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In recent years, natural products have gradually become an important source for
new drug development due to their advantages ofmulti-components, multi-targets,
and good safety profiles. Psoralen, a furanocoumarin compound extracted from the
traditional Chinesemedicine psoralea corylifolia, is widely distributed among various
plants. It has attracted widespread attention in the research community due to its
pharmacological activities, including antitumor, anti-inflammatory, antioxidant, and
neuroprotective effects. Studies have shown that psoralen has broad spectrum anti-
tumor activities, offering resistance to malignant tumors such as breast cancer, liver
cancer, glioma, and osteosarcoma, making it a natural, novel potential antitumor
drug. Psoralen mainly exerts its antitumor effects by inhibiting tumor cell
proliferation, inducing apoptosis, inhibiting tumor cell migration, and reversing
multidrug resistance, presenting a wide application prospect in the field of
antitumor therapy. With the deepening research on psoralea corylifolia, its safety
has attracted attention, and reports on the hepatotoxicity of psoralen have gradually
increased. Therefore, this article reviews recent studies on the mechanism of
antitumor effects of psoralen and focuses on the molecular mechanisms of its
hepatotoxicity, providing insights for the clinical development of low-toxicity, high-
efficiency antitumor drugs and the safety of clinical medication.
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1 Introduction

Cancer, characterized by its high recurrence rate and mortality, is one of the major
diseases threatening human health and life. According to the latest data published in the
official journal of the American Cancer Society, there are approximately 18.1 million new
cancer cases and 9.6 million cancer-related deaths globally (Sung et al., 2021). Surgery,
radiotherapy, and chemotherapy are currently the main clinical treatments for malignant
tumors. However, they often cause severe adverse reactions in the body and tumor cell drug
resistance, leading to unsatisfactory prognosis and therapeutic effects. In recent years, the
effectiveness and safety of natural products in cancer treatment have attracted widespread
attention from scholars around the world. Natural products can not only intervene in the
process of tumor cells but also improve the adverse reactions caused by chemotherapy,
enhancing the quality of life of cancer patients. Current research on cancer treatment mainly
focuses on molecular targeting, immunotherapy, and the field of natural products monomers.
Studies have shown that natural products has advantages in enhancing efficacy, reducing
toxicity, improving quality of life, and extending survival periods in the prevention and
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treatment of tumors. Many effective anti-cancer drugs have been
discovered and developed from natural products (Chopra and
Dhingra, 2021).

Psoralen (PSO) is a furanocoumarin compound derived from the
traditional Chinese herb psoralea corylifolia L., known for its strong
pharmacological activity, low toxicity, good bioavailability, and
therapeutic effectiveness (Thakur et al., 2020). It is the main active
ingredient of Psoralea corylifolia L., with the molecular structure of 7H-
Furo[3,2-g]chromen-7-one (molecular weight: 186.16; molecular
formula: C3H6O3) (Sui et al., 2020), as shown in Figure 1. PSO is
widely distributed in various plants and has shown great medicinal
potential, attracting widespread attention in the research community. In
recent years, natural products or patent medicines containing coumarins
have been widely used in clinical treatments, and studies have found they
possess multiple pharmacological activities, including antitumor (Wang
et al., 2018), neuroprotective (Somani et al., 2015), anti-inflammatory
(Du et al., 2020), and antioxidant effects (Seo et al., 2014), suitable for
treating tumors, rheumatoid arthritis, leukemia, Alzheimer’s disease, and
other conditions. This suggests a broad application prospect for PSO.
With the increasing attention to the safety of PSO, the studies on liver
toxicity of PSO have gradually increased in recent years, and there have
been reports on clinical cases of liver toxicity. Long-term or excessive use
of PSO or its compound will cause damage mainly caused by abnormal
liver function, and its adverse reactions limit further clinical use.
Therefore, the mechanism of hepatotoxicity of PSO was discussed
and studied in order to provide some reference for the attenuation
compatibility of PSO and the improvement of drug safety. Meanwhile
through literature review, we found that several studies have focused on
its pharmacological effects, yet a comprehensive and systematic review on
the molecular mechanisms of PSO’s antitumor effects has not been
conducted. Therefore, this article reviews recent studies on the antitumor
mechanisms of PSO and summarizes its mechanisms of hepatotoxicity,
aiming to provide references for the clinical development of low-toxicity,
high-efficiency antitumor drugs and the safety of clinical medication.

2 Antitumor molecular mechanisms
of PSO

2.1 Induction of tumor cell apoptosis

Apoptosis is a form of programmed cell death, serving as a
critical physiological mechanism to limit the expansion of cell

populations, thereby maintaining tissue homeostasis or
eliminating potentially harmful cells (Morana et al., 2022).
Promoting apoptosis has become one of the important strategies
in antitumor therapy (Carneiro and El-Deiry, 2020). Apoptosis can
be regulated through multiple pathways, including the endoplasmic
reticulum stress-mediated apoptotic signaling pathway (Oakes and
Papa, 2015). Under stress conditions, the endoplasmic reticulum
environment and protein maturation are disrupted, leading to the
accumulation of misfolded proteins and the formation of a typical
stress response, known as the unfolded protein response (UPR)
(Pandey et al., 2019). UPR protects cells from stress and helps them
re-establish homeostasis, while prolonged endoplasmic reticulum
stress activates UPR and induces apoptosis (Adams et al., 2019; Al-
Hetty et al., 2023). Li et al. through in vitro studies, found that PSO
treatment of MG-63 and U2OS osteosarcoma cells induced cell cycle
arrest at the G0/G1 phase, promoting apoptosis in MG-63 and
U2OS cells (Li and Tu, 2022). Further research revealed that PSO
treatment resulted in elevated levels of ATF-6 and CHOP proteins,
with a decrease in Bcl-2 protein levels, suggesting that PSO-induced
apoptosis is related to endoplasmic reticulum stress. In summary,
PSO activated endoplasmic reticulum stress in osteosarcoma cells,
further inducing apoptosis. Wang et al. further explored the
mechanism of action of PSO in inhibiting liver cancer cells
through in vitro experiments (Wang X. et al., 2019). They
confirmed that PSO could induce the production of unfolded
proteins and cause endoplasmic reticulum stress in
SMMC7721 liver cancer cells. The results showed that PSO
significantly promoted the expression of GRP78 and GRP94,
inducing the unfolded protein response and leading to liver
cancer cell apoptosis. Further findings indicated that PSO could
cause cell cycle arrest at the G1 phase, significantly induce
endoplasmic reticulum stress in a dose-dependent and time-
dependent manner, leading to liver cancer cell apoptosis and
inhibiting liver cancer progression. This suggests that PSO may
be a new therapeutic option for the prevention and treatment of
hepatocellular carcinoma in the future. caspases are a class of
cysteine proteases that have long been considered a key
component of the apoptosis pathway (Song T. H. et al., 2019).
the tumor suppressor p53 plays a crucial role in inhibiting tumor
growth and inducing apoptosis, controlling cell death through
interactions with other important apoptotic molecules, including
members of the bcl-2 family (Vidal and Koff, 2000; Zehir et al., 2017;
Tan et al., 2019). jiang et al. found that in psoralea corylifolia-treated
smmc-7721 cells, caspase-3 activity increased in a dose-dependent
manner, levels of p53 and bax proteins were elevated, while the
expression of bcl-2 showed a dose-dependent decrease (Jiang and
Xiong, 2014). These results indicate that PSO suppresses the growth
of SMMC-7721 human liver cancer cells through a mechanism that
induces apoptosis by regulating the activity of caspase-3 and the
expression of p53 and Bcl-2/Bax proteins. Lu et al. (2014) discovered
that PSO and isopsoralen have inhibitory effects on the growth of
osteosarcoma xenografts in nude mice, inducing tumor cell
apoptosis or necrosis without significant toxic side effects within
the therapeutic dose range. This suggests that PSO, by regulating the
activity of proteins such as caspase-3 to induce cancer cell apoptosis,
represents a promising anticancer drug. Studies have discovered that
apoptosis in CTCL (Cutaneous T-Cell Lymphoma) cells can be
induced through a model combining treatment with PSO and long-

FIGURE 1
Chemical structure of PSO.
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wave ultraviolet light (Photochemotherapy with PSO and ultraviolet
A, PUVA). PUVA treatment leads to G2/M cycle arrest and
apoptosis in MyLa and HuT-78 cells, with an increase in the
expression of pro-apoptotic mitochondrial genes Bax, BAK,
PUMA, and a decrease in Bcl-2 expression. This suggests that
interferon-α (IFN-α) enhances PUVA-induced apoptosis in skin
lymphoma cell lines through the JAK1 pathway, demonstrating the
synergistic effect of IFN-α (Liszewski et al., 2017). The study
indicates that mitochondrial damage may occur in
lymphoblastoid cell lines following PUVA treatment, leading to
apoptosis (Canton et al., 2002). Viola et al. (2007) found that two
PSO derivatives, 8-methoxyPSO (8-MOP) and the coumarin
derivative angelicin, significantly induce apoptosis 24 h after
UVA irradiation. Under UVA exposure, these compounds induce
a significant decline in mitochondrial function and activate caspase-
3, caspase-8, and caspase-9 (Viola et al., 2007). Sun et al. (2013)
explored the regulatory role of PUVA on apoptosis and the
apoptotic signaling pathway in human leukemia NB4 cells. It was
found that the apoptosis rate of NB4 cells increased in a dose- and
time-dependent manner with different concentrations of PSO under
the influence of ultraviolet A (UVA) for 0 and 5 min, with the
highest apoptosis rate at a concentration of 40 mg/mL PSO after
5 min of UVA exposure. This indicates that PUVA can induce
apoptosis in NB4 cells and activate the Caspase-3 and Caspase-8
genes in vitro. Glioma is the most common primary brain tumor in
adults. The World Health Organization classifies it into grades I, II,
III, and IV (Miller et al., 2019), with higher grades indicating greater
malignancy. Approximately 100,000 people are diagnosed with
diffuse gliomas worldwide each year, and the mortality rate is
extremely high (Bray et al., 2018; Molinaro et al., 2019).
Unfortunately, almost all high-grade gliomas will recur, and
currently, there are no reported treatment methods that are both
safe and low in toxicity (Cloughesy et al., 2020). Wu et al. through
network pharmacology methods, discovered that the genes PIK3CA,

PIK3CB, and PIK3CG are highly related to the treatment of gliomas
with PSO. Further in vitro studies found that PSO significantly
promoted the early apoptosis of glioma U87 and U251 cells, and the
apoptotic capability increased with the concentration of PSO,
showing a significant concentration dependence (Wu et al.,
2022). This suggests that PSO has a good in vitro anti-glioma
effect. The mechanism of PSO inducing apoptosis is shown
in Figure 2.

2.2 Inhibition of tumor cell proliferation

Proliferation, as one of the fundamental cellular functions
constituting life, is a process that occurs in a strictly controlled
and orderly manner (Goodlad, 2017). Unrestricted proliferation is
one of the three main characteristics of cancer cells, and inhibiting
tumor cell proliferation is a common method in the clinical
treatment of tumors. Osteosarcoma is the most common primary
bone sarcoma and a leading cause of cancer death among children
and adolescents. It accounts for 3%–6% of all childhood cancers,
with its incidence among the most common cancers in children and
adolescents second only to lymphomas and brain cancer (Zhu et al.,
2016; Simpson and Brown, 2018). Li et al. through colony formation
assays, showed that the number of colonies in MG-63 and U2OS
cells treated with PSO was significantly reduced compared to the
control group, indicating that PSO inhibits the colony formation of
osteosarcoma cells (Li and Tu, 2022). This further suggests that PSO
can inhibit the proliferation of osteosarcoma cells and suppress the
progression of osteosarcoma, providing a molecular basis for the
further development of PSO as a novel anticancer drug for the
treatment of human osteosarcoma. Additionally, a team observed
the inhibitory effect of PSO on the proliferation of liver cancer
SMMC7721 cells through in vitro experiments and further explored
its relationship with endoplasmic reticulum stress (Wang X. et al.,

FIGURE 2
Mechanism of PSO inducing tumor cell apoptosis. PSO can lead to apoptosis of tumor cells by inducing cell cycle arrest and activating endoplasmic
reticulum stress. PSO treatment resulted in elevated levels of ATF-6 and CHOP proteins, with a decrease in Bcl-2 protein levels.
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2019). The results suggest that PSO inhibits the proliferation of
SMMC7721 cells by causing cell cycle arrest at the G1 phase.
Moreover, it can cause endoplasmic reticulum expansion and
dysfunction, thereby continuously inducing endoplasmic
reticulum stress, leading to the apoptosis of liver cancer cells.
Cell cycle dysregulation is a significant characteristic of tumor
cells, especially in malignant transformation, making cell cycle
proteins important targets of PSO’s anticancer effects.
Overexpression of these proteins can shorten the G1 phase and
advance cells into the S phase, leading to continuous proliferation
and increased risk of carcinogenesis (Mills et al., 2017). Wang et al.
were the first to systematically and detailedly describe the anticancer
effects of PSO on human breast cancer MCF-7/ADR cells (Wang
et al., 2016a). They discovered that PSO could block cells in the
G1 and G2 phases, significantly reducing the proportion of cells in
the S phase. However, there was no significant difference in the
number of apoptotic cells after treating MCF-7/ADR cells with PSO
for 48 h. This indicates that PSO inhibits the proliferation ofMCF-7/
ADR breast cancer cells by blocking the cell cycle. However, another
study reported that PSO at 10 μM and 30 μM could promote the
progression of MCF-7 cells from the G1 to the S phase, suggesting
that PSO’s regulatory effects on the cell cycle of different tumor cells
vary (Shen et al., 2007). The classic Wnt/β-catenin pathway plays a
key role in regulating tumorigenesis by blocking the cell cycle at
different stages. Wang et al. (2018) findings show that PSO inhibits
cell proliferation in a dose-dependent manner by inducing G0/
G1 phase block in MCF-7 cells and G2/M phase block in MDA-MB-
231 cells. After treatment with PSO, the expression of Wnt/β-
catenin target genes (such as CCND1 and c-Myc) in MCF-7 and
MDA-MB-231 cells was regulated to varying extents. This suggests
that PSO can induce cell cycle arrest in MCF-7 and MDA-MB-
231 cells, possibly related to its inhibition of Wnt/β-catenin
transcriptional activity. The mechanism of PSO inhibiting
proliferation is shown in Figure 3.

2.3 Inhibition of tumor cell migration

Migration and invasion are two major biological characteristics
of malignant tumors. Epithelial-mesenchymal transition (EMT) is
closely related to the invasion and metastasis of tumors, serving as a
crucial mechanism facilitating cancer metastasis. During the
progression of malignant tumors, EMT is activated, leading to
epithelial cells losing cell-cell adhesion molecules like E-cadherin
and acquiring mesenchymal markers such as N-cadherin, Vimentin,
and α-SMA, related to cell polarity and the cytoskeleton (Dongre
and Weinberg, 2019; Georgakopoulos-Soares et al., 2020; Brabletz
et al., 2021; Ha et al., 2021). Therefore, targeting EMT could be an
effective strategy for treating malignant and metastatic tumors.
Wang et al. (2016a) determined the effect of PSO on the
migration of MCF-7/ADR cells through wound healing assays,
finding that PSO could inhibit the migration of MCF-7/ADR
cells. They discovered that in MCF-7/ADR cells treated with
PSO, the epithelial marker E-cadherin was significantly
upregulated, while the mesenchymal markers Vimentin and α-
SMA were significantly downregulated, suggesting that PSO
could be a negative mediator of EMT and metastasis in MCF-7/
ADR cells. PSO was also found to inhibit the activation of NF-κB
necessary for EMT. Further research showed that PSO significantly
reduced the migration capabilities of U87 and U251 glioma cells
(Wu et al., 2022). In vitro experiments demonstrated that after
24 and 48 h of administration of 10 μM and 30 μM PSO, the
migration abilities of U87 and U251 cells were significantly
inhibited. It is speculated that PSO inhibits tumor cell
proliferation and migration by reducing the expression of the
genes JAK2, PIK3CA, PIK3CB, and PIK3CG. Breast cancer is
one of the most prevalent cancers worldwide and remains the
most common malignant tumor among women, leading to the
highest number of cancer-related deaths among females (Nagini,
2017). Thanks to advancements in diagnostic and imaging

FIGURE 3
Mechanism of PSO inhibiting tumor cell Proliferation and Migration. PSO inhibits tumor cell proliferation by regulating cyclin and Wnt/β-catenin
pathway. PSO prevents tumor cell migration by inhibiting EMT and upregulating the epithelial marker E-cadherin.
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technologies, along with early screening, the mortality rate of
breast cancer has significantly decreased. However, the
prognosis for breast cancer patients remains poor due to the
risks of recurrence and metastasis (Chetlen et al., 2016; Li et al.,
2016). Current treatments for breast cancer mainly include
surgery, endocrine therapy, radiotherapy, chemotherapy, and
targeted therapy (Mcdonald et al., 2016; Pan et al., 2017; Peart,
2017), but these treatments often come with severe adverse
reactions (TAYLOR and KIRBY, 2015; Condorelli and Vaz-luis,
2018; Lacouture and Sibaud, 2018). In recent decades,
nanoparticle-assisted combination drug therapy has made some
progress in treating various types of cancer (Rawal and Patel,
2019). Polymer–lipid hybrid nanoparticles (PLNs) are a promising
drug delivery system that has been widely used in the treatment of
metastatic breast cancer (Zhu et al., 2015; JIang et al., 2016). Liu
et al. (2021) found that PSO-loaded polymeric lipid nanoparticles
(PSO-PLNs) could enhance the inhibitory effect of paclitaxel
(PTX) on cell invasion and metastasis, suggesting the potential
of PSO-PLNs as an adjuvant therapy against human BC cell
metastasis. PTX combined with PLNs demonstrated a
significant ability to inhibit cell migration and invasion
activities related to the expression of IRAK1 and NF-κB in
MDA-MB-231 breast cancer cells. These findings indicate that
the combination of PTX and PSO-PLNs is a promising strategy for
effectively treating BC metastasis. Evaluating nanoparticle
formulations in animal models is also crucial for understanding
their potential therapeutic impact. The mechanism of PSO
inducing migration is shown in Figure 3.

2.4 Reversing multidrug resistance

Drug resistance refers to the tolerance developed by tumor
cells to anticancer drugs, which significantly diminishes the
therapeutic effects of these medications. It is primarily
categorized into primary resistance, secondary resistance, and
multidrug resistance (MDR). Cancer poses a significant threat to
global human health, and chemotherapy is one of the most
common and effective strategies for treating cancer (Siegel
et al., 2021). However, drug resistance and adverse reactions
are widespread, constituting major obstacles and challenges in
current cancer treatment (Nurgali et al., 2018). In recent years,
the feasibility of using traditional Chinese medicine to combat
MDR has garnered considerable attention and has begun to be
explored preliminarily (Chai et al., 2010). ABCB1, a member
of the ATP-binding cassette family, has been found to be
associated with drug resistance and transport (Calatozzolo
et al., 2005). Studies have shown that the addition of PSO
made A549/D16 cells dose-dependently resensitize to the
toxicity of docetaxel (DOC); further in vitro experiments
found that PSO significantly reduced the ABCB1 mRNA levels
in A549/D16 lung cancer cells (Hsieh et al., 2014). When used in
combination with DOC, the levels of ABCB1 mRNA were further
decreased. This suggests that PSO can inhibit the activity of the
ABCB1 promoter, downregulate the expression of the
ABCB1 gene, inhibit the function of ABCB1, and ultimately
sensitize resistant cells to chemotherapy-induced death,
thereby effectively reversing multidrug resistance. This

capability positions PSO as a potential remedial measure to
overcome MDR involving ABCB1. Identifying the resistance
mechanisms of different chemotherapeutic drugs in various
tumor cells and implementing comprehensive targeted
regulation could facilitate the reversal of chemotherapy
resistance. Wang et al. (2016a) explored the effect of PSO on
MDR in breast cancer cells through in vitro experiments. They
discovered that PSO at a concentration of 8 μg/mL had a reversal
fold of 3.39 in MCF-7/ADR cells, indicating that PSO could
significantly reverse MDR, increasing the toxicity of adriamycin
(ADR) to MCF-7/ADR cells. The release of exosomes has been
proven to play a key role in resistance. Targeting the transfer of
exosomes from resistant cells to sensitive cells might be a method
to overcome certain resistances. The PPAR signaling pathway
regulates the level of ceramide synthesis, an important regulatory
molecule for exosome secretion (Trajkovic et al., 2008; Wang G.
et al., 2012). Research has found that PSO can reduce the spread
of resistance via exosomes through the PPAR and P53 signaling
pathways, thus overcoming resistance (Wang et al., 2016b). The
human ABCB1 gene, also known as multidrug resistance 1
(MDR1), encodes P-glycoprotein (P-gp). The
MDR1 phenotype is commonly observed in breast cancer,
producing chemotherapeutic resistance (Leonard et al., 2003).
Jiang et al. used an adriamycin (ADR)-resistant human breast
cancer cell line, MCF-7/ADR, to investigate whether PSO could
reverse MDR by regulating the function of P-gp (Jiang et al.,
2016). They further discovered that at certain concentrations,
PSO could significantly reduce P-gp-mediated MDR in human
breast cancer MCF-7/ADR cells by inhibiting the function of
P-gp, affecting the reversal of MDR. This could provide new
strategies for overcoming drug resistance in breast cancer in the
future. The mechanism of PSO reversing MDR is shown in
Figure 4. The mechanism of antitumor action of PSO is shown
in Table 1.

3 Mechanisms of hepatotoxicity

The liver, being the primary organ involved in drug
metabolism and a crucial detoxification organ, is susceptible to
drug toxicity (Hou et al., 2016). Drugs absorbed into the
bloodstream are metabolized by the liver, where their
metabolites or the drugs themselves can cause direct or
indirect damage to this vital organ. Despite the widespread use
of traditional Chinese medicine in clinical treatment due to its
natural ingredients and perceived safety, reports of liver damage
related to these herbal medicines have gradually increased in
recent years. As research into Psoralea corylifolia and its main
active component, PSO, deepens and its range of application
expands, PSO has been identified as the primary cause of FP-
induced hepatotoxicity (Cheung et al., 2009; Smith and
Macdonald, 2014). Toxicological studies have shown that PSO
can lead to multisystem damage, including to the reproductive,
immune, and nervous systems, as well as to substantial organs
such as the liver and kidneys, with the liver being particularly
severely affected (Wang X. et al., 2012; Xia et al., 2018). Increasing
evidence suggests that the mechanisms behind PSO-induced
hepatotoxicity may involve a variety of factors, including bile
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stasis (Wang Y. et al., 2019; Huang et al., 2021), interference with
liver regeneration (Zhou et al., 2018), oxidative stress responses
and mitochondrial dysfunction (Xia et al., 2018), endoplasmic
reticulum stress responses (Yu et al., 2020), and abnormalities in
amino acid metabolism (Zhang et al., 2018). The mechanisms of
PSO induced hepatotoxicity are shown in Table 2.

3.1 Bile stasis

Bile acids (BAs), derived from cholesterol in the liver, play a
crucial role in liver function, physiology, and metabolic regulation.
Bile acids have multiple functions, including preventing the
formation of gallstones, promoting the excretion of cholesterol,
and facilitating the absorption of lipids and nutrients in the
intestines (Li and Chiang, 2009). Intrahepatic bile stasis can
further lead to liver fibrosis, cirrhosis, and even liver failure.
Studies have shown that approximately half of all cases of drug-
induced liver injury (DILI) are associated with cholestatic
dysfunction, and disruption in bile acid homeostasis is one of
the mechanisms behind DILI (Tajiri and Shimizu, 2008; Mosedale
and Watkins, 2017). Huang et al. explored the hepatotoxic effects
of PSO on rats through in vitro experiments (Huang et al., 2021).
They found that after administering PSO for 3 days, there was a
significant upward trend in the levels of serum alanine
aminotransferase (ALT), aspartate aminotransferase (AST), and
total cholesterol (TC) in rats, suggesting that PSO could cause liver

damage in rats after 3 days of administration. Hepatic bile acid
transporters, responsible for the transport of bile acids and drugs,
are crucial for preventing various cholestatic liver diseases. A
decrease in or absence of the expression of hepatic bile acid
transporters is a significant cause of such diseases. Further
findings revealed significant changes in the mRNA and protein
levels of rat hepatic bile acid transporters, with downregulation of
MRP4, ABCG5, and ABCG8 proteins, and an increase in NTCP
protein levels. This suggests that PSO may cause liver damage by
affecting bile acid transporters, leading to disrupted transport and
accumulation of bile acids within hepatocytes, which could be a
potential mechanism behind PSO-induced liver injury. The
transport of bile acids is coordinated by transport proteins
located on the basolateral side of hepatocytes and in the bile
ducts, such as the bile salt export pump (BSEP) and organic
solute transporter α (OSTα). Chen et al. discovered that after
administering PSO at a dose of 80 mg/kg for seven consecutive
days, liver damage was induced in C57BL/6J mice (Chen et al.,
2023). To further explore PSO-induced cholestatic liver injury, the
bile acid content in the liver of mice was measured after 14 days of
administration. It was found that PSO inhibited the expression of
BSEP and OSTα, leading to impaired bile acid secretion and a
significant increase in the hydrophobic bile acids CA and ALCA.
This suggests that PSO may disrupt the balance of bile acid
metabolism by inhibiting the expression of efflux transport
proteins, thereby causing liver injury. The mechanism of PSO
inducing Bile Stasis is shown in Figure 5.

FIGURE 4
Mechanism of PSO reversing tumor cell MDR. PSO regulates the spread of exosome drug resistance through the PPAR and P53 signaling pathways,
thereby inhibiting tumor cell drug resistance.
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3.2 Delaying liver regeneration

The liver is a vital organ for maintaining metabolic balance and
detoxification within the body, possessing remarkable regenerative
and compensatory abilities that allow it to repair and replace lost or
damaged liver tissue and restore its physiological functions after
injury. Liver regeneration is a complex process involving multiple
cells and factors. The mammalian target of rapamycin (mTOR) acts
as a sensor for various intracellular and extracellular signals,
appropriately regulating biological processes including cell
proliferation, metabolism, and cell cycle progression (Laplante
and Sabatini, 2012). Liang et al. (2020) through studies utilizing a
carbon tetrachloride (CCl4)-induced liver injury model in mice,
found that PSO could induce G1/S phase arrest in hepatocytes,
affecting the liver’s regenerative and repair capabilities and delaying
recovery after partial hepatectomy. The preliminary mechanism
may be related to the inhibition of PCNA and regulation of
some cell cycle-associated protein by PSO, in which the
significant upregulation of p27, p53 and p21 may play important
roles. A 2/3 partial hepatectomy (PHx; also known as 2/3 PH or 70%
PH) is a common in vivo model used to study liver regeneration.

Zhou et al. (2018) through a 2/3 partial hepatectomy mouse model
and in vitro experiments, discovered that PSO could induce mild
liver injury in mice and cytotoxicity in L02 cells. The cell cycle
process plays an indispensable role in tissue growth and
regeneration in multicellular organisms. Further investigation
into the effects of PSO on liver regeneration and cell cycle arrest
in vivo revealed that PSO could upregulate the protein expression of
cyclin E1 and p27 and downregulate cyclin D1, inducing G1/S phase
arrest. This suggests that the reduced capacity for liver regeneration
caused by hepatocyte cell cycle arrest may be related to the
regulation of cell cycle protein expression and inhibition of the
mTOR signaling pathway. The mechanism of PSO Delaying Liver
Regeneration is shown in Figure 5.

3.3 Endoplasmic reticulum stress

The endoplasmic reticulum (ER) maintains cellular homeostasis
by regulating the synthesis, folding, and modification of proteins, as
well as the transport of Ca2+. Disruptions in ER homeostasis can
affect proper protein folding, leading to endoplasmic reticulum

TABLE 1 The antitumor efects mechanisms of PSO.

Mechanism Cell/tissue
type

Concentration Duration of
administration

Target Ref

Induction apoptosis MG-63, U2OS 8, 9 μg/mL 48 h ATF-6, CHOP, Bcl-2 ADAMS et al. (2019)

SMMC7721 40 μM 48 h GRP78, GRP94, CyclinD1,
CyclinE1

LI and TU (2022)

SMCC-7721 10, 30, 50, 100 ug/mL 48 h caspase-3, p53, Bcl2, Bax VIDAL and KOFF
(2000)

Female BALB/c nude
mice

320,
1600 μg/(kg·d)

10 day AKP JIANG and XIONG
(2014)

NB4 0, 5, 10, 2040 μg/mL 0, 5 min Caspase-8,Caspase-3 VIOLA et al. (2007)

U87, U251 0, 10, 30 μM 24 h JAK2, PIK3CA, PIK3CB,
PIK3CG.

CLOUGHESY et al.
(2020)

Inhibition
proliferation

MG-63, U2OS 0, 10, 20, 30, 40, 50, 60,
70 μg/mL

48 h CyclinA1, CyclinB1,
CyclinD1, CDK2

ADAMS et al. (2019)

SMMC7721 10–80 μM 24, 48,72 h MTT LI and TU (2022)

MCF-7/ADR 0, 21.5, 43.0, 64.5, 86.0,
107.5 μM

48 h G0/G1 phase arres MILLS et al. (2017)

MCF-7, MDA-
MB-23

8, 12 μg/mL 48 h Wnt/β-catenin,
Fra-1, Axin2, cyclin D1,
c-Myc

SHEN et al. (2007)

Female BALB/c nude
mice

17.5 mg/kg Twice weekly, 28 days β-catenin/Fra-1 SHEN et al. (2007)

Inhibition migration U87, U251 0, 10, 30 μM 024 h, 48 h JAK2, PIK3CA, PIK3CB,
PIK3CG.

CLOUGHESY et al.
(2020)

MCF-7/ADR 43.0 μM 0, 24, 48 h NF-KB, EMT, E-cadherin,
VIM, α-SMA

MILLS et al. (2017)

Reversal of MDR A549/D16 0, 5, 10, 20 μM 24 h ABCB1, ABCB1 mRNA HSIEH et al. (2014)

MCF-7/ADR 43.0 μM 48 h MDR1 MILLS et al. (2017)

MCF-7,
MCF-7/ADR

4, 8, 12 μg/mL 48 h MDR1 mRNA, P-gp JIANG et al. (2016)
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stress (ER stress) and dysfunction. The unfolded protein response
(UPR) is an evolutionary mechanism designed to restore ER
homeostasis, but if ER stress is severe and unresolved, it can
induce apoptosis. The UPR pathway consists of three sensor

proteins: protein kinase R (PKR)-like ER kinase (PERK), inositol-
requiring protein 1α (IRE1α), and activating transcription factor 6
(ATF6) (Urra et al., 2013). Numerous clinical and experimental
studies have demonstrated that abnormalities in ER stress can

TABLE 2 Mechanisms of PSO induced hepatotoxicity.

Mechanism Cell/tissue
type

Concentration Duration of
administration

Target Ref.

Bile stasis Sprague-dawley
rats

60 mg/kg 1, 3, 7 days MRP4, ABCG5
ABCG8, NTCP

YU et al. (2020)

C57BL/6J mice 80 mg/kg 3, 7, 14 days CYP7A1, CYP27A
BSEP, OSTα
HMGCR, FASN

ZHANG et al. (2018)

Delaying liver regeneration C57 BL/6 mice 200 mg·kg~(−1) — PCNA, p27, p53, p21 TAJIRI and SHIMIZU
(2008)

C57BL/6 mice 400 mg/kg, 800 mg/kg 24 h cyclin E1, p27
mTOR

MOSEDALE and
WATKINS (2017)

Endoplasmic reticulum stress HepG2 cells 50, 100, 200, 400, 600 umol/L 6, 12, 24, 48 h PERK-eIF2α-ATF4-
CHOP, ATF6-CHOP

ZHOU et al. (2018)

Oxidative stress and
mitochondrial dysfunction

HepG2 cells 300, 400, 500, 600, 700, 800 µM 24 h Nrf2, mTOR
ABL1

KIM et al. (2004)

HepG2 cells;
Male ICR mice

0–1,000 μM 12, 24, 48 h CYP1A2, GSH
MDA, SOD

WANG et al. (2021)

zebrafish 1/10 LC1, 1/3 LC1, LC1, LC10 24, 48, 72, 96 h T-SOD, ROS, MDA, p53,
puma, apaf-1, caspase-9

SMITH and
MACDONALD (2014)

Other mechanisms ICR mice 20, 40, and 80 mg/kg 3, 7, 14, 21, 28 days CYP2D6, CYP3A4, GST-
α, GST-μ, GSH

BEHRENDS et al.
(2019)

HepG2 cells;
C57BL/6 mice;
ICR mice

10, 25, 50, 100, 200 μM; 20, 80,
160 mg/kg

2, 12, 24, 36, 48 h; 3, 7,
14 days

CYP1A2
AhR

ZHOU et al. (2019)

FIGURE 5
Mechanism of PSO inducing Bile Stasis andDelaying Liver Regeneration. PSO disrupt the balance of bile acidmetabolism by inhibiting the expression
of efflux transport proteins, thereby causing liver injury. PSO delay liver regeneration by regulating the expression of cyclin and inhibiting the mTOR
signaling pathway.
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activate apoptosis, leading to severe liver damage in clinical settings
(Iracheta-Vellve et al., 2016; Ren et al., 2017). Yu et al. conducted
in vitro experiments to explore the toxic effects of PSO on
HepG2 cells. They found that PSO significantly induced liver cell
death and apoptosis in a time- and dose-dependent manner (Yu
et al., 2020). Moreover, PSO significantly increased the expression
and transcription levels of ER stress-related markers, including
Grp78, PERK, eIF2α, ATF4, and ATF6. The ER stress inhibitor
4-phenylbutyrate (4-PBA) effectively inhibited PSO-induced cell
death and apoptosis, as well as the ER stress response. This
suggests that PSO induces ER stress-mediated apoptosis through
the PERK-eIF2α-ATF4-CHOP and ATF6-CHOP related pathways,
thereby causing liver injury. Targeting ER stress presents a potential
therapeutic and preventive strategy for addressing liver toxicity
induced by PSO.

3.4 Oxidative stress and mitochondrial
dysfunction

Oxidative stress is a condition characterized by an imbalance
between the production of reactive oxygen species (ROS) and the
body’s ability to clear them through its antioxidant defense system. It
is recognized as a mechanism of chemically induced toxicity.
Elevated levels of ROS can react with complex cellular molecules
such as lipids, proteins, or DNA, leading to homeostatic imbalance,
oxidative stress, and damage to cellular components (Cederbaum
et al., 2009; Rahal et al., 2014). Studies have shown that oxidative
damage can lead to liver injury when the production of ROS exceeds
the antioxidant capacity of the cell (Guo et al., 2021).

The transcription factor nuclear factor erythroid 2-related factor
2 (Nrf2) plays a pivotal role in the cellular oxidative stress response,
maintaining redox balance and signaling, and regulating the
expression of various antioxidants (Kozieł et al., 2021). The
activation of the PI3K-Akt pathway mediates positive regulatory
signals of Nrf2 within the cell, participating in the antioxidative
process (Kim et al., 2004). Sun et al. (2022) using proteomics and
network pharmacology techniques, identified ABL1 as a direct
potential target for PSO-induced hepatotoxicity and subsequently
verified its toxic mechanism through in vitro experiments. They
found that the combination of PSO and ABL1 reduced the
expression of downstream Nrf2 and mTOR, leading to elevated
levels of ROS and resulting in cellular damage. CYP1A2 is a major
Phase I metabolic enzyme abundantly expressed in the liver (Zanger
and Schwab, 2013). Research has linked PSO-induced
hepatotoxicity with upregulated CYP1A2 expression (SONG L.
et al., 2019). The formation of reactive metabolites catalyzed by
Cytochrome P450(CYP450) and subsequent oxidative stress is a
common pathway for metabolism-mediated exogenous toxicity (Jee
et al., 2021; Wang et al., 2021). Zhang et al. revealed the role of
CYP1A2 in PSO-induced metabolic activation and hepatotoxicity
through transcriptomics and metabolomics (Zhang et al., 2023). In
vitro and in vivo studies have shown that PSO-induced oxidative
stress is associated with CYP1A2, where the induction of
CYP1A2 leads to increased levels of MDA, and reduced activity
of SOD and levels of GSH. This suggests that PSO is metabolically
activated by CYP1A2, forming reactive intermediates, thereby
depleting glutathione (GSH), inducing cellular oxidative stress,

and hepatotoxicity. Cell survival is maintained through a balance
between the levels of ROS and the cell’s antioxidative capacity (Lee
et al., 2017). Xia et al. (2018) evaluated the developmental toxicity of
PSO on zebrafish embryos/larvae through experiments. They
discovered an increase in ROS production in the PSO treatment
group; however, the activity of total superoxide dismutase (T-SOD)
significantly decreased, and the levels of malondialdehyde (MDA)
significantly increased. This indicates that PSO treatment induced
oxidative stress during the development of zebrafish embryos,
suggesting that the molecular mechanism behind PSO-induced
liver damage in zebrafish might involve the generation of
excessive ROS or inhibition of the organism’s antioxidative
system’s clearance capacity. This triggers oxidative stress,
producing a large number of free radicals and lipid peroxides,
thereby causing liver damage. Moreover, mitochondrial
dysfunction is also associated with the occurrence and
development of hepatotoxicity (Behrends et al., 2019).
Mitochondria are the main sites of energy metabolism within the
cell, playing a crucial role in processes such as ATP synthesis and
apoptosis. In zebrafish larvae treated with PSO, the expression levels
of pro-apoptotic protein-encoding genes (p53, puma, apaf-1,
caspase-9, caspase-3) were elevated, and the expression level of
Bcl-2 was decreased, indicating that PSO induces apoptosis in
zebrafish larvae through a mitochondria-dependent pathway (Xia
et al., 2018). Additionally, gene expression analysis results suggest
that PSO induces liver developmental toxicity through oxidative
stress, apoptosis, and abnormalities in energy metabolism. The
mechanism of PSO inducing Oxidative Stress and Mitochondrial
Dysfunction is shown in Figure 6.

3.5 Other mechanisms

In addition to bile stasis, interference with liver regeneration,
oxidative stress responses with mitochondrial dysfunction, and
endoplasmic reticulum stress responses, the hepatotoxicity of
PSO involves other related pathways such as drug metabolism
and amino acid metabolism. The liver is the primary organ for
drug metabolism, which includes phases of oxidation, reduction,
hydrolysis, and conjugation. CYP450 enzymes, a class of heme-
containing monooxygenases, are the main liver enzymes involved in
Phase I drug metabolism through oxidation or reduction (Zanger
and Schwab, 2013). Research by Jiang et al. found that the
accumulation of PSO in the liver is a major cause of liver injury
(Jiang et al., 2022). Further investigation revealed that PSO can
directly bind to CYP2D6, CYP3A4, GST-α, and GST-μ, inhibiting
their activity, leading to the depletion of GSH in the body, causing
liver damage and resulting in disorders of drug metabolism. The
combined use of PSO with glutathione can alleviate the elevation of
transaminase levels caused by PSO and improve liver pathological
changes, suggesting that the combination of GSH and PSO is an
effective method to avoid liver damage in clinical practice. The aryl
hydrocarbon receptor (AhR) is a ligand-dependent transcription
factor that initiates the transcription of target genes by forming
heterodimers with AhR nuclear translocator, regulating the
expression of drug-metabolizing enzymes such as CYP1A and 1B
(Vogel et al., 2020; Xu et al., 2021; Zhang W. et al., 2022). PSO-
induced hepatotoxicity has been reported to be associated with the
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exogenous metabolism of cytochrome P450 (CYPs), with
CYP1A2 being a significant metabolic enzyme involved in PSO-
induced hepatotoxicity (Song L. et al., 2019). CYP1A2 accounts for
approximately 4%–16% of the total CYP pool in the liver and is
involved in the metabolism of the main components in PF (Zhou
et al., 2019; Kwon et al., 2021). Zhang C. et al. (2022) discovered
through in vitro and in vivo experiments that the hepatotoxicity
induced by PSO in HepG2 390 cells and mice is related to the
induction of CYP1A2 expression. The potential mechanism may
involve the activation of AhR by these molecules, initiating the
transcription of the target gene CYP1A2, leading to increased levels
of CYP1A2. This is accompanied by elevated levels of
CYP1A2 mRNA and protein, and significant inhibition of
CYP1A2 activity in vitro. Metabolomics, a relatively new research
technique, has become a viable tool for studying the biochemical
actions of many toxic substances (Han et al., 2016). With the
continuous development of metabolomics, untargeted
metabolomics has been widely applied in drug safety evaluation
and toxicity prediction, providing valuable information for drug-
induced cardiotoxicity, hepatotoxicity, and nephrotoxicity. Research
teams have observed that long-term exposure to low levels of PSO
and isoPSO induces hepatotoxicity in female rats and changes in the
serum metabolome. These changes include disruptions in the
metabolic pathways of alanine metabolism, glutamate
metabolism, the urea cycle, the glucose-alanine cycle, the
ammonia cycle, and the metabolism of glycine and serine. This
suggests that PSO may inhibit the synthesis of proteins from free
amino acids while also preventing their use as substrates for
gluconeogenesis in rats (Yu et al., 2019). Zhang et al. (2018)
utilizing 1H-NMR metabolomics technology combined with
conventional serum biochemistry, investigated the mechanism of
liver injury induced by PSO and found that the liver is a direct target
of PSO toxicity. Multivariate analysis identified seven metabolites in

serum samples and fifteen metabolites in liver samples as potential
biomarkers for liver injury caused by PSO. Further findings
suggested that PSO might cause liver damage by disrupting the
biosynthesis of valine, leucine, and isoleucine in the serum and liver.
These findings provide a reference for the medicinal safety and
potential risks of PSO.

4 Discussion

The global incidence and mortality rates of cancer continue to
climb, posing a significant impact on human health worldwide. The
mechanisms underlying malignant tumors are incredibly complex,
making the exploration of their pathogenesis and the search for safe
and effective anti-tumor drugs especially important. With the rapid
advancements in medical science and the continuous refinement of
bioinformatics, effective targets and pathways for natural drugs to
regulate tumors are gradually being identified, and an increasing
number of active monomers from traditional Chinese medicines are
being discovered. PSO, a major active component of the traditional
Chinese medicine Psoralea corylifolia, can inhibit tumor growth
through multiple targets and has relatively good safety. Therefore,
researching and developing the anti-tumor activity and mechanisms
of PSO hold significant importance and have broad prospects in
treating malignant tumors. PSO is widely distributed in various
natural plants and has attracted widespread attention from the
research community due to its good medicinal potential. It
exhibits multiple pharmacological activities, including anti-tumor,
neuroprotective, anti-inflammatory, and antioxidant effects, playing
an important role in the treatment of various diseases. PSO’s anti-
tumor effect is extensive; it not only inhibits the growth of solid
tumors and primary tumor cells but also controls the invasive
activity of tumor cells to prevent metastasis. PSO exerts its anti-

FIGURE 6
Mechanism of PSO inducing Oxidative Stress and Mitochondrial Dysfunction. PSO is metabolically activated by CYP1A2, forming reactive
intermediates, thereby depleting GSH, inducing cellular oxidative stress, and liver injury. The combination of PSO and ABL1 reduced the expression of
Nrf2 and mTOR, leading to elevated levels of ROS and resulting in liver injury.
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tumor effects mainly by inducing apoptosis, inhibiting cell proliferation
and migration, and reversing multi-drug resistance of tumor cells,
making it a promising anti-tumor drug. With the continuous
development and improvement of experimental techniques and
bioinformatics, the anti-tumor effect of PSO has been fully confirmed
in experiments, and its pharmacological mechanism has been elucidated
at multiple levels. However, current research is mostly limited to in vitro
experiments, lacking necessary clinical studies. Further research on its
precise mechanisms, target actions, and clinical applications is needed.
Besides the most common anti-tumor active components of Psoralea
corylifolia, PSO and isoPSO, research on the anti-tumor effects of other
chemical components is scarce. It would be beneficial to increase the
research on the synthesis of derivatives of PSO and isoPSO and their anti-
tumor activities to discover compounds with less toxicity and resistance.
Additionally, comparing and analyzing the chemical structures of anti-
tumor active components in Psoralea corylifolia, modifying and
optimizing the compounds, and focusing on in vivo anti-tumor
activity and drug processes in the body will help develop more
clinically meaningful anti-tumor drugs.

The percentage of a medicinal product absorbed unmodified in
the systemic circulation represent the bioavailability of that product
(Pandareesh et al., 2015; Salehi et al., 2020). The bioavailability
represents the actual effective concentration of these compounds at
the site of drug action following their absorption from the
gastrointestinal tract after oral administration of a dosage form
(solution, suspension, tablet, etc.) (Chow, 2014; Salehi et al., 2018).
PSO is a natural compound that is orally bioavailable. New drug
forms such as nanoencapsulation have been developed to improve
the bioavailability of PSO (Chen et al., 2017; Zhang et al., 2019). Yen
et al. found that nanoencapsulation of PSO (viachitosan and
Eudragit S100) improved the efficiency of oral drug delivery. The
pharmacokinetic analysis of PSO and PSO-nanoencapsulate
revealed that the bioavailability of nano-microencapsulated
microspheres was 339.02% higher compared to simple
microsphere suspension, indicating that nano-microcapsules
exhibited superior potential in enhancing the oral absorption of
PSO when compared to traditional suspensions (Yin et al., 2016).
These results suggest that PSO pharmaceutical nanoformulations
containing chitosan and EudragitS100 compounds have great
potential for improving PSO bioavailability.

To address psoralen-induced hepatotoxicity, the dosage of psoralen
can be reduced tomitigate toxicity, especially for patients with impaired
liver function. Additionally, developing psoralen analogs with lower
toxicity but retained efficacy is another approach. Combining psoralen
with other drugs that enhance its therapeutic effects can also reduce its
toxicity. Structurally modifying psoralen to enhance its therapeutic
properties and reduce toxicity has been achieved by synthesizing several
derivatives and analogs, such as 8-methoxypsoralen (8-MOP) and 5-
methoxypsoralen (5-MOP). These modifications aim to improve
psoralen’s photoreactivity and reduce side effects. Psoralen targeted
delivery systems utilize nanoparticle-based systems to direct psoralen to
tumor cells, minimizing exposure to healthy tissues. Researchers have
developed various targeted delivery systems to improve psoralen’s
therapeutic index. Encapsulating psoralen in nanoparticles can
enhance its delivery to tumor cells while reducing systemic toxicity.
Nanoparticles can be designed to release psoralen in response to specific
stimuli in the tumor microenvironment, such as pH or temperature
changes. Regarding the clinical application of psoralen, a review of

relevant literature indicates that psoralen combined with UVA light
(PUVA therapy) has been clinically used to treat various skin diseases,
including psoriasis, vitiligo, and cutaneous T-cell lymphoma. The use of
traditional Chinese medicine can lead to certain liver injuries (Herb-
induced liver injury, HILI). The development of HILI is insidious,
closely related to the drug’s toxicity, dosage, duration of use, and
individual differences. As reports of liver toxicity caused by Psoralea
corylifolia and its compound preparations increase, thematerial basis of
Psoralea corylifolia liver toxicity has receivedwidespread attention from
scholars. PSO, as the main active component of Psoralea corylifolia, has
been proven to have hepatotoxicity, and long-term use can lead to liver
damage. PSO can cause liver toxicity through various pathways, such as
inhibiting liver regeneration, bile stasis, oxidative stress, and
mitochondrial dysfunction, causing damage to the liver. Further
analysis reveals the complexity of the mechanisms behind herbal
medicine-induced liver toxicity due to the diversity of toxic
substances, the complex chemical components of natural drugs, and
their multi-level, multi-target, and multi-pathway effects on the body,
further hindering the systematic characterization and elucidation of the
mechanisms of herbal liver toxicity. On one hand, the emergence of
multi-omics technologies provides a powerful tool for the study of
traditional Chinesemedicine toxicology, describing cellular life activities
at multiple levels. Its advantages lie in the specific changes in biological
pathways during the onset and treatment of diseases, aligning with the
characteristics of natural drugs’ multi-pathway, multi-component, and
multi-target effects, to some extent solving issues of unclear action targets
and undefined toxicity mechanisms in natural drug toxicity research.
Therefore, it is necessary to further applymetabolomics technology to the
study of traditional Chinese medicine toxicology, providing key support
for rational and safe medication. On the other hand, as a natural drug
with potential toxicity, a rational evaluation of the hepatotoxicity of PSO
can help improve the safety and rationality of clinical medication.
Establishing scientific and rational traditional Chinese medicine safety
evaluation methods, further exploring the mechanisms of PSO’s toxicity
reduction and the “toxicity-effect” transformation relationship, will aid in
rationally evaluating the benefits and risks of using PSO, providing
references for its clinical safe use, new drug development, and drug
evaluation containing Psoralea corylifolia. In summary, the advantages of
natural drugs in terms of safety and efficacy have attracted widespread
attention from scholars. The development and utilization of traditional
Chinese medicine have become a hot topic. An increasing number of
natural drugs are being developed, and in the future, traditional Chinese
medicine monomers are expected to be developed into new, safe, and
effective anti-tumor drugs. Meanwhile, we should also pay attention to
the potential liver damage caused by natural drugs, rationally evaluate
their hepatotoxicity while developing and utilizing them, and maximize
the advantages of natural drugs for clinical safe use, new drug research
and development, and drug evaluation.
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