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1 Introduction

We must consider that as societies experience changes in their eating patterns, there is
an increase in the prevalence of chronic noncommunicable diseases (NCDs), which are
particularly relevant in older populations and can trigger risk factors for degenerative eye
diseases. One of the main issues to highlight is the food transition, which involves a shift
towards more Western and processed diets, often rich in refined sugars, saturated fats, and
processed foods, thus lacking essential nutrients (antioxidants, vitamins, and minerals)
crucial for eye health. Urbanization and fast and convenient food availability have led to
increased consumption of unhealthy foods. This not only affects the quality of the diet but
can also influence habits such as excessive consumption of alcohol and tobacco, which are
risk promoters for the development of ocular pathologies (dry eye, cataracts, age-related
macular degeneration, uveitis, among others).

Ocular problems can significantly impact quality of life and increase dependency in
those affected (Yang et al., 2019). The current challenge for public health and health
professionals is to empower individuals with the knowledge of early detection of visual
diagnoses through intraocular pressure measurement and fundus examination, and to
emphasize the proactive role of healthy habits (Munteanu et al., 2022). Risk factors
associated with ocular pathologies such as glaucoma, age-related macular degeneration
(AMD), and cataracts focus not only on age, sex, race, heredity, and cardiovascular health
but also on nutritional status (Musa et al., 2023). In the visual process, the retina is the organ
responsible for receiving light rays, transforming them into nerve stimuli, and transmitting
them through the axons of the optic nerve to the brain, where they are interpreted as vision.
The retina covers approximately 2/3 of the back of the inner surface of the eyeball
(Mahabadi et al., 2024).

The adult retina is composed of ten differentiable layers corresponding to 4 cell layers:
the retinal pigment epithelium (RPE), the photoreceptors, the intermediate connecting
neurons, and the ganglion cells, which give rise to the optic nerve. The other layers
correspond to synaptic connections (nerve cells and limiting membranes) (Mahabadi et al.,
2024). The impact of a balanced diet rich in antioxidants on these different layers of the
retina makes studies of their efficacy significant in various pathological processes of the eye
(Dziedziak et al., 2021). AMD is one of the most common pathologies in the population and
is the main cause of severe vision loss in both eyes in people over 60 years of age (Thomas

OPEN ACCESS

EDITED BY

Ayman EL-Meghawry EL-Kenawy,
Taif University, Saudi Arabia

REVIEWED BY

Neetu Kushwah,
Harvard Medical School, United States
Kunbei Lai,
Sun Yat-sen University, China

*CORRESPONDENCE

Iván Antonio García-Montalvo,
ivan.garcia@itoaxaca.edu.mx

RECEIVED 02 June 2024
ACCEPTED 16 September 2024
PUBLISHED 24 September 2024

CITATION

Matías-Pérez D, Varapizuela-Sánchez CF,
Pérez-Campos EL, González-González S,
Sánchez-Medina MA and García-Montalvo IA
(2024) Dietary sources of antioxidants and
oxidative stress in age-related
macular degeneration.
Front. Pharmacol. 15:1442548.
doi: 10.3389/fphar.2024.1442548

COPYRIGHT

© 2024 Matías-Pérez, Varapizuela-Sánchez,
Pérez-Campos, González-González, Sánchez-
Medina and García-Montalvo. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Opinion
PUBLISHED 24 September 2024
DOI 10.3389/fphar.2024.1442548

https://www.frontiersin.org/articles/10.3389/fphar.2024.1442548/full
https://www.frontiersin.org/articles/10.3389/fphar.2024.1442548/full
https://www.frontiersin.org/articles/10.3389/fphar.2024.1442548/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2024.1442548&domain=pdf&date_stamp=2024-09-24
mailto:ivan.garcia@itoaxaca.edu.mx
mailto:ivan.garcia@itoaxaca.edu.mx
https://doi.org/10.3389/fphar.2024.1442548
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2024.1442548


et al., 2021). The macula is a small region of the posterior retina,
approximately 5–6 mm in diameter. Within it is the macula lutea,
rich in the xanthophyll carotenoids (Lutein and Zeaxanthin), which
possess antioxidant properties and protect against blue light
damage. In addition, the macula contains a central depression
called the fovea, designed to provide maximum visual resolution
(Arunkumar et al., 2020).

AMD can present in two fundoscopic forms: the dry or
nonexudative atrophic form and the neovascular or exudative
form, also known as the wet form (Fernandes et al., 2022). The
dry form of AMD is the most commonmorphologic variant and can
progress to the wet or neovascular form. In the latter, choroidal
neovascular membranes in the central region of the retina can lead
to hemorrhages, exudation, and significant loss of vision.
Neovascular membranes result from abnormal vascular growth
or angiogenesis induced by the release of vascular endothelial
growth factor (VEGF). In the late form of AMD, the “dry” or
nonexudative type is characterized by the development of
geographic atrophy or atrophic scars in the macula. Although
some patients with atrophic AMD do not show significant
improvement with standard doses of anti-VEGF, adjusting the
frequency of injections to their needs may help maintain vision
stability and prevent further deterioration. In the absence of signs of
disease activity, the dosing interval can be gradually increased, and if
the disease reactivates, it can be shortened. Unfortunately, treatment
options for “dry” AMD or geographic atrophy are currently
minimal. There is no definitive cure for this condition, but some
investigational treatments aim to slow the progression of the disease.
Some preventive measures that can help include quitting smoking
and adopting a diet rich in antioxidants.

AMD is a disease that affects the macula lutea, a small region of
the retina responsible for central vision. One of the most common
symptoms of AMD is drusen. These deposits can interfere with
vision, causing problems such as blurred vision, distortion of images,
and the perception of a fixed black spot in the center of the visual
field. It can also make it difficult to distinguish colors and adapt to
changes in light. In the wet form of AMD, abnormal blood vessels
develop, which can lead to more severe complications (Gheorghe
et al., 2015). The appearance of drusen and the growth of these
vessels result from chronic changes in the macula, affecting
structures such as the retinal pigment epithelium and Bruch’s
membrane (Bhutto and Lutty, 2012). Drusen are classified into
two types: hard and soft. Hard drusen are smaller, usually smaller
than 63 μm, while soft drusen are larger, exceeding 125 μm (Pollreisz
et al., 2021). Histologically, hard drusen are accumulations of
hyaline material, whereas soft drusen are clusters of hard drusen
(Spaide and Curcio, 2010). AMD can present in two forms: the dry
form, which is the most common and can progress to the wet form,
and the wet form, which can cause hemorrhages and significant
vision loss (Fernandes et al., 2022). The latter is related to abnormal
blood vessel growth driven by VEGF. In the advanced stages of
AMD, the dry form is characterized by atrophic scar formation in
the macula (Fleckenstein et al., 2021; Thomas et al., 2021). Although
there is no definitive cure for this disease, there are treatments under
investigation that seek to slow its progression. Currently, treatment
options for the dry form are limited. However, taking preventive
measures like quitting smoking and following an antioxidant-rich
diet can benefit eye health.

AMD primarily affects central vision, essential for daily tasks
such as reading, driving, and recognizing faces. Late stages of wet
and dry AMD are generally associated with severe visual loss,
profoundly affecting overall quality of life (Waugh et al., 2018;
Gehrs et al., 2006). AMD is a multifactorial disease that involves an
interaction between genetic and environmental factors (Cascella
et al., 2014). Other risk factors include smoking, uncontrolled blood
pressure, and lack of a diet rich in fruits and green leafy vegetables
(Shetty et al., 2023; Boeing et al., 2012). Some treatments, such as
anti-VEGF drugs, can help save vision in the wet form of AMD
(Vogel et al., 2017). However, there is currently no 100% effective
treatment; what is sought with its implementation is to prevent
severe visual loss.

Although aging is one of the main risk factors for the onset of
AMD, and although this pathology is multifactorial, oxidative stress
must also be considered; oxidative stress causes damage to different
types of ocular cells, contributing significantly to the development of
this disease. This article highlights the challenge of nutritional
intervention, both due to the regulatory environment and the
complexities in designing clinical trials to address these issues. It
is crucial to modify certain environmental factors, such as smoking
cessation and the adoption of a healthy diet, to prevent or slow the
progression of AMD. Until now, no recommendations for daily
nutritional supplementation as a preventive method for AMD in
healthy individuals have been established. However, for those with
some degree of the disease, supplements such as AREDS (Vitamins
C and E, Beta-carotene, Zinc and Copper), AREDS2 (Vitamins C
and E, Lutein, Zeaxanthin, Omega-3 acids and Zinc), and an
increased intake of additional nutrients (carotenoids, resveratrol,
and omega-3 fatty acids) are recommended to promote eye health in
the population. Antioxidants play a crucial role in cell defense
against oxidative stress, which is essential to prevent the
progression of AMD and preserve patients’ vision; consuming
nutrients with high antioxidant capacity is emerging as a
promising strategy for treating this disease. Antioxidant-rich
foods have been described in more detail below.

2 Pathogenesis and oxidative stress
of AMD

The relationship between oxidative stress and AMD is direct;
due to its oxygen-rich environment and exposure to light, the retina
is prone to forming free radicals. To mitigate the damage caused by
these radicals, there are enzymatic and non-enzymatic mechanisms
that maintain homeostasis (Wang et al., 2022). However, in the
aging retina, antioxidant systems are attenuated, resulting in
oxidative damage that manifests itself in changes such as hard
exudates in the periphery, thickening of Bruch’s membrane, and
thinning of the choriocapillaris (Kushwah et al., 2023). Oxidative
stress induces the accumulation of lipid and complement deposits
between the RPE and Bruch membrane, leading to the thickening of
the Bruch membrane, an early pathological feature of AMD. In
addition, oxidative stress causes RPE dysfunction and death, critical
for photoreceptor support and function, leading to progressive
vision loss in this pathology (Tisi et al., 2021).

Although these changes are natural to ocular aging, other risk
and pathophysiological factors are activated to cause the pathology.
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The most common are genetic susceptibility, microglial activation,
complement system stimulation, loss of homeostasis between pro-
inflammatory and anti-inflammatory factors, and macrophage
polarization in individuals with risk factors for the developing
the pathology (Wendimu and Hooks, 2022). Oxidative stress
induces a chronic inflammatory response, with activation of the
complement system and macrophage recruitment; this sustained
inflammation exacerbates retinal cell damage and accelerates the
progression of AMD (Abokyi et al., 2020).

Histopathology of the retina in patients with AMD shows that
this ocular disease is distinguished by selective and focal destruction
of the retinal layers in the macular region, which is crucial for central
vision. Retinal findings in individuals with AMD are varied,
although they share certain characteristic features. These include
shrinkage of the RPE and photoreceptor layer, accumulation of lipid
and protein deposits beneath the RPE or in Bruch’s membrane, as
well as choriocapillary atrophy, choroidal neovascularization, and
disciform scar formation (Abokyi et al., 2020; Natoli et al., 2017;
Gupta et al., 2003).

In addition to structural changes, AMD is also characterized by
an inflammatory response, with the recruitment of macrophages
and microglial cells, as well as the activation of the complement
system (Abokyi et al., 2020). In its natural location, the RPE
performs several vital functions for the balance of the retina,
such as regulating the transport of nutrients and metabolites,
absorbing light, recycling the visual pigment essential for
continuous phototransduction, and phagocytizing the outer
segments of photoreceptors that are shed (Hurley, 2021). A
molecular event associated with the malfunction of RPE in AMD
is the accumulation of lipofuscin. Lipofuscin is a remnant of the
outer segments of photoreceptors that have been poorly degraded
and phagocytosed by RPE. This accumulation of lipofuscin in RPE
can contribute to oxidative damage through the generation of free
radicals and inhibit the phagocytic degradation of damaged
biomolecules and organelles (Różanowska, 2023).

The retina has a high metabolic rate and oxygen consumption,
creating an environment conducive to forming reactive oxygen
species (ROS). The retina contains high levels of polyunsaturated
fatty acids (PUFA), which are highly reactive and can contribute to
ROS generation. Furthermore, the retina contains photosensitive
molecules, such as rhodopsin and lipofuscin, which can contribute
to ROS formation through photochemical reactions. Finally,
exposure to light can also induce oxidative stress in the retina by
generating ROS through photochemical reactions involving
rhodopsin and other photosensitive molecules. As these
physiological conditions combine, they create an environment
ripe for the developing oxidative stress in the retina (Beatty et al.,
2000). PUFAs are highly susceptible to ROS oxidation, which
generates lipid radicals and lipid peroxidation products such as
reactive aldehydes (4-hydroxyalkenals, malondialdehyde, acrolein)
(Kodali et al., 2020). PUFA and photosensitive molecules can induce
ROS production through various mechanisms, such as lipid
peroxidation, photosensitization, activation of ROS-producing
enzymes (NADPH oxidases), and mitochondrial dysfunction
(Juan et al., 2021); these processes feed on each other and
perpetuate oxidative stress in ocular cells. Another source of
oxidative stress associated with AMD is smoking. Cigarette
smoke extract has been shown to significantly increase lipid

peroxidation in vitro RPE by up to eight times compared to
controls (Kunchithapautham et al., 2014).

Regarding the genetic factor, at least 14 genes have been
associated with AMD (Stradiotto et al., 2022). The gene that has
shown the strongest association with AMD is complement factor H
(CFH) (Toomey et al., 2018); it is a glycoprotein with the function of
maintaining a balanced immune response by modulating
complement activation (Parente et al., 2017). Several studies have
demonstrated the presence of complement cascade proteins in
drusen, suggesting that inflammation may play an important role
in AMD (Armento et al., 2021). Currently, rare variants have been
identified in protein-coding regions of the CFI, C3, C9, TIMP3, and
SLC16A8 genes in AMD, establishing the role of the complement
pathway in the pathogenesis of AMD (den Hollander et al., 2022).
Following the active phase of AMD-GWAS research between
2010 and 2016, strategies were emphasized to evaluate AMD loci
functionally. Of the 16 new AMD loci reported in 2016, 13 have not
been further analyzed (Strunz et al., 2020). This could be attributed
in part to small effect sizes and possibly to a preferential location of
the associated variants in noncoding regions of the genome.

Another essential factor to consider is obesity, especially
abdominal obesity, and a sedentary lifestyle since high abdominal
circumference values have a twice as high risk of developing AMD
(Zhang et al., 2016). Increased body weight can have adverse health
effects, including increased oxidative stress, increased risk of chronic
inflammation, and an imbalance in blood lipid levels; this lipid
imbalance is related to the pathogenic mechanisms of AMD (Haas
et al., 2015). Previous research has shown that excess body fat can
influence carotenoid transport and deposition processes from the
blood to the macula, ultimately leading to a decrease in the level of
macular pigment in the fovea (Bovier et al., 2013).

3 Functional foods and supplements
used in the preventive treatment of
age-related macular degeneration

In a healthy state, the body employs a variety of enzymatic and
nonenzymatic antioxidants to protect cells from the damaging
effects of ROS. These antioxidants work to neutralize ROS and
prevent cell damage and death. However, the cellular capacity to
counteract ROS accumulation becomes compromised under
pathological conditions, such as in AMD. This occurs due to a
combination of factors - a decrease in the efficiency of antioxidant
systems, reduced production of ROS scavengers and other protective
molecules, and an overproduction of ROS itself. As a result, the
delicate balance between ROS generation and antioxidant defenses is
disrupted, allowing oxidative stress to take hold and contribute to
the development and progression of AMD (Chaudhary et al., 2023;
Tyuryaeva and Lyublinskaya, 2023).

In recent years, the National Eye Institute (USA) has conducted
two significant multicenter studies, known as AREDS and AREDS2,
which have significantly advanced our scientific understanding of
AMD treatment. These studies evaluated the safety and efficacy of
antioxidant supplements and other nutrients in treating AMD.
Results show that supplementation with Lutein, minerals, omega-
3 fatty acids, and fatty acid derivatives likely slows progression to late
AMD (Chew et al., 2009; Age-Related Eye Disease Study 2 Research
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Group, 2013; Chew et al., 2022; Keenan et al., 2024). However, the
minimum effective dose of an individual antioxidant and whether a
combination of components is necessary to achieve an optimal
formulation has not yet been determined. However, zinc-rich
supplements are recommended (Age-Related Eye Disease Study
Research Group, 1999; AREDS2 Research Group et al., 2012).
The diet intakes of vitamins, carotenoids, essential fatty acids,
and other trace elements have been investigated for their
potential protection against age-related eye diseases. The results
of studies related to the nutritional effects of these dietary factors on
AMD are presented and discussed below (see Table 1).

Lutein and Zeaxanthin are abundant water-soluble carotenoids
in foods such as parsley, spinach, kale and egg yolk. These
compounds offer multiple health benefits, acting as antioxidants
by scavenging reactive oxygen species (ROS) and forming complexes
with essential proteins in the human body (Mrowicka et al., 2022;
Abdel-Aal et al., 2013). Carotenoids are diverse natural pigments
synthesized in plants, algae, and some bacteria. They all share a
standard structure: a tetraterpenoid backbone of forty carbon atoms
organized into eight isoprene units. They can be classified into two
main categories: carotenes and xanthophylls (Snodderly, 1995).
Carotenes are unsaturated hydrocarbons, meaning they comprise
only carbon and hydrogen atoms.

The absorption of carotenoids from the diet is a complex process
that depends on several factors. During digestion, these compounds
are released, and their bioavailability increases. How food is
prepared is crucial; for example, cooking food breaks down cell
walls, facilitating the release of carotenoids (Molteni et al., 2022). In
addition, the presence of fats in food is essential, as carotenoids are
incorporated into particles called chylomicrons, which transport
lipids into the bloodstream (Hussain, 2014). Physiological factors,
such as digestive health and the composition of the gut microbiome,

also play a role (Rocha et al., 2023). On the other hand, a high fiber
intake can limit the absorption of fats and, thus, carotenoids
(Palafox-Carlos et al., 2011). Xanthophylls, such as Lutein and
Zeaxanthin, are oxygenated carotenoids with oxygen atoms
(Snodderly, 1995; Abdel-Aal et al., 2013). These carotenoids are
essential for ocular health and are not precursors of vitamin A, so
they are called non-provitamin A carotenoid (Abdel-Aal et al.,
2013). Other macular carotenoids of interest include
mesozeaxanthin, β-cryptoxanthin, capsanthin, astaxanthin, and
fucoxanthin.

Lutein and Zeaxanthin, crucial carotenoids found in the retina,
particularly in the macula, are essential for ocular health and visual
function. Their primary role is to shield themacula from the harmful
effects of blue light (Mrowicka et al., 2022), a high-energy light that
can induce oxidative stress and contribute to the onset of AMD and
other ocular conditions (Cougnard-Gregoire et al., 2023). These
carotenoids act as natural sunscreens, absorbing and blocking
detrimental blue light before it reaches the delicate cells of the
retina. In addition to their light-filtering role, Lutein and Zeaxanthin
have been proven to enhance visual acuity, sharpness, and clarity of
vision. They also serve as potent antioxidants, aiding in the removal
of harmful radiation that can harm retinal cells and exacerbate eye
diseases (Roberts and Dennison, 2015). Including Lutein- and
Zeaxanthin-rich foods in the diet, or taking supplements, can
help maintain healthy levels in the macula and promote overall
eye health (Graydon et al., 2012). A daily dose of 10mg of Lutein and
2 mg of Zeaxanthin for at least 6 months is recommended to help
slow the progression of AMD (Mrowicka et al., 2022).

In addition to the carotenoids mentioned above, others, such as
crocetin and norbixin can also be used to regulate oxidative stress.
Saffron components, such as crocin and crocetin, benefit patients
with AMD. In in vitro studies, saffron extracts and their main

TABLE 1 Foods with antioxidant potential.

Antioxidant
molecule

Food source Participation in AMD
pathology

Recommended doses References

Lutein and Zeaxanthin Parsley, spinach, kale,
and egg yolk

Protect the macula from the damaging
effects of blue light

10 mg of lutein and 2 mg of
zeaxanthin per day for at least

6 months

Mrowicka et al. (2022)

Crocetin and norbixin Saffron and achiote Regulate oxidative stress 0.6 mg of Crocetin per day, while
norbixin is 0.3 mg/kg body weight per

day for 3 months

Camelo et al. (2020)

Zinc Beans, lima beans,
oysters, meat, seafood,
fish, poultry, cereals,

and grains

By acting as a co-factor for antioxidant
enzymes, this substance helps to enhance
their ability to neutralize and eliminate
harmful free radicals and other reactive
oxygen species. This, in turn, provides
protection against the detrimental effects
of oxidative damage to cells, tissues, and

biomolecules

25 mg per day for 6 months Gilbert et al., 2019; Mrowicka et al.,
2022

Vitamin C Citrus fruits, berries,
and red pepper

Reduces oxidative stress, promotes
immune protection, and reduces the
probability of neovascular AMD.

500 mg per day for 6 months Khoo et al., 2019; Saini et al., 2022;
Mrowicka et al., 2022

Omega-3 Nuts and seeds, plant
oils, nuts, and fish

Reduces inflammation, decreases
oxidative stress, and promotes

photoreceptor membrane structure

EPA (3.4 g) and EPA (1.6 g) per day
for at least 6 months

Querques and Souied, 2014; Fan and
Song, 2022; Prokopiou et al., 2019;
Perumal et al., 2022; Carneiro and

Andrade, 2017

Resveratrol Red grapes, wine, and
berries

Increases antioxidant enzyme levels and
activates the transcription factor Nrf2

150–450 mg daily for 3 months Dziedziak et al., 2021; Lin et al., 2016
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components have shown neuroprotective actions, and crocin
protects photoreceptors against cell death induced by intense
blue or white light illumination. Norbixin, a water-soluble natural
dye obtained from the seeds of the achiote shrub, has been shown
in vitro assays to significantly reduce VEGF production and several
inflammatory cytokines, such as IL-6 and IL-8, leading to a
reduction in ROS (Camelo et al., 2020). The recommended
intake of crocetin is 0.6 mg per day, while norbixin is 0.3 mg/kg
body weight per day for 3 months to delay the progression of AMD
(Camelo et al., 2020). Regulatory agencies such as the European
Union (EU) have approved health claims on carotenoids, including
those used to regulate oxidative stress. According to Regulation (EC)
number 1924/2006, these claims are backed by scientific evidence
and comply with established regulations, providing a reassuring
framework for their use.

Beans and lima beans are significant sources of zinc, a crucial
nutrient involved in the structure and function of various protein
complexes. Zinc is the second most abundant transition metal in the
human body, with approximately 2 g present, mostly within cells
(Blasiak et al., 2020). Free zinc is an essential component in cells;
however, its levels in this state are low due to accumulation toxicity,
and it can be found in organelles such as the endoplasmic reticulum,
the Golgi apparatus, and mitochondria (Costa et al., 2023). Zinc is
distributed in well-regulated gradients relative to the plasma
membrane and intracellular compartments (Bafaro et al., 2017).

It is chemically compatible with several ligands present on the
histidine, aspartate, glutamate, and cysteine residues of many
proteins. Unlike other transition metals, zinc is an inert redox
metal, which plays an important role in regulating enzymes
involved in oxidative processes. It also facilitates the
deprotonation of water by decreasing its pKa, making it an
excellent enzyme cofactor. Most of the zinc in the human body
is found in skeletal muscle and bone mass, accounting for
approximately 60% and 30%, respectively (Thompson, 2022). The
eye has a relatively high content of zinc, particularly in the RPE,
where it is stored mainly in intracellular compartments in ganglion
cells, horizontal cells, amacrine cells, and Müller cells of the retina.
Additionally, zinc can be present in photoreceptor outer segments
(POSs), degraded by RPE cells. As endogenous zinc is co-released
with glutamate from the synaptic terminals of photoreceptors, it
may help protect the retina from glutamate toxicity (Gilbert et al.,
2019). The established dose of Zinc consumption is 25 mg per day
for 6 months (Mrowicka et al., 2022).

Citrus fruits such as oranges and grapefruit are rich in vitamin C,
which is a potent antioxidant that protects various biomolecules
such as proteins, lipids, carbohydrates, and nucleic acids from
damage caused by free radicals and ROS (Saini et al., 2022).
Vitamin C has been shown to reduce the probability of
neovascular AMD (Khoo et al., 2019). The established dose of
vitamin C consumption is 500 mg per day for 6 months
(Mrowicka et al., 2022).

Foods rich in antioxidants and omega-3 fatty acids, such as nuts,
fish, walnuts, and seeds, may play an essential role in preventing and
treating AMD (Querques and Souied, 2014). The mechanism of
action of omega-3 fatty acids in AMD is mainly based on their anti-
inflammatory and anti-angiogenic properties. Inflammation is a
critical process in the pathogenesis of AMD, as it contributes to
the destruction of retinal cells and the pigment epithelium (Fan and

Song, 2022). Omega-3 fatty acids, such as eicosapentaenoic acid
(EPA) and docosahexaenoic acid (DHA), have anti-inflammatory
effects that may help reduce inflammation in the retina and prevent
cell destruction. Omega-3 fatty acids have improved retinal function
in animal models (Prokopiou et al., 2019). This is achieved by
increasing the optical density of macular pigment, which enhances
light sensitivity and visual acuity (Perumal et al., 2022). The
recommended omega-3 intake is 3.4 g of DHA and 1.6 g of EPA
per day for at least 6 months (Carneiro and Andrade, 2017).

Resveratrol is a phytophenol found in red grapes, wine, and
berries. This compound is part of the antifungal defense
mechanisms of plants and has been shown to offer beneficial
effects in animal organisms. Among its properties, resveratrol is
notable for its ability to prevent coronary heart disease and its
antioxidant, anti-inflammatory, anti-aging, and anticarcinogenic
activity. It is worth mentioning that resveratrol protects against
oxidative stress by acting on reactive oxygen species (superoxide,
hydroxyl, and hydrogen peroxide), activating modulators of gene
transcription (SIRT1), and influencing NADPH oxidase. In human
RPE cell cultures exposed to hydrogen peroxide, resveratrol has been
shown to increase antioxidant enzyme levels and reduce ROS
production (Dziedziak et al., 2021). The recommended
consumption dose is 150–450 mg daily for 3 months (Lin et al., 2016).

We believe that the response to antioxidants and their
interaction with drugs can vary significantly between patients due
to genetic, environmental, and lifestyle factors, making it difficult to
establish predictors of these interactions on an individual basis.
Although some interaction mechanisms have been described in vitro
or animal models, clinical evidence on the therapeutic implications
of these interactions in patients with AMD is limited.

In addition to the above, it should be noted that the food and
nutritional transition that is taking place globally poses significant
challenges since the increase in the consumption of processed foods,
rich in saturated fats and simple sugars, which are cheaper than
healthy foods, directly affects low-income populations, increasing
malnutrition due to deficiency and excess, which leads to the
appearance of chronic diseases that will lead to risk factors for
AMD. On the other hand, public policies that address
environmental pollution and the proper treatment of urban solid
waste are required since pollutants can exacerbate the inflammatory
responses associated with AMD.

4 Conclusion

In conclusion, AMD is a devastating eye disease that affects
millions of people worldwide, especially those of advanced age.
This condition is characterized by the gradual accumulation of
lipid and protein deposits in the retina, leading to atrophy of the
RPE and, in some cases, to the formation of neovascular membranes
that can cause hemorrhages and loss of vision. One of themain factors
contributing to the development and progression of AMD is oxidative
stress. Due to its high metabolic rate, high oxygen consumption, and
the presence of polyunsaturated fats and photosensitive molecules, the
retina is particularly vulnerable to this type of stress. Free radicals
generated by oxidative stress can damage retinal cells and accelerate
degeneration. To reduce the risk of developing AMD or slow its
progression, healthy and balanced diet rich in natural foods
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containing antioxidants, such as brightly colored fruits and vegetables,
should be adopted. The consumption of processed and ultra-
processed foods should be reduced, as well as the intake of alcohol
and tobacco. Despite these advances, research on factors such as lipid
metabolism and the chronic inflammatory process should continue to
understand the pathogenesis of this disease better and develop more
effective prevention and treatment strategies.
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