),
whose views were based on the work of Schwartz and Hearst (2003)
to a great extent, was applied. This algorithm helps identify the
acronym–definition pairs in a text based on parameters such as the
length of the acronym, candidate words of the definition, presence of
parentheses, and specific alphanumeric characters. Both the original

data and annotations are stored in ElasticSearch (https://www.
elastic.co/) to allow efficient use of the data in the TargetTri
platform (Venhorst and Kalkman, 2024).

Sentences containing both a protein and one of the liver fibrosis
terms were identified using our taxonomies, as described above. The
resulting protein and liver fibrosis occurrences were scored at the
publication level per fibrosis cluster. To establish whether the
identified proteins themselves represent liver fibrosis hubs, the
numbers of neighbors (including known and predicted
protein–protein interactions (PPIs) defined using the STRING
database and API; https://string-db.org/api; first accessed on 17/
01/2022) (Szklarczyk et al., 2021) that were also associated with liver
fibrosis based on our text-mining approach were scored. For the
STRING search, a significance threshold of a minimum interaction
score >0.9 (high confidence) was applied. To assess whether the text
mining was able to retrieve genes known to play roles in liver
fibrosis, the results were compared against a predictive molecular
signature for the onset of MASH-related fibrosis in a translational
MASH mouse model (van Koppen et al., 2018).

2.1.2 Construction of a directional, weighted
disease network for fibrosis

To construct the liver fibrosis disease network, the top 1,670 ranked
proteins (nodes) identified by textminingwere used initially. First, these
1,670 proteins were imported into the Ingenuity Pathway Analysis
(IPA, Qiagen, United States) platform. Subsequently, the PPIs (edges)
and their directionality as defined in the IPA platform were added; this
resulted in a directional PPI network containing 999 connected nodes
and 671 nodes lacking connections. To connect the latter nodes,
STRING (version 11.5) was used to extract PPIs with STRING
e-scores (Szklarczyk et al., 2021) equal to or greater than 0.0. The
unconnected proteins from IPA that could be connected based on the
PPIs defined in STRING were added to the fibrosis disease network.
This allowed connection of 665 nodes, resulting in a total network size
of 1,664 nodes, and the remaining six nodes were removed. CellTalkDB
(Shao et al., 2021) was used to enrich the network with manually
selected proteins representing molecular initiating events (6 growth
factors and their 12 receptors) and end points (11 ECM proteins) of
liver fibrosis (Table 1). The paths between these start and end nodes
represent the disease pathways that can be halted or reversed upon
therapeutic intervention. The choice of focusing onGF-related signaling
for interventional target identification was prompted by the fact that
GFs are critical regulators of wound healing and fibrosis (Seitz and
Hellerbrand, 2021). In turn, ECMdeposition is considered the hallmark
of liver fibrosis (Parola and Pinzani, 2024).

To assign weights to the edges of the disease network, two data
sources were combined: STRING and clinical transcriptomics data from
MASH patients. First, the e-scores from STRING were adopted to
reflect the confidence on a scale of 0 to 1 for the association between two
nodes being true based on experimental evidence (Szklarczyk et al.,
2021). The relationships identified by only IPA were assigned a default
score of 0.5001. Second, the clinical transcriptome data from liver
fibrosis samples (gene expression omnibus (GEO) dataset GSE240729
(Verschuren et al., 2024)) were used for the optimal translational value
of the disease network. To calculate the weights of the edges based on
transcriptome data, the weights of each of the nodes were calculated by
taking the absolute 2logR expression values between the NASH and
fibrosis patients (F3/F4) as compared toNASHpatients without fibrosis

Frontiers in Pharmacology frontiersin.org03

Venhorst et al. 10.3389/fphar.2024.1442752

http://www.targettri.com/
http://www.targettri.com/
https://ftp.ncbi.nlm.nih.gov/pubmed/updatefiles/
https://ftp.ncbi.nlm.nih.gov/pubmed/updatefiles/
https://www.elastic.co/
https://www.elastic.co/
https://string-db.org/api
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1442752


(F0). The weights of the edges were then calculated as the average of the
weights of the two connected nodes. Thus, the final weight assigned to
each edge in the fibrosis disease network was the sum of the e-score
from STRING and weight derived from the clinical transcriptome data.
The transcriptome dataset used here is accessible at the NCBI GEO
database with accession number GSE240729. The differentially
expressed genes (DEGs) across the fibrosis stages were identified
using the DESeq2 package in R with p-value <0.01, (2logR>0.5 OR
2logR < −1), and avg (nCnts) > 20. For further analysis of the PPI
network (Supplementary Material S1.2), the proteins and their
respective interactions along with the weights and directionality were
imported into Neo4j, a graph database management system
(Neo4j, 2016).

2.1.3 In silico knockout experiments
In silico knockout analyses were performed with Neo4j to

examine the behavior of the liver fibrosis disease network after
perturbation of specific proteins to identify the candidate drug
targets. First, the fibrosis pathways were determined by traversing
the disease network from the selected start to end nodes (Table 1);
these walks were performed with Yen’s K-shortest-path algorithm
(Yen, 1972) available in the Neo4j Graph Data Science Library
plugin, where K represents the number of shortest paths that must
be computed. The shortest path is the one with the lowest cost,
where the cost in this study was based on the total weights of the
edges for each of the investigated paths. To analyze the fibrosis
pathways, these paths have to represent the shortest paths in the
disease network, i.e., paths with the lowest costs and hence total
weight. The top-100 shortest paths were used in the analysis. To
calculate the cost of each perturbed liver fibrosis path, i.e., start/end
node combination, the length and cost of the path determined by
Yen’s K-shortest-path algorithm were set as the reference.
Subsequently, each node in the disease network was iteratively
removed from the network, and the K shortest paths were
recalculated and compared with the reference value. The nodes
(proteins) for which the costs increased maximally after knockout
were selected for further analyses, i.e., the target efficacy assessments.

2.1.4 Target efficacy assessments of the top-
ranked target candidates

A two-tiered approach was used to assess whether the top-
ranked target candidates were suitable as therapeutic targets for
MASH-related liver fibrosis. This analysis is derived from the target
assessment workflow described earlier (Venhorst et al., 2019). For
the top-30 targets, a quick-scan analysis was performed using

database-level information, where the aspects listed in
Supplementary Material S1.3 were queried. The top-5 candidate
targets were further assessed on the basis of expert analyses of
literature. The major criteria included the therapeutic rationale of
the target in liver fibrosis, consistency of observations, expression
profiles, genetic phenotype, (pre)clinical data, druggability and
screening options of the target (vide infra), and absence of
potential showstopper target-related toxicities. The most
promising candidates were then validated in an in vitro liver
fibrosis model.

2.2 In vitro analyses

2.2.1 siRNA studies in primary HSCs
The primary HSCs (BioIVT, West Sussex, United Kingdom)

were seeded on fibronectin-coated (Roche, Woerden, Netherlands)
24-well culture plates and maintained overnight in a stellate cell
medium (STECM) supplemented with 2% (v/v) fetal bovine serum
(FBS), 1% (v/v) antibiotic solution, and 1% (v/v) stellate cell growth
supplement (all HSC seeding medium materials were from
ScienCell, Carlsbad, CA, United States). The HSCs were
incubated for 3 days in Accell siRNA Delivery Medium
(Dharmacon, Horizon Discovery Ltd.) with or without TGF-ß1
(2 ng/mL; rh-TGFB1 R&D Systems, Minneapolis, MN,
United States) and with or without TGF-β1 cotreated with 1 µM
siRNAs against EP300 (Accell EP300, Accell eGFP was used as a
control). After 3 days, the culture medium was replaced with
STECM supplemented with 1% (v/v) FBS, 1% (v/v) antibiotic
solution, 1% insulin–transferrin–selenium (ITS), 173 μM of
L-ascorbic acid-2-phosphate, 2.5 mM of proline, 2.5 mM of
lysine, and 2.5 mM of glycine before culturing for another
4 days. The conditioned culture medium was collected. The cell/
matrix fraction was hydrolyzed in 6M hydrochloric acid and used to
determine the collagen protein concentration based on
hydroxyproline residues (QZBtiscol, Quickzyme Biosciences,
Leiden, Netherlands) and total cell/matrix protein concentration
(QZBtotprot, Quickzyme) following the manufacturer’s
instructions. The total protein levels were used to correct the
collagen concentration per sample.

2.2.2 Compound intervention studies in
primary HSCs

The primary HSCs were seeded on fibronectin-coated 24-well
culture plates and maintained overnight in STECM supplemented

TABLE 1 Start and end nodes defined for the liver fibrosis disease network. To identify candidate drug targets, all nodes (proteins) in the network were
individually knocked out in silico while walking over the network from all combinations of start to end nodes using Yen’s K-shortest-path algorithm, as
implemented in Neo4J.

Starting nodes

Ligands Receptors

CCL2, EGF, FGF21, LEP, PDGFB TGFB1 CCR2, EGFR, LDLR, FGFR1, FGFR2, FGFR3, LEPR, LRP2, PDGFRA, PDGFRB, TGFBR1, and TGFBR2

End nodes

COL1A1, COL1A2, COL3A1, ELN, FN1, TNC, TIMP1, BGN, FBN1, FBN2, and FBN3
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with 2% (v/v) FBS, 1% (v/v) antibiotic solution, and 1% (v/v) stellate
cell growth supplement. The HSCs were incubated for 4 days in
STECM supplemented with 1% (v/v) FBS and 1% (v/v) antibiotic
solution with or without TGF-β1 (2 ng/mL) and TGF-β1 cotreated
with the TGFβ type I receptor kinase (ALK5) inhibitor LY-364947 or
one of the EP300 inhibitors L002 or inobrodib (CCS1477) (all from
MedChemExpress). The cell/matrix fraction was hydrolyzed in
6 M hydrochloric acid and used to determine the collagen
protein concentration based on hydroxyproline residues and total
cell/matrix protein concentration following the manufacturer’s
instructions.

2.2.3 Compound intervention studies in LX-2 cells
Human HSCs (LX-2; Merck; lot 2492302) were seeded on

fibronectin-coated 24-well culture plates and maintained in
Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 2% (v/v) FBS and 1% (v/v) antibiotic solution. The cells
were incubated for 7 days in DMEM supplemented with 1% (v/
v) FBS, 1% (v/v) antibiotic solution, 1% ITS, 173 μM of L-ascorbic
acid-2-phosphate, 2.5 mM of proline, 2.5 mM of lysine, and 2.5 mM
of glycine with or without TGF-ß1 (5 ng/mL) in the absence or
presence of target specific compounds as well as medium change
after 4 days. The conditioned culture media were collected after
4 and 7 days. After 7 days of culturing, the cell/matrix fraction was
washed with phosphate-buffered saline (PBS) and hydrolyzed in
6 M hydrochloric acid before being used to determine the collagen
protein concentration based on hydroxyproline residues and total
cell/matrix protein concentration following the manufacturer’s
instructions. The total protein levels were used to correct the
collagen concentration per sample. The following inhibitory
compounds were used (all at a final concentration of 0.22%
dimethyl sulfoxide (DMSO)) for EP300: inobrodib (1–10 µM)
and L002 (1–10 µM).

2.3 Statistical analyses

The statistical differences were determined using IBM SPSS
Statistics 29 (IBM, NY, United States), and normality was
assessed with the Shapiro–Wilk test. If the data were normally
distributed, then a one-way ANOVA followed by Dunnett’s test
was used, in which the groups exposed to treatments were compared
to the controls. If the data were not normally distributed, then a
Kruskal–Wallis test followed by Mann–Whitney U test was used.
Two-tailed p-values were used, and p-values less than 0.05 were
considered to be statistically significant.

3 Results

The data-driven pipeline for target discovery (Figure 1) starts
with the selection of the text-mining-based disease network nodes
(proteins) using expert-curated disease–protein taxonomies. The
nodes were subsequently translated into a connected, directional,
and weighted disease network. In silico knockout experiments were
then performed to identify the hub genes that play apparent crucial
roles in disease progression. Based on a two-tiered target efficacy
assessment (quick-scan and in-depth analyses), the proteins were

ranked, and the top-ranked proteins were finally validated using
functional in vitro assays.

3.1 MASH/liver fibrosis disease network

Using the fibrosis cluster and fibrotic neighbor scores derived
from text mining (Section 2.1.1), a ranked list of proteins involved in
liver fibrosis was generated. Of the 20,000+ human-reviewed
proteins in UniProt, 7,895 proteins were identified to have
associations with at least one of the terms in our disease
taxonomy. The subsequent rankings were based on four separate
measures capturing the main pathological processes of liver fibrosis
to ensure that the proteins that are less investigated but still linked to
disease pathogenesis are included. These measures were as follows:
1) publication count in the HSC cluster; 2) hub gene character
measured as the number of fibrotic neighbors; 3) sum of the ratios of
liver fibrosis to total publications and liver fibrosis to total neighbors;
4) total number of publications associated with a liver fibrosis term.
In particular, the HSC cluster was chosen because HSC activation is
the key event in hepatic fibrosis. The activation of these quiescent
cells into ECM-producing myofibroblasts amounts to excessively
produced ECM proteins during liver fibrosis. The focus on HSC
processes is also aligned with the in vitro models used for target
validation. The top-600 ranked proteins from each of the four
measures described above were selected for the initial
construction of a fibrosis disease network, resulting in
1,670 unique proteins. To ensure that this selection procedure
included the “usual suspects” (i.e., genes known to be involved in
fibrosis progression), the recall of our previously described fibrosis
signature (van Koppen et al., 2018) was assessed. This predictive
molecular signature reflects the active fibrotic processes. With a
combined recall of 83/90 human-mapped signature genes, the
selection process was deemed fit-for-purpose for capturing the
relevant fibrotic processes.

3.2 In silico knockouts for target selection

To select the most relevant targets, a multistep approach was
employed. First, the weighted and directional fibrosis disease
network was constructed (Supplementary Material S1.2). Then,
the relative costs of the paths from each of the starting points
(GF) to each of the endpoints (ECM) were calculated using Yen’s
K-shortest-path algorithm (Figure 2A). Next, each node of the
network was individually excluded (in silico knockout), and the
cost of each pathway from the start to end points with knockout was
recalculated (Figure 2B). The top-100 paths that showed the greatest
cost increases for each GF–ECM combination were used to identify
the top target nodes.

In total, 44 targets affecting multiple GF–ECM pathways were
selected as the top target candidates for further analyses. Some of
these targets (such as EGFR, TGFBR1/2, SMAD3, and TP53) were
too generic and hence excluded from the candidate list. The
remaining shortlist of 32 proteins belonged to various target
types/families (Figure 3). Kinases, integrins, zinc-finger proteins,
and transcription factors represented the most populated target
types within the selection. All 32 potential targets were subjected to a
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quick-scan analysis, followed by an in-depth target efficacy
assessment for the top-5 ranked targets. The approach followed
is illustrated below for one of the targets: the HAT E1A-interacting
p300 (EP300; alternatively called KAT3B). The other four targets are
currently being explored experimentally for their antifibrotic
potential in liver fibrosis.

3.3 Target evaluation and selection
for EP300

3.3.1 Quick-scan analysis
To distinguish potentially promising candidate targets from

those with lesser therapeutic merits, a quick-scan analysis was
performed. With the aim of obtaining a quick, global view of a
target, database information was queried with a focus on fibrosis and
MASH (Supplementary Material S1.3) using the TargetTri system.
The key findings for EP300 are listed in Table 2. EP300 has

45 neighbors associated with one of the fibrosis terms, of which
six are present in the shortlist of 32 candidate drug targets from in
silico knockout experiments. Although EP300 itself is only linked to
obesity within the spectrum of metabolic and liver diseases, its
neighbors are associated with additional phenotypes according to
the Comparative Toxicogenomics Database (CTD; Supplementary
Material S1.3). These include various forms of fibrosis, liver cirrhosis
and cholestasis, fatty liver, dyslipidemias, and liver injury (Table 2).
Further support for its potential role in fibrosis was provided by a
knockout mouse model reported in the Mouse Genome Informatics
(MGI) database (Baldarelli et al., 2024) (Supplementary Material
S1.3), which displays decreased fibroblast proliferation, and excerpts
from scientific literature (Table 2).

To select the candidate targets for further progression into the
pipeline, various criteria were used, including the therapeutic
rationale, novelty, selectivity/safety, and druggability/assayability.
Another criterion was to establish a balanced portfolio of targets,
ranging from very exploratory to more investigated targets. At first

FIGURE 2
Visualization of a growth factor to the extracellularmatrix (GF–ECM) pathway. (A) Pathway fromGF (TFGB1) to ECM protein (COL1A2). (B) Alternative
route of the GF–ECM pathway when EP300 is knocked out.

FIGURE 3
Distribution of target types/families of the 32 proteins resulting from the in silico knockout experiment and selected for quick-scan analysis.
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glance, EP300 appears to be an intermediate candidate target in this
spectrum, for which queries based on the initial database and text-
mining results have provided sufficient background evidence on its
role in fibrosis. Furthermore, it has a large number of fibrotic
neighbors, low molecular weight tool compounds (druggability/
assayability), and lacks advanced therapeutics in development
targeting fibrosis (novelty). Potentially speaking against its
selection were the ubiquitous expression (safety), lack of human
genetic disease associations with fibrosis, and potentially pleiotropic
effects (safety) expected from a HAT as well as associated signaling
modes. However, in the quick scan of all 32 proteins, EP300 scored
favorably overall and was allowed to the next stage.

3.3.2 Target efficacy assessment of EP300
To further assess the therapeutic potential of EP300 in MASH-

related liver fibrosis, the criteria listed in Table 3 were analyzed in
greater depth. The full analysis is shown in Supplementary Material
S2. The general characteristics of the target were investigated first,
and literature evaluations showed that EP300 is an evolutionary
conserved gene belonging to the EP300/CBP (CREB-binding
protein or KAT3A) family of proteins, which function as
transcriptional coactivators and are involved in multiple, signal-
dependent transcription events (Chan and La Thangue, 2001). Both
proteins are present in humans as well as most higher eukaryotes

and represent HAT enzymes that specifically acetylate H3K27.
Because of their high sequence homology, CBP and EP300 are
collectively referred to as p300/CBP (Yao et al., 2018). Despite
this fact, EP300 and CBP are not fully functionally redundant as
differences have been reported with respect to their protein partners,
substrate specificity, and selectivity based on enzyme levels, and cell-
type specific functions, with both proteins considered as requisites
for mammalian development (Chan and La Thangue, 2001; Vo and
Goodman, 2001; Martire et al., 2020; Turnell, 2015). The N- and
C-terminal domains of EP300 act as transactivation domains,
interacting with a wide range of proteins to form various
transcriptional complexes; the acetyltransferase domain is located
in the central region of the protein (Figure 4) (Chan and La
Thangue, 2001; Ghosh and Varga, 2007). Physiologically,
EP300 is involved in cellular processes such as proliferation,
migration, differentiation, senescence, and apoptosis through
chromatin remodeling in the regulatory regions of the genes. In
these cellular processes, EP300 acts as an epigenetic regulator and/or
an interacting coactivator with specific transcription factors of genes
(Ghosh, 2021).

One of the important criteria in evaluating a candidate drug
target is its therapeutic rationale. Here, the mechanistic role of
the target in disease pathogenesis, i.e., MASH-related liver
fibrosis, is considered. As MASH is a multifactorial disease

TABLE 2 Highlighted results of the EP300 quick scan. In the quick scan, databases (Supplementary Material S1.3) were queried for evidence that support the
role of the candidate drug target (EP300) in liver fibrosis. Top-ranked candidate targets were subjected to an in-depth target efficacy assessment by domain
experts (Table 3).

Key observations of the quick scan

Function • Functions as histone acetyltransferase and regulates transcription via chromatin remodeling (PubMed:
23415232, PubMed:23934153, and PubMed:8945521)

• Functions as a transcriptional coactivator for SMAD4 in the TGFβ signaling pathway (PubMed:
25514493)

Literature • p300 knockdown disrupted TGFβ- or UPR-induced HSC activation, and pharmacological inhibition of
the C/EBPβ-p300 complex decreased TGFβ-induced HSC activation

• Consistently, p300 inactivation suppressed TGFβ1-mediated HSC activation and transcription of genes
encoding tumor-promoting factors, such as CTGF, TNC, POSTN, PDGFC, and FGF2, as revealed by
microarray analyses

• Interestingly, although both TGFβ1- and stiffness-mediated HSC activation required p300, comparison
of gene expression datasets revealed that transcriptional targets of TGFβ1 were distinct from those of
stiffness-p300 mechanosignaling

• Fibroblast expression of the coactivator p300 governs the intensity of profibrotic responses to TGFβ
• Stimulation of p300 by TGFβ was independent of Smads and involved the early–immediate
transcription factor EGR-1 (early growth response 1), which is a key regulator of profibrotic TGFβ
signaling

• Remarkably, EP300 inhibition reduces fibrotic hallmarks of in vitro (patient-derived primary
fibroblast), in vivo (bleomycin mouse model), and ex vivo (precision-cut lung slices, PCLS) IPF models

• TGFβ reporter assays demonstrated that p300 mRNA knockdown via targeted siRNAs led to reduced
responses to TGFβ, whereas knockdown of CBP by the same approach had an insignificant effect

•Overexpression of the transcriptional coactivator p300 rescued TGFβ stimulation of COL1A2 promoter
activity in fibroblasts overexpressing p53

• Inhibition of p300 and its binding partners may serve as novel therapies in the treatment of liver diseases

Fibrosis neighbors 45; including 6 in shortlist

Disease pathwaysa Obesity, fibrosis, IPF, fatty liver, dyslipidemias, CDILI, cholestasis (including experimental, biliary, and
extrahepatic)

Murine genetics Decreased fibroblast proliferation (knockout; MGI:1858020)

Expression profile Ubiquitous RNA and protein expressions

Tool compound Inobrodib (inhibitor; phase I/II)

Abbreviations: IPF, idiopathic pulmonary fibrosis; CDILI, chemical and drug induced liver injury.
aIncludes disease pathways of the interacting proteins.
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with triggers such as dyslipidemia, insulin resistance,
inflammation, and oxidative stress, the roles of EP300 in these
aspects of the disease were also explored. As shown in Table 3,
EP300 is implicated in fibrogenesis through various mechanisms;
it is also associated with processes that are dysregulated in

MASH. The roles of EP300 in liver fibrosis were further
supported by in vitro and in vivo studies (Supplementary
Material S2). For example, liver fibrosis was reduced in CCl4-
treated EP300 knockout mice (Gao et al., 2021; Breaux et al.,
2015; Dou et al., 2018).

TABLE 3 Evidence in support of the roles of EP300 inMASH-related fibrosis obtained by expert-based in-depth target efficacy assessment. The key findings
derived from literature and other data sources are shown. The full EP300 efficacy assessment is available in Supplementary Material S2.

Criterion Evidence References

Target characteristics • Histone acetyltransferase
• Transcriptional coactivator
• Related to but not redundant with CBP

Ghosh (2021); Chan and La Thangue (2001)

Therapeutic rationale for fibrosis Wnt/β-catenin signaling has been associated with organ fibrosis.
Nuclear β-catenin recruits CBP or p300 to stimulate the transcription
of its target genes
TGFβ stimulates COL1A2 transcription via functional cooperation
between Smad3 and p300/CBP transcriptional coactivators
The HIF-1α-p300/CBP complex binds to the hypoxia response
element (HRE) to activate the transcription of genes involved in
fibrogenesis

Yao et al. (2018); Inagaki et al. (2003)

Therapeutic rationale for MASH EP300 mediates SREBP-1c acetylation. Elevated SREBP-1c
acetylation has been associated with increased lipogenic gene
expression
EP300 acetylates FXR, resulting in activation of its target genes. FXR
acetylation is constitutively elevated in metabolic disease states
EP300 acetylates ChREBP, a transcriptional activator of glycolytic
and lipogenic genes
EP300 acetylates HNF4, which is involved in lipid homeostasis and
glucose metabolism among others
Transcriptional activation of NF-lB, which induces inflammatory
responses, requires association with CBP/p300

Ponugoti et al. (2010); Kemper et al. (2009); Bricambert et al. (2010);
Tsai et al. (2017); Zhong et al. (2002)

Expression profile Expression of p300 was increased in the livers of mice following CCl4
injection
The p300-C/EBPα/β pathway is activated in the livers of patients with
NAFLD.
Elevated levels of p300 or its mutant forms are associated with skin,
lung, and cardiac fibrosis

Dou et al. (2018); Jin et al. (2013); Ghosh (2021)

Human genetic phenotype Not available —

Animal genetic phenotype HSC activation and collagen deposition were reduced in the livers of
p300F/Fcre (i.e., knockout) mice given intraperitoneal injections of
carbon tetrachloride compared with control mice
Livers of transgenic mice expressing a dominant negative
p300 molecule (dnp300) were resistant to CCl4-mediated injury and
showed reduced apoptosis but increased proliferation after injury
Portal pressure and liver fibrosis were reduced in mice with liver
sinusoidal-endothelial-cell-specific p300 deletion (p300LSECΔ/Δ mice)
compared to p300 fl/fl control mice following liver injury
Transgenic mice expressing dominant-negative p300 had fewer C/
EBPα/β-p300 complexes and did not develop age-dependent hepatic
steatosis

Dou et al. (2018); Breaux et al. (2015); Gao et al. (2021); Jin et al.
(2013)

Competitive landscape Several small-molecule inhibitors in (pre)clinical development,
mainly to treat cancer
Inobrodib (CCS-1477) is in the highest phase of development (phase
I/II)

Cortellis, Supplementary Material S2

Medicinal chemistry tools Commercially available inhibitors, siRNA, and shRNA
Functional readout described: gene expression; HSC activation
Chemiluminescent and binding assays (FRET) for p300 inhibition are
available/have been described

Supplementary Material S2

Preclinical evidence Multiple in vitro (human LX-2; normal and activated rat HSCs) and
in vivo (transgenic and CCl4-treated mice) studies supporting the
roles of EP300 in liver fibrosis are reported in literature
Studies supporting the roles of EP300 in non-liver fibrosis, lipid
metabolism/NAFLD, and inflammation

Supplementary Material S2

Clinical evidence Not available —
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3.3.3 In vitro validation of EP300
To validate the regulatory role of EP300 in liver fibrosis, siRNA

and compound intervention studies were performed. TGFβ that
transduces its signal through the ser/thr kinase receptor ALK5 was
used to induce fibrosis. ALK5 inhibition served as the reference for
maximal inhibition of TGFβ signaling resulting from both external
stimuli and cellular autoactivation. TGFβ-induced transcription of

genes, including collagens and PAI-1, affects protein synthesis and
consequently the total protein levels. Therefore, ALK5 inhibition
can also be used to determine the effects of TGFβ on protein
synthesis. The total protein levels above and below those
observed with ALK5 inhibition are respectively indicative of
protein synthesis inhibition and cellular toxicity. As illustrated in
Figure 5, siRNA targeting EP300 in human primary stellate cells was
able to significantly reduce the total collagen level after TGFβ
stimulation as compared to the eGFP siRNA control (p = 0.034).
Addition of the ALK5 inhibitor (Alk5-i) further reduced total
collagen (p = 0.001), showing that siRNA was not able to inhibit
TGFβ signaling completely.

Intervention studies for EP300 were performed with two small-
molecule inhibitors, namely, inobrodib and L002 (Figure 6), in both
primary HSCs and LX-2 cells. Inobrodib is a potent and selective
bromodomain EP300/CBP inhibitor that is currently in clinical
development for hematological malignancies (Nicosia et al.,
2023). L002 is a nonselective inhibitor of EP300 with an IC50 of
1.98 μM,which additionally binds lysine acetyltransferase 2A and 2B
(KAT2A and KAT2B, respectively) (Yang et al., 2013). In LX-2 cells,
the inhibitors significantly reduced the total collagen levels at
concentrations of 1 μM (inobrodib) and 3 μM (inobrodib and
L002), with inobrodib showing collagen inhibition levels similar
to those of Alk5-i (Figure 6A). The total protein levels were also
reduced with respect to both the stimulated and non-stimulated
control, indicating inhibition of protein synthesis due to reduced
transcription. At an L002 concentration of 3 μM, the protein level
was lower than that observed with Alk5-i, indicating cellular toxicity
(Figure 6B). In primary HSCs, a significant reduction of total
collagen level was observed for L002 at a concentration of 3 μM
(Figure 6C). Administration of 1 μM of L002 as well as 1 μM and
3 μMof inobrodib resulted in lower total collagen levels. As observed

FIGURE 4
Genetic structure of EP300 with its functional domains and exemplified interaction partners. CH, cysteine-/histidine-rich domain; KIX, kinase
inhibitory domain, Br, bromodomain. Adapted from Chan and La Thangue (2001).

FIGURE 5
Silencing RNA (siRNA) targeting EP300 shows a significant
(p-value < 0.05) reduction in fibrosis. Total collagen levelsmeasured in
primary hepatic stellate cells (HSCs) in the presence of siRNA targeting
either eGFP (blue, control siRNA) or EP300 (yellow). Aside from
the untreated controls, the cells were stimulated with TGFβ (+TGFβ) in
the absence or presence of the ALK5 inhibitor (+TGFβ+Alk5-i). The
data are presented as mean ± SD (n = 3).
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in the LX-2 cells, at higher concentrations (>10 µM), both inhibitors
showed more pronounced effects on lowering the total collagen with
significant cellular toxicities (data not shown). At inhibitor
concentrations of 1 and 3 μM, the total protein levels were
higher than or similar to those observed with Alk5-i (Figure 6D).
Therefore, neither inhibitor showed toxic effects at these
concentrations. Altogether, the siRNA results and results
obtained with two small-molecule inhibitors tested on HSCs and
LX-2 cells confirm the causal role of EP300 in liver fibrosis, which is

in agreement with the results from our weighted, directional data-
driven disease network. Accordingly, the in vitro experiments
validate our novel network approach.

4 Discussion

The present study clearly shows the utility of our mechanism-
based, data-driven approach in identifying novel candidate drug

FIGURE 6
Intervention studies with small-molecule inhibitors of EP300 (inobrodib and L002) as a case study for target validation. (A) Inobrodib (Ino) and
L002 significantly decrease TGFβ-induced fibrosis in LX-2 cells. The total collagen levels for treatment with Ino, L002, and ALK5 inhibitor (Alk5-i) are
shown after TGFβ stimulation compared to the non-stimulated control. (B)Corresponding total protein levels. (C) Ino, L002, and Alk5-i, decreased TGFβ-
induced fibrosis in primary HSCs. The total collagen levels for treatment with Ino, L002, and Alk5-i are shown after TGFβ stimulation compared to the
non-stimulated control. (D) Corresponding total protein levels. The data are presented as mean ± SD (n ≥ 3). Significance (p < 0.05) is indicated with
respect to the TGFβ-stimulated control (*) or Alk5-i (#).
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targets for complex diseases, such as MASLD. In our experimental
validation of in silico target selection, we confirmed EP300 as a gene
relevant to liver fibrosis. For siRNA targeting EP300, a significant
reduction of 37% of the total collagen was observed. Next,
intervention studies using two small-molecule inhibitors targeting
EP300 confirmed the results obtained from the siRNA studies.
Inobrodib and L002 were able to reduce the total collagen levels
to varying extents in both LX-2 cells and primary HSCs (Figure 6).
The efficacies of these compounds have not been demonstrated
previously in functional in vitro liver fibrosis assays. The
experimental results thus substantiate the governing role of
EP300 in liver fibrosis. A recent report on EP300, which was
published toward the end of our study, further supports this
observation (Rubio et al., 2023), as do the in vivo observations
uncovered during our target efficacy analysis, showing that
EP300 knockout or knockdown can reduce liver fibrosis and its
underlying processes (Supplementary Material S2). Hence, this
proof-of-concept exploration successfully demonstrates the ability
of our data-driven approach to identify novel candidate drug targets
that play crucial roles in the molecular mechanisms of diseases.

Our generic data-driven pipeline for mechanism-based target
discovery allows the construction of a directional disease-specific
network, its enrichment and weighing with (pre)clinical data, and its
mechanistic exploration with in silico knockouts to identify
candidate drug targets. This approach is unique in that it
integrates multiple features of clinical relevance that are crucial
for generating a disease network. For instance, the network
directionality ensures adherence to physiologically relevant
signaling cascades. This is strengthened by the inclusion of
clinical MASH data that not only boost the translational power
but also ensure identification of the most relevant pathways for liver
fibrosis. Finally, scrutiny of these pathways at a mechanistic level via
in silico knockouts ensures that much-needed insights into the
molecular aspects of MASH are obtained and that human-
disease-mechanism-relevant drug targets can be identified.

By leveraging the power of text mining, transcriptomics, and
biological networks in our approach, the major challenges in drug
discovery are tackled. One of these challenges is the higher
complexity and lower chance of success of drug development
given the recent focus on complex diseases (Sun et al., 2022;
March et al., 2021). Another challenge is the relentless growth of
data, notably textual information, and its unstructured nature.
Unstructured data represent valuable sources that are frequently
untapped, resulting in unnecessary data gaps. The implementation
of artificial-intelligence-based technologies, as in this work, can
assist in overcoming these hurdles. Natural language processing
(NLP) strategies have enabled the shift from time-consuming
manual data curation and interpretation to large-scale automated
text analyses (Jin et al., 2024). Biological network and
transcriptomics strategies have also instigated a move from
phenotypic disease management to mechanism-based disease
curation (Nogales et al., 2022; Barabási et al., 2011).

The merits of disease or pharmacological networks in drug
development have been demonstrated in several studies.
However, these studies generally focus on identifying targets for
active compounds (Sakle et al., 2020) or heavily rely on disease-
associated genes available in databases (Quan et al., 2021). Our
approach differs from these studies in the construction of a disease

network as it does not rely on curated annotations in databases at the
onset (e.g., gene cards and OMIM) or on human disease
transcriptomics datasets available in the public domain. Instead,
it applies disease-agnostic text-mining strategies using customized
ontologies, whose benefits include the ability to perform queries
using terms that are not part of the controlled vocabularies used in
databases and to zoom-in on specific aspects or features of the
contributing disease processes. For example, inflammation is a
contributing factor of fibrosis. However, inflammation is a rather
general process when considering therapeutic interventions. In such
a case, only information pertaining to liver-specific inflammation
can be included. Alternatively, customized ontologies can be applied
to exclude certain types of data or disease subtypes that are of lesser
interest, e.g., kidney fibrosis, as used in the current study. Text
mining also allows the inclusion of emerging data; with our PubMed
processing pipeline that performs daily updates (Venhorst and
Kalkman, 2024), off-the-press observations are also taken
into account.

Despite the success of our approach, several limitations need to
be considered. For less explored diseases and proteins, a general
pitfall for any approach involving biological networks is data
availability that limits the network capabilities. However, new
methods are continuously becoming available to mitigate these
shortcomings and allow access to novel data sources. For
example, advancements in sequencing archived formalin-fixed
paraffin-embedded (FFPE) materials, as demonstrated by us
recently (Verschuren et al., 2024), could enhance the approaches
described in the present study. In terms of target evaluation, highly
exploratory candidate drug targets often lack public information
that impacts the results of the quick-scan and in-depth target
evaluations. For such high-risk targets, it is crucial to have a
well-defined therapeutic rationale. Another potential limitation
pertains to text mining. We use text mining as the first step in
selection in the proposed approach, so some basic knowledge on the
hallmarks or mechanisms of disease is necessary to create a fit-for-
purpose taxonomy. The use of such a custom taxonomy may result
in user bias when selecting the terms to be used, impacting the
outcomes of text mining. Therefore, the taxonomy needs to be broad
enough to capture all relevant aspects of the disease, ranging from
molecular processes to clinical observations, to identify not only
emerging and novel proteins but also known genes. The recall of an
early MASH-related fibrotic signature was included in this work to
assess the robustness of our text-mining strategy. Alternatively,
transcriptomics or genome-wide association study (GWAS) data
derived from other sources (see below) can be combined with text
mining to construct an initial disease network. In this study, we used
clinical transcriptomics data as the external source to validate and
weight the liver fibrosis disease network as well as increase its
translational value.

To explore the network and identify hub genes governing
disease progression, we defined starting nodes based on
molecular initiating events of the disease (i.e., GFs) and distinct
but clinically relevant end points as the end nodes (i.e., collagens),
which can also be used as readouts during in vitro target validation.
The translational power was boosted by adding clinical data to
weight the edges. It should be noted that the proposed approach is
not a requirement for target identification. For example, seed nodes
close to a pathological gene can also be used (Gentili et al., 2022).

Frontiers in Pharmacology frontiersin.org11

Venhorst et al. 10.3389/fphar.2024.1442752

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1442752


However, the directed and weighted approach combined with
clinically relevant data described herein enables identification of a
more causal disease pathway and consequently more relevant
candidate drug targets. Moreover, this directed and weighted
approach can be applied to target specific patient groups in the
future for precision medicine using patient-specific transcriptomics
data. For example, the phenotype of MASH varies widely across
individuals (Harrison et al., 2023), even at the level of HSCs and
their activation (Bogomolova et al., 2024). These phenotypes likely
involve divergent pathological pathways (González Hernández et al.,
2024). A single drug is unlikely to be effective for the entire
population, and this is highlighted by the fact that the first drug
(resmetirom) was approved by the US FDA only in March this year
and that only 25%–30% of patients benefit from treatment with this
drug (Harrison et al., 2024), further stressing the unmet medical
need for patients suffering from MASH.

As indicated above, the future directions of the proposed
approach include the construction of patient-subgroup-specific
disease networks to capture disease heterogeneities. Novel
techniques, such as single-cell sequencing, and multi-omics
integration are expected to further facilitate this progress (Du
et al., 2024). Another challenge in treating liver fibrosis is the
slow disease progression, where the disease develops over an
extended period of time. The inclusion of temporal processes in
the disease network, e.g., using omics data obtained during disease
progression at different time points, may provide a clearer view on
the processes at play at various stages of the disease and aid in the
identification of successful drug targets. Finally, developments in
artificial intelligence technologies may further advance drug-
discovery efforts. In terms of text mining, for example, more
precise definitions of the causality of protein–effect relations
using LLMs can further assist in more accurate rankings of the
key players in the specific pathological processes under investigation
(Venhorst and Kalkman, 2024). As a next step in our target
discovery effort, we intend to continue the validation of our
candidate drug targets. This notably includes in vivo validation of
the targets in relevant disease models. In addition, the applicability
of our approach will be confirmed in disease indications other than
liver fibrosis to demonstrate its generic utility.

5 Conclusion

In this work, we present the development of a data-driven
approach that integrates text mining with network models for
target identification based on mechanistic disease insights. The
directional and weighted approach presented herein not only
identifies causal disease pathways but also potentially paves the
path to discovering patient-specific disease pathways and their
corresponding interventions. The proposed pipeline was
successfully validated with a proof-of-concept study using
EP300 as the exemplar novel candidate drug target for MASH-
induced liver fibrosis. To fully leverage the potential of our
approach, further validation and subsequent drug-discovery
activities are warranted for the identified targets. Aside from
functional studies, this includes mechanistic validation of target
engagement (binding), hit-to-lead programs, ADMET studies, and
eventual in vivo studies. As the approach described here is disease

agnostic, we believe that it can significantly contribute to successful
drug-discovery programs focused on diseases other than MASH-
related liver fibrosis.
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