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The non-coding RNAs (ncRNAs) comprise a large part of human genome that
mainly do not code for proteins. Although ncRNAs were first believed to be non-
functional, the more investigations highlighted tthe possibility of ncRNAs in
controlling vital biological processes. The length of long non-coding RNAs
(lncRNAs) exceeds 200 nucleotidesand can be present in nucleus and
cytoplasm. LncRNAs do not translate to proteins and they have been
implicated in the regulation of tumorigenesis. On the other hand, One way
cells die is by a process called autophagy, which breaks down proteins and
other components in the cytoplasm., while the aberrant activation of autophagy
allegedly involved in the pathogenesis of diseases. The autophagy exerts anti-
cancer activity in pre-cancerous lesions, while it has oncogenic function in
advanced stages of cancers. The current overview focuses on the connection
between lncRNAs and autophagy in urological cancers is discussed. Notably, one
possible role for lncRNAs is as diagnostic and prognostic variablesin urological
cancers. The proliferation, metastasis, apoptosis and therapy response in
prostate, bladder and renal cancers are regulated by lncRNAs. The changes in
autophagy levels can also influence the apoptosis, proliferation and therapy
response in urological tumors. Since lncRNAs have modulatory functions, they
can affect autophagymechanism to determine progression of urological cancers.
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Highlights

• LncRNAs are considered as diagnostic, prognostic and therapeutic targets in
urological cancers.

• Autophagy is programmed cell death pathway exerting dual function in cancer
progresion.

• LncRNAs can change proliferation, metastasis and therapy response in
urological cancers.

• The lncRNA-driven regulation of autophagy determines the progression of
urological cancers.

• Both lncRNAs and autophagy possess dual function in urological cancers, making it
difficult to target them in cancer therapy.
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1 Introduction

Considering that cancer is an illness that is responsible for a high
rate of death and morbidity rate all over the world, researchers have
focused their attention over the past few decades on elucidating the
function that signaling networks play in the illness. It is well
accepted that abnormalities in molecular pathways are the cause
of aberrant proliferation and spread of cancer cells (Mohan et al.,
2018; Ang et al., 2021). These tumor-promoting molecular
pathways, in point of fact, are responsible for the advancement
of cancer by activating favorable variables that contribute to cancer
survival. Mechanisms that inhibit tumor growth, in contrast, make
cancer cells more susceptible to death and stop them from
progressing and migrating. Molecular pathways of this kind have
been discovered as a result of advancements in sequencing and
bioinformatics, and ongoing research has led to the discovery of
more new signaling networks that may have an impact on the
development or reduction of cancer. The significance of elucidating
such molecular pathways is critical because it opens the way for the
creation of innovative therapies that are capable of effectively
treating cancer. These treatments may be based on the
development of genetic tools for the purpose of targeting
molecular pathways or about the application of tiny molecules as
medications for the purpose of inhibiting the advancement of
cancer. In addition, natural compounds produced from plants
have shown that they have the ability to target molecular
pathways for chemotherapy for cancer. Cancer continues to be a
significant obstacle for public health, and there should be an increase
in the amount of research committed to gaining a fundamental and
clinical knowledge of cancer (Mirzaei et al., 2022a; Paskeh et al.,
2022; Wang Y. et al., 2024). It has been considered the gold standard
for treating cancer in humans. t to understand the biological
foundations of disease and to build plausible molecular
therapeutics. Gene therapy is an essential means to attain a
possible cure, and it is also one of the most significant ways to
get this understanding (Wu Y. et al., 2023). Long noncoding RNAs,
often known as LncRNAs, are RNAs that have a transcription length
of greater than 200 nucleotides yet cannot code for proteins (Xiao
et al., 2018). It is estimated what makes up about 20% of the human
genome are genes that code for proteins. Furthermore, eighty
percent of the human genome is translated into RNA; however,
It is not possible for these RNA transcripts to code for proteins and
are thus considered noncoding (Huang et al., 2018; Chen H. et al.,
2024). Some elements of the biology of long noncoding RNA
(LncRNA) are comparable to that of messenger RNA (mRNA),
and RNA polymerase II (Pol II) is able to transcribe most long non-
coding RNAs, despite the fact that LncRNA do not encode proteins
(Bridges et al., 2021). Even though the amounts of long noncoding
RNAs (LncRNAs) are typically lower than those of messenger RNAs
(mRNAs), Their expression patterns are more unique to individual
tissues. This provides more evidence that long non-coding RNAs
(LncRNAs) are still involved in a wide variety of biological processes,
such as transcriptional regulation, protein folding, RNA editing,
gene modification, and microRNA (miRNA) regulation. (Guo et al.,
2020; Si et al., 2021). It is commonly understood that a number of
different long noncoding RNAs play a part in controlling cancer’s
energy metabolism (Tan et al., 2021). including LUCAT1 (Xing
et al., 2021), DUXAP10 (Lin et al., 2021), GAS5 (Ma Y. et al., 2022),

TTN-AS1 (Zheng et al., 2021), and others. Moreover, Whether
lncRNAs are located in the nucleus or the cytoplasm determines
their function. (Ashrafizadeh et al., 2022; Mirzaei et al., 2022b).

LncRNAs have the ability to interact with their targets in either a
direct or indirect manner, and they may also act as a scaffold, guide,
signal, or decoy to affect proteins, in addition to chromatin and
other RNAmolecules for the effects (Entezari et al., 2022; Gibb et al.,
2011; Moran et al., 2012). LncRNAs have the ability to influence
expression of genes simultaneously with those involved in post-
transcriptional modifications in the nucleus and the cytoplasm. It
should be noted that the role of long non-coding RNAs varies
depending on whether they are located in the nucleus or the
cytoplasm. Interacting with messenger RNAs (mRNAs), lncRNAs
that are found in the cytoplasm are responsible for regulating gene
expression at both the translational and post-transcriptional stages.
In addition, long noncoding RNAs have the ability to interact with
microRNAs by performing the function of competitive endogenous
RNAs (ceRNAs) and lowering the production of miRNAs. On the
other hand, long noncoding RNAs that are found in the nucleus
have a distinct function and are able to associate with proteins and
transcription factors; participate in DNA methylation; modify
histones; remodel chromatin (Lu et al., 2021; Tang et al., 2023).

2 LncRNAs in oncology

Within the system that governs epigenetic regulation, lncRNAs
play an essential function (Alharthi et al., 2024). By having an effect
on the structure of chromatin (Xiang et al., 2014; Postepska-Igielska
et al., 2015; Wang et al., 2011), the modification of histones (Sati
et al., 2012; Grote et al., 2013), alternative transcription (Gonzalez
et al., 2015), the suppression of X-chromosomes (Froberg et al.,
2013), and the reimbursement of dosage (Samata and Akhtar, 2018).
In addition to their ability to influence expression of genes during
transcription, epigenetic modifications, and the post-transcriptional
phase, lncRNAs have been linked to a wide range of cellular
functions and molecular signaling cascades (Liz and Esteller,
2016; Jiang et al., 2021). Despite the fact that they are unable to
produce translation proteins, lncRNAs are nevertheless able to make
a contribution to affect transcription by manipulating transcription
factors, enhancers, and initiators (Engreitz et al., 2016; Kim et al.,
2010; Li W. et al., 2016). Furthermore, long noncoding RNAs have
the ability to affect post-transcriptional changes in a manner that
helps to preserve messenger RNAs and serves as a precursor for
small noncoding RNAs (Jalali et al., 2012; Song et al., 2018; Yang
et al., 2014). Alternatively, lncRNA) can be seen as contending for
endogenous RNAs (ceRNAs), which compete with sponge
microRNAs such that downstream gene targets can be addressed
(Sen et al., 2014; Liang et al., 2015; Han et al., 2020; Thomson and
Dinger, 2016; Jarlstad, 2021; Hussain et al., 2023; Xie et al., 2023).
Several long non-coding RNAs have been associated with alterations
that are associated with cancer. These lncRNAs also perform crucial
activities in regulatory genes, which cause them to influence a variety
of elements of the cellular homeostasis, which encompasses
development, propagation, migration, and genetic integrity
(Huarte, 2015). Evidence suggests that certain LncRNAs play a
part in the stemness of tumors by controlling the establishment
of transcription variables associated to malignant stem cells (Chen
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et al., 2017; Liu B. et al., 2021). For example, the long noncoding
RNA CCAT2, This represents an overexpressed gene in CRC, has
the ability to activate the Wnt signaling cascade and regulate c-Myc
transcription to improve tumor invasion and spread. (Ling et al.,
2013). Given that c-Myc is responsible for the post-transcriptional
activity, the long noncoding RNA known as CCAT1 has the
potential to accelerate the progression of gastric cancer (GC)
(Yang et al., 2013; Alharbi et al., 2022).

A large number of lncRNAs have recently been linked to cancer
initiation and progression. It is possible for them to function act as
either tumor suppressors or oncogenes (Martens-Uzunova et al.,
2014). Many different forms of cancer have been linked to a large
number of lncRNAs., including malignancies of the breast, ovary,
pancreas, prostate, and other organs. TUG1, NEAT1,HOTAIR, and
CCAT1are examples of lncRNAs that might potentially cause
cancer. On the other hand, DANCR, GAS5, MALAT1, and
UCA1 are examples of lncRNAs that could potentially inhibit
cancer. These long noncoding RNAs have an effect on critical
pathways that are related with the growth and spread of cancer,
as well as EMT and MDR (Bhan et al., 2017; Braga et al., 2020;
Arriaga-Canon et al., 2023; Adnane et al., 2022; Connerty et al.,
2020). In addition, Prolonged noncoding RNAs (lncRNAs) have
been demonstrated to play a role in significant regulatory actions
inside the cell and have been connected to a variety of diseases, not
the least of which is cancer. The medicinal relevance of long
noncoding RNAs (lncRNAs) for use as diagnostic, therapeutic,
and prognostic biological markers is now being researched.
Additionally, lncRNA-based diagnostics and therapies are
currently being developed in order to enhance personal
healthcare and standard of living (Zhang and Tang, 2018; Bhat
et al., 2023; Naderi-Meshkin et al., 2019; Hanly et al., 2018). Recent
research has shown that long noncoding RNAs (lncRNAs) also play
an important part in the molecular response of tumors (MRD)
(Figure 4) (Majidinia and Yousefi, 2016). In light of these findings, it
is possible that they might be utilized as target therapeutics in the
battle against cancer.

The deregulation and functional involvement of lncRNAs in
cancer provide novel opportunities for expanding the existing
diagnostic and therapeutic toolbox for this complex disease
(Begolli et al., 2019). Regarding diagnosis, the discovery of
circulating oncogenic lncRNAs in tumor-derived exosomes,
coupled with their specific spatiotemporal activation, currently
holds great promise for the development of highly specific
diagnostic markers (Xu et al., 2018; Kim et al., 2015). Exosomes
are a group of extracellular vesicles that arise when intermediate
endosomal compartments, known as multivesicular bodies (MVBs),
fuse with the plasma membrane to release their contents (Edgar,
2016; Harding et al., 1983). Exosomes function as vehicles of cell-to-
cell communication and have been implicated in various diseases,
including cancer (Edgar, 2016; Milane et al., 2015). These vesicles,
ranging from 30 to 100 nm in size, contain a wide assortment of
molecular cargos such as proteins, lipids, and nucleic acids,
including miRNAs, mRNAs, and lncRNAs (Shurtleff et al., 2017;
Kogure et al., 2013). Several lncRNAs that epigenetically regulate
cancer cells through various mechanisms are also part of the
exosomal cargo secreted from tumors. Examples of lncRNAs that
interact with the epigenetic machinery and have been detected in
exosomes include MEG3 and HOTAIR, which are secreted

specifically from cervical tumors but not from their normal
counterparts, offering opportunities for developing RNA-centric
diagnostic approaches (Zhang J. et al., 2016). Other examples of
lncRNAs secreted from tumor exosomes include LUCAT1 and
PVT1 in exosomes of liver cancer (Gramantieri et al., 2018; Yu
et al., 2016). In contrast, secreted exosomes from normal intestines
carry significantly higher levels of HOTTIP than their colon cancer
counterparts, providing novel opportunities for monitoring disease
onset (Oehme et al., 2019). Interestingly, exosomal packaging
appears to increase the stability (and therefore detection
threshold) of NEAT1 and certain other lncRNAs compared with
their intracellular levels (Gezer et al., 2014). Evidence suggests that
lncRNAs, apart from being secreted, can also exert significant
control over the production of exosomes in cancer. For instance,
lncRNA-APC1, which is downregulated in colorectal carcinoma
cells (CRCs) due to mutations in its master regulator APC, is a
tumor-suppressor transcript that inhibits angiogenesis,
proliferation, and migration of cancer cells. With exosomes
playing a vital role in the induction of angiogenesis in CRCs, it
has been shown that lncRNA-APC1 exerts its function by decreasing
the stability of Rab5bmRNA, an important regulator of the exosome
production process, ultimately reducing overall exosome production
(Wang FW. et al., 2019). Figure 1 demonstrates the potential of
lncRNAs in the regulation of carcinogenesis.

3 Urological cancers: An overview

3.1 Prostate cancer

There are around 180,000 new instances of prostate cancer
diagnosed on an annual basis in the USA, which is equivalent to
approximately over 20% of newly diagnosed cancer cases (Siegel
et al., 2018; Howard et al., 2019). Amongmale-specific malignancies,
prostate cancer ranks high. Biological processes of drug resistance
eventually limit therapies for metastatic sickness, notwithstanding
the efficacy of prostatectomy or radiation therapy for early stage
localized prostate cancer. This is the case even if these treatments are
often effective. Orgasmic suppression treatment (ADT), upon which
the androgen receptor pathway is focused, is the primary treatment
dealing with men who have progressed to advanced stages of
prostate cancer (Kirby et al., 2011; Huggins and Hodges, 1941).
Being an illness, prostate cancer is the reason behind this. that is
driven by androgens. Despite the fact that ADT is initially beneficial
(Siegel et al., 2018; Ferlay et al., 2013), the vast majority of patients
eventually develop resistance to the treatment, CRPC, which stands
for castration-resistant prostate cancer, and androgen-independent
prostate cancer. Crbazitaxel, sipuleucel-T, docetaxel, enzalutamide,
radium-223, and abiraterone are some of the treatment choices that
are available for metastatic CRPC for patients who have undergone
ADT before. In addition, studies, including the one that we
conducted, have shown that early combination treatment with
ADT and docetaxel or ADT plus Abiraterone is beneficial to
survival for some patients who had metastatic cancer (Sweeney
et al., 2015; James et al., 2016; Fizazi et al., 2017; James et al., 2017).
Despite the availability of all treatment options, metastatic CRPC
continues to be incurable, and eventually medication resistance will
emerge (Amaral et al., 2012; Chandrasekar et al., 2015).
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Upregulation downstream of AR, alterations to AR splice variants
and co-regulatory proteins, alterations to AR gene amplifications
and mutations, and changes to the expression of AR steroid-
generating enzymes are some of the processes that have been
investigated as potential contributors to challenges in targeting
the androgen receptor axis (Nakazawa et al., 2017).

Using morphologic criteria, the Gleason total score (Gleason,
International Cancer Control Union) is used to describe the
pathologic categorization of prostate cancer (Logothetis et al.,
2013). This score is based on characteristics of the prostate.
Regarding prostate cancer, it is the single most important
indicator of prognosis. and the Gleason score is the primary way
for classifying the tissue of prostate cancer (Gleason, 1966; Gleason
and Mellinger, 1974). It is possible that intensive therapies are
required if the Gleason score is high since it indicates that the
development will be more fast. The Gleason score, on the other
hand, does not offer any information on the choice of therapy. As a
consequence of this, patients are presently classified in accordance
with their current treatment state or clinical stage (for example, in
the presence or absence of bone metastases, androgen ablation
therapy resistance; chemotherapy efficacy). Through the use of
this framework, patients that have similar prognoses are
categorized (Ryan et al., 2006; McKenney et al., 2011; Ou et al.,
2024). Therefore, the design of clinical trials is now determined by
these parameters. This technique, on the other hand, lacks the
molecular basis necessary to direct the proper molecularly
targeted medication sequences or combinations. In addition, the
current prostate cancer progression model does not take into
consideration the finding that the state of cancer advancement is

the determining factor in the efficacy of a particular medicine of
choice. For instance, androgen ablation, chemotherapy-free, is more
effective when administered at an earlier stage in the evolution of
prostate cancer (Gravis et al., 2013). There is a paradoxical
relationship between the latter phases of prostate cancer growth
and the effectiveness of treatment (Efstathiou et al., 2010; Efstathiou
and Logothetis, 2010; Millikan et al., 2008). The fact that the
response to therapies varies depending on the stage of the disease
suggests that prostate cancer goes through a progression that creates
multiple states as the disease progresses. Additionally, the
progression of prostate cancer is site-specific. which means that
the prostate and bone are two favored locations of cancer that is
either persistent or recurrent. Despite the fact that lymph nodes can
potentially get affected by prostate cancer, these metastases are often
not resistant to treatment. Based on these data, it appears that
prostate cancer has a distinct association with the particular
microenvironment that exists inside the prostate and bone
(Loberg et al., 2005; Logothetis and Lin, 2005). Although every
one of these characteristics is important from a therapeutic
standpoint, they do not serve as a point of reference for choosing
a therapy.

3.2 Bladder cancer

It is estimated that the number of newly diagnosed cases of
bladder cancer in 2018 reached 549,393, making it the biggest cause
of death throughout the globe (Mirzaei et al., 2022c; Bray et al.,
2018). There are two subtypes of bladder cancer, which are referred

FIGURE 1
The mechanism of action of lncRNAs in the regulation of tumorigenesis.
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to as non-muscle invasive bladder cancer (NMIBC) and muscle-
invasive balder cancer (MIBC). Both of these subtypes have different
molecular patterns. It is still a cause of mortality, despite the fact that
there have been advancements in the field of biology and medicine
for the treatment and diagnosis of breast cancer. In an effort to
enhance the prognosis and overall survival rate of patients with
breast cancer, there have been efforts made to create clinical
treatments. The advancements that have been made in the field
of bioinformatics and large-scale gene expression have led to the
introduction of molecular profiles as a basis for diagnosing breast
cancer (Tran et al., 2021; Sim et al., 2019; Deng et al., 2024). There is
a significant amount of application of surgery, chemotherapy,
radiation, and immunotherapy for patients with breast cancer;
yet, these patients continue to have a poor prognosis, and their
overall survival rate over a period of 5 years is low (Parizi et al., 2020;
Ashrafizadeh et al., 2020). Regarding the origin, the majority of BC
originates from the urothelial layer, and this particular kind of BC is
prevalent in the United States and Europe. On the other hand, BC in
its non-epithelial variant is prevalent in other parts of the world due
to the presence of persistent schistosomiasis (Rhea et al., 2021). Both
nuclear anaplasia and architectural changes are taken into
consideration when determining the BC grade (Epstein et al.,
1998). The fact that individuals with NMIBC who are having
therapy may have a return of the disease is something that
should be mentioned since it demonstrates the significance of
follow-up and subsequent medications. When compared to
Migrant-inducible B-cells, of which the invasion and metastatic
rates are quite high, which results in a high mortality rate among
patients, recurrence is a growing concern among women whose
breast cancer has not spread to the muscle (NMIBC) (Wang Y. et al.,
2020). The high prevalence of gene mutations that are associated
with breast cancer is one of the most intriguing aspects of this kind
of cancer. This rate is equivalent to that of other types of cancer, such
as lung and skin cancers, and have found that the gene encodes the
enzyme TERT, which is involved in telomerase reverse
transcription. is the most prevalent mutation that is identified in
individuals with breast cancer (up to 70–80 percent) (Lawrence
et al., 2013; Alexandrov et al., 2013; Rachakonda et al., 2013; Leão
et al., 2019; Kurtis et al., 2016; Allory et al., 2014). The identification
of molecular components that contribute to the initiation of breast
cancer is thus of interest. Recent investigations have concentrated on
identifying the elements that are responsible for the development of
breast cancer and the therapeutic targeting of those factors. In
addition, various molecular routes that are downregulated in
breast cancer, and increasing the expression of these pathways is
essential for the efficient elimination of cancer (Du et al., 2022; Wu
et al., 2020; Shen et al., 2020; Liu et al., 2020; Li Y. et al., 2020).

3.3 Renal cancer

It is the 10th most prevalent cancer in the world (Grange et al.,
2019; Petejova and Martinek, 2016) and the third most common
urogenital malignancy (Williamson et al., 2019; Taneja and
Williamson, 2018). Renal cell carcinoma (RCC) is responsible for
around three percent of all adult cancers. The colorectal cancer
(RCC) is one of the malignancies that is growing at the quickest rate,
and it is anticipated that this trend will continue over the next

20 years (Znaor et al., 2015). Males have a greater risk of developing
RCC. The majority of renal cell carcinomas are clear-cell varieties.
accounting for up to 80 percent of all new instances of RCC. This is
despite the fact that there are other histological subtypes of RCC that
have been discovered. Histologically speaking, clear-cell rheumatoid
carcinoma is distinguished through the existence of cancer cells with
cytoplasm that is visible to the naked eye. This is because of
cholesterol esters, phospholipids, glycogen, and a cell membrane’s
accumulation that is well defined (Rini et al., 2009). Papillary
carcinoma, chromophobe reticulocellular carcinoma, and
collecting-duct carcinoma are the additional subtypes. The best
prognosis is for chromophobe renal cell carcinoma., is fairly
uncommon (Patard et al., 2005), but papillary RCC, which
accounts for fifteen percent of all cases of RCC, is the most
common kind of cancer in kidney transplant patients.

It is known that a large number of genetic mutations have a role
in the development and course of RCC, and the discovery of these
mutations would help to improved diagnostics and prognoses
(Schmidt and Linehan, 2016). One of the most important aspects
of the process of developing new particular anti-cancer therapy
techniques is this. The inactivation of the tumor suppressor von
Hippel-Lindau (VHL) which can be caused by mutations, loss of
heterozygosity, or promoter hypermethylation is the most frequent
genetic aberration and was the first to be documented (Kim et al.,
2018). Additionally, A multi-protein complex known as the
E3 ubiquitin ligase includes the VHL protein. that is responsible
for regulating the breakdown of proteins by proteasomes (Maxwell
et al., 1999). As a result of an impairment in VHL, there is an
increase in the expression of hypoxia inducible factors (HIF)-1α and
2α. These HIFs homodimerize and increase the production of
proteins that promote angiogenesis, particularly platelet-derived
growth factor (PDGF) and vascular endothelial growth factor
(VEGF). (Brauch et al., 2000; Courtney and Choueiri, 2010). In
particular, endothelial cell proliferation is enhanced by activating
pathways linked to VEFG. as well as their migration and survival.
The clear-cell RCC subtype is the most common location for this
genetic mutation to be found. However, deactivating VHL is
insufficient on its own to instigate the development of RCC
(Petejova and Martinek, 2016; Brauch et al., 2000). The genes
SET domain containing 2, BRCA1-related protein-1, lysine
K-specific demethylase 6A, and PBRM1; the SWI/SNF
chromatin-remodeling complex gene; are some of the other
mutations that have been characterized as contributing to the
onset and advancement of recurrent cervical cancer. Twelve.
Furthermore, it has been demonstrated that the mammalian
target of rapamycin (mTOR) pathway, which plays a role in the
control of cell proliferation in response to hypoxia, is considerably
elevated in RCC (Rausch et al., 2019). Studies on the patterns of
microRNA (miRNA) expression in RCC tissue specimens have been
conducted somewhat recently., and the results have shown that there
is an overexpression of miRNAs where tumor-suppressors are
targeted, whereas microRNAs that specifically target cancer genes
are downregulated (Grange et al., 2014; Mytsyk et al., 2018).
Deregulated microRNAs have an effect on critical molecules that
are involved in the advancement of RCC, including HIF,mTOR,
VEGF, VHL, and PTEN (Moch et al., 2015). The high risk of
metastasis and the difficulty in diagnosis are two of the factors
that contribute to the poor prognosis associated with RCC. In
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actuality, more than sixty percent of RCC are discovered by accident.
It is estimated that around twenty to thirty percent of all patients
already have illness that has spread throughout the body when
diagnosed (Petejova and Martinek, 2016), and approximately thirty
percent of patients who have been treated for localized RCC
experience a recurrence in distant locations (Ahrens et al., 2019;
Barata and Rini, 2017). This is despite the fact that imaging methods
have been improving. There is a survival rate of fewer than 10% for
individuals who have metastatic RCC (Cairns, 2011; Graves et al.,
2013). This indicates that the prognosis for these patients is quite
bad. The insufficient elimination of tumor cells is one of the
variables that contribute to the failure of therapy, and this may
be the result of the heterogeneity of the treated cells. Particularly,
Researchers are becoming increasingly interested in the limited
number of cancer stem cells (CSCs) because they are thought to
be the main culprits behind tumor recurrence and medication
resistance. (Figure 2) (Corro and Moch, 2018; Bussolati et al.,
2008). This is because CSCs are the progenitor cells of cancer.

4 LncRNAs in prostate cancer

4.1 LncRNAs in prostate cancer progression

The little noncoding RNA known as CCAT1 is thought to be a
tumor-promoting agent, and its significance in a variety of
malignancies has been examined (Mirzaei et al., 2022b). The
protein known as CCAT1 has been shown to promote the
development of endometrial cancer, while simultaneously
reducing the estrogen receptor-alpha (ERν) expression level and
the molecular networks associated with it (Treeck et al., 2020). with
example, CCAT1 has the ability to manage miRNA-138-5p and
miRNA-181a-5p in pancreatic and colorectal malignancies through
respectively, with the purpose of altering progression (Shang et al.,
2020). This is supported by the growing body of data that supports
the regulatory influence of the long noncoding RNA CCAT1 on the
expression of miRNA in various malignancies. Within prostate
tumors, CCAT1 is responsible for promoting tumor growth and

FIGURE 2
An overview of major urological cancers.
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development. This explains why CCAT1 cytoplasmically interacts
with miRNA-28-5p, which results in a decrease in the amount of
expression, and this interaction lays the path for the advancement of
prostate cancer (You et al., 2019). It is important to note that various
upstream mediators in prostate cancer can have an effect on long
noncoding RNAs (lncRNAs) in order to modulate their regulatory
effects on microRNAs. This kind of behavior takes place with the
long noncoding RNA FOXP4-AS1, which blocks cell death in
prostate tumors. and dramatically boosts proliferation and
metastasis. Paired box 5 (PAX5) has the ability to stimulate the
production of FOXP4-AS1, which then acts as a ceRNA for miRNA-
3184-5p. This ultimately results in the enhancement of
FOXP4 expression and its post-transcriptional regulation, which
is beneficial to the advancement of prostate cancer (Wu et al., 2019).
It is necessary to conduct further experiments in order to investigate
the complex molecular pathways that have emerged as a result of the
regulation of long noncoding RNAs (lncRNAs) by upstream
mediators and their interaction with the production of
microRNAs. The long noncoding RNA LINC00665 is a newly
discovered component in cancer that plays an important part in
the regulation of a variety of cellular pathways. An additional
experiment underlines the fact that increased expression of
LINC00665 is associated with a worse prognosis for men with
prostate cancer. (Eke et al., 2021). This is despite the fact that
there is data suggesting that LINC00665 suppresses the growth of
glioma through STAU1-mediated mRNA degradation (Ruan
et al., 2020).

As a result, LINC00665 is capable of playing a role in the
development of tumors in prostate cancer and may be considered
a tool for diagnosis and prediction. In prostate cancer,
STaphylococcal nuclease and Tudor domain containing 1 (SND1)
overexpression is associated with the growth of the disease, and the
expression of SND1 is downregulated by miRNA-1224-5p, which is
responsible for stopping the advancement of cancer. Through the
process of sponging miRNA-1224-5p and the consequent
overexpression of SND1, it has been revealed that LINC00665 is
responsible for the enhancement of tumor propagation,
proliferation, and metastasis (Chen W. et al., 2020). As a result,
It is well-known that lncRNAs can promote tumors by targeting
microRNAs, which are a type of lncRNA. have the ability to
influence their production by sponging in the process of
influencing the growth of prostate cancer (Wu et al., 2019; Zhang
et al., 2020). In a variety of malignancies, the long noncoding RNA
SNHG4 acts as an oncogenic component. There is a multi-targeting
capability of the long noncoding RNA SNHG4, which also
influences a variety of pathways that promote tumor malignancy.
By avoiding the arrest of the cell cycle and enhancing proliferation
and spread of tumor cells, In gastric cancer, RRM2 is upregulated
through miRNA-204-5p when SNHG4 is overexpressed. (Cheng
et al., 2021). This action is taken in order to prevent cell cycle arrest.
SNHG4, a long noncoding RNA, has a role in the process of boosting
the metastasis of gastric tumor cells by the activation of EMT
through the sponging of miRNA-204-5p (Wang et al., 2021).
Additionally, it plays a role in the immune evasion of cancer
cells (Zhou et al., 2021). When prostate cancer is present, the
identical event takes place, and an upstream mediator known as
SP1 causes SNHG4 to acquire an increased level of expression. Then,
SNHG4 stimulates the production of ZIC5 by the sponging of

miRNA-377, which has the effect of increasing the malignant
behavior of tumor cells and enhancing their survival (Wang ZY.
et al., 2020). In the event that a tumor-promoting long noncoding
RNA is identified, the most effective methodology for decreasing the
rate of prostate cancer’s advancement is to knock it down. In the case
of prostate cancer, for example, inhibiting the long noncoding RNA
TUG1 is advantageous in terms of suppressing the disease and
increasing radiosensitivity through the overexpression of miRNA-
139-5p and the consequent overexpression of SMC1A (Xiu et al.,
2020). In order to overcome the propensity of prostate tumor cells to
mediate chemoresistance, further research is required (Quintanal-
Villalonga et al., 2020). Because of the relationship between lncRNA
and miRNA, treatment resistance in prostate tumors is determined.
An increase in transcript levels of the long noncoding RNA the
NEAT1 causes a resistance to docetaxel in prostate tumors.
Increasing the expression of miRNA-204-5p and miRNA-34a-5p,
which are both downregulated in prostate cancer, brings to an
increase in chemosensitivity by inhibiting the expression of
ACSL4. Because it acts as an upstream mediator, the long
noncoding RNA NEAT1 brings down the levels of miRNA-204-
5p and miRNA-34a-5p, which in turn raises the expression of
ACSL4, which ultimately results in prostate tumor cells being
resistant to docetaxel (Li X. et al., 2020).

Furthermore, additional lncRNAs that prostate cancer tissues,
which are dysregulated, add to the advancement of the disease
through processes that are completely distinct (Mitobe et al., 2018).
HOX transcript antisense RNA, also known as HOTAIR, is a kind of
long noncoding RNA that has been extensively studied and has been
shown to be tumorigenic. The antisense strand of the HOXC gene
cluster is where the transcription of HOTAIR takes place. According
to the first findings of Rinn et al. (Rinn et al., 2007), PRC2-mediated
histone H3 lysine-27 trimethylation at the HOXD gene locus
requires HOTAIR. This interaction with PRC2 was determined
to be crucial. The opposite is true, according to a paper that was
published not too long ago (Portoso et al., 2017), which states that
HOTAIR-mediated transcriptional suppression in breast cancer
cells does not always need PRC2. As a predictive biomarker,
HOTAIR has the potential to be utilized in a variety of cancer
types. As an illustration, it was revealed that breast cancer patients
exhibit high levels of HOTAIR. that has spread to other parts of the
body (Gupta et al., 2010). Both the expression of genes and the
invasiveness of cancer are controlled by HOTAIR, which is
dependent on PRC2-mediated histone methylation. When it
comes to prostate cancer, the expression of HOTAIR is strongly
expressed in CRPC, while treatments with androgens suppress its
expression. Blocking HOTAIR leads to a reduction in the
proliferation and invasion of CRPC cells. The mechanism of
action of HOTAIR involves direct interaction with AR, which
serves to shield AR from the degradation of proteins This is
carried out by MDM2, an E3 ubiquitin ligase. Therefore, the
overexpression of HOTAIR causes an upregulation of AR target
genes in a manner that is independent of androgens. This is one of
the ways where HOTAIR could potentially aid in the development of
castration-resistant diseases. (Zhang et al., 2015). Suppressor of
cytokine signaling 2-antisense transcript 1, or SOCS2-AS1, is an
antisense transcript of SOCS2. was shown to be activated by
treatment with anandrogens and overexpressed in CRPC cell
lines, according to the findings of a high-throughput sequencing
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analysis that we conducted. Additionally, it was demonstrated that
SOCS2-AS1 facilitated CRPC model cell migration and
proliferation. Androgen signaling is enhanced when SOCS2-AS1
binds to AR, which in turn enhances AR-mediated epigenetic
control of genes like TNFSF10, which are involved in apoptosis.
(Misawa et al., 2016). This is accomplished by androgen signaling
being activated. It was observed by Cui et al. that the expression of
long noncoding RNA 1 (PlncRNA-1) was increased in prostate
cancer. Furthermore, it was shown that disrupting the AR signaling
pathway and killing cancer cells are both outcomes of lncRNA
knockdown. (Cui et al., 2013). An additional research conducted not
too long ago shown that PlncRNA-1 has a role in facilitating cell
migration and invasion by enhancing the release of TGF-β1 (Jin
et al., 2017).

A few examples of RNA-binding proteins are PSF, NONO, and
paraspeckle component 1 (PSPC1). are involved in the formation of
the paraspeckle structure in nuclear foci by nuclear-enriched
abundant transcript 1 (NEAT1), which then controls
transcription by sequestering these proteins (Hirose et al., 2014).
When it comes to a number of different kinds of cancer, NEAT1 is
frequently increased, and the levels of expression are related to the
illness’s severity (Yu et al., 2017). NEAT1 has been shown to rank
among the ERα-regulated long noncoding RNAs that are most
highly overexpressed in prostate cancer., according to an
integrated study of ERα occupancy and signature in prostate
cancer (Chakravarty et al., 2014). A greater expression of this
long noncoding RNA (lncRNA) in prostate cancer contributes to
the development of resilience in the face of AR inhibitors or
androgen deprivation. Based on these findings, it appears that the
combination of targeting ERαand NEAT1might potentially offer a
revolutionary treatment approach for individuals who are afflicted
in patients with advanced breast cancer. A transcript known as
TRPM2-AS is antisense. that has been identified anywhere within
the TRPM2 gene, which is a subfamily M cation channel. It has been
shown to be increased with melanoma (Orfanelli et al., 2008) and
prostate cancer (Lavorgna et al., 2015), and the expression level is
connected with a bad clinical result. It has been demonstrated
through knockdown experiments that TRPM2-AS is linked to
both the growth of prostate cancer cells and the death of
apoptotic cells (Orfanelli et al., 2015), but the specific
biochemical mechanism underlying this association is not yet
fully understood.

4.2 LncRNAs in prostate cancer drug
resistance

The most significant challenge facing cancer treatment is known
as MDR. Metastatic cancer cells have the ability to evade the effects
of chemotherapeutics, which can be innate or acquired (Haghighi
et al., 2023). This ability is referred to as chemoresistant cells
(Alfarouk et al., 2015). The development of inherent drug
resistance happens when cancer cells, following the
administration of chemotherapeutic medicines, raise the
expression level of tumor-promoting genes while decrease the
expression level of tumor-suppressor genes. This results in an
increase when it comes to cell division and proliferation, along
with an inhibition of apoptosis. Genetic instability and evolutionary

factors were also responsible for the acquisition of drug resistance in
these organisms. Generally speaking, the channels for bypass
signaling, drug efflux pumps, linkages, and epigenetic changes
that exist in the tumor area have the potential to result in the
establishment of chemoresistance (Zhong et al., 2021). According to
the findings of the research, lncRNA plays a role in the development
of chemoresistance in a variety of malignancies, particularly prostate
cancer. Because of this, the influence of lncRNA on drug resistance
might vary depending on the function of lncRNAs and the targets
they target (Ding et al., 2021). The lncRNAHOXD-AS1 is one of the
lncRNAs that are implicated in treatment resistance. It is shown to
be increased in CRPC cells and has a strong correlation with lymph
node metastases and life without progression. The downregulation
of HOXD-AS1 reduced the growth of CRPC cells as well as the
development of drug resistance in both in vitro and in vivo settings.
Additionally, Some genes have been linked to the cell cycle,
resistance to drugs, and castration resistance have been identified
and stimulated transcriptionally through the use of HOXD-AS1.
These genes include UBE2C, FOXM1,CDC25C, AURKA, and
PLK1, among others; Aurora kinase A is also involved. It has
been established that HOXD-AS1 utilized WDR5 in order to
directly modify the expression of the target genes’ expression.
Overall, the recruitment of WDR5 by HOXD-AS1 is responsible
for the promotion of cell division, resistance to chemotherapy, and
resistance to castration in papillary carcinoma (Gu et al., 2017). A
different research found that the long noncoding RNAs EGFR and
LOXL1-AS1were expressed at a low level, but the doxorubicin-
resistant prostate cancer DU-145 cells exhibited an overexpression
of the microRNA miR-let-7a-5p. This microRNA has the potential
to target the epidermal growth factor receptor (EGFR) as well as the
long noncoding RNA LOXL1-AS1, which might have an impact on
the course of prostate cancer. In general, The doxorubicin-resistant
DU-145 cells’ migration, apoptosis, and proliferation were all
profoundly affected by the lncRNALOXL1-AS1/miR-let-7a-5p/
EGFR axis. which may indicate a viable therapeutic strategy for
patients with drug-resistant prostate cancer (Bai et al., 2019).

In docetaxel-resistant prostate cancer samples, NEAT1 was
found to be overexpressed, as was indicated before. NEAT1 was
silenced, which led to a reduction in the amount of cell proliferation
and invasion that occurred in PCa cells that were resistant to
docetaxel. Through the act of miR-34a-5p and miR-204-5p
sponging in prostate cancer cells, NEAT1 plays a functional role
in the development of docetaxel resistance (Jiang et al., 2020). This is
accomplished by increasing the expression of ACSL4. The
expressions of another long noncoding RNA, CCAT1, were
demonstrated to be overexpressed in PCa cells that were resistant
to either paclitaxel or PTX. Following treatment with PTX, the
suppression of CCAT1 led to a reduction in the survival rate of cells
and an increase in the rate of apoptosis (Li X. et al., 2020). The
expression of the long noncoding RNA SNHG6was also shown to be
increased in drug-resistant prostate cancer tissues and cells.
Experimentally and clinically, the suppression of SNHG6 led to
an increase in the susceptibility of PTX-resistant prostate cancer
cells to the drug. Additionally, the suppression of SNHG6 reduced
PTX-resistant PCa cell migration, invasion, and proliferation
in vitro. It has been suggested that SNHG6 may have the
potential to be a therapeutic factor for prostate cancer (Cao C.
et al., 2020). This is because reducing SNHG6 levels made
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PTX-resistant PCa cells more vulnerable. to PTX by acting as a
tumor suppressor against miR-186. There was also an increase in the
expression of Linc00518 in PCa, which was associated with
paclitaxel resistance. The lack of Linc00518 in PCa cell lines
resulted in a reduction in their resistance to PTX (He et al.,
2019). In PCa that was resistant to docetaxel or DTX, DANCR
was shown to be highly elevated. Suppressing DANCR caused a rise
in the effectiveness of DTX in PCa cells that were resistant to DTX
(Ma et al., 2019).

The activation of alternative routes for AR signaling renders
PC cells insensitive to ADT, leading to this outcome. which is a
fundamental stance against. Castration-resistant prostate cancer
(CRPC) is considered a more advanced type of cancer that
coincides with the fact that patients have a low survival rate.
LncRNA is responsible for controlling several of these routes.
Xenograft tissues derived from patients with neuroendocrine
prostate cancer (NEPC) who have developed a resistance to
hormonal therapies show an overexpression of lncRNA-p21.,
according to a research that is rather intriguing. Additionally, it
has been demonstrated that the antiandrogen enzalutamide
(Enz), which is a medicine that is successful in increasing the
survival rate of patients with CRPC, also enhances the expression
of lncRNA-p21, as a result of which neuroendocrine
differentiation (NED) occurs. In addition, functional in vitro
investigation demonstrated that cell exposure to Enz resulted in
the overexpression of lncRNA-p21 through the modulation of
AR activity. This, in turn, led to the activation of STAT3 signaling
through the Enhancer of zeste homolog 2 (EZH2) pathway.
Several studies have shown that this particular signaling
pathway plays a role in the process of fostering
neuroendocrine differentiation. In addition, research that took
place in living organisms revealed that inhibiting In mouse
models, EZH2 was able to mitigate the neuroendocrine
differentiation generated by Enz therapy. This finding suggests
that targeting lncRNA-p21 could be an effective strategy for
better management of patients with colorectal cancer who are
battling the progression of non-epithelial squamous cell
carcinoma (Luo et al., 2019). An further carcinogenic long
noncoding RNA (lncRNA) that plays a role in the
development of CRPC is called LncRNA-PCAT1. PTEN-
deficient individuals experience castration resistance as a
result of the activation of the AKT signaling pathway, which is
caused by the inhibition of AR signaling signals. There is a report
that LncRNA-PCAT1 has the capacity to interfere with a crucial
regulatory complex that comprises an inhibitor of nuclear factor
kappa B (IKKα) FKBP51,PHLPP, and PH domain. This
disruption occurs through the interaction of LncRNA-PCAT1
with FKBP51, which results in the displacement of PHLPP from
the complex. This, in turn, activates the signaling pathways of
AKT and Nuclear factor kappa B (NF-κB).

4.3 LncRNAs as biomarkers in
prostate cancer

PCA3, which was initially found in 1999 using prostate tissue
and cell line differential display analysis, is considered to be one of
the most precise biomarkers for prostate cancer (Bussemakers

et al., 1999). While its expression was found to be sixty to one
hundred times greater in more than ninety-five percent of prostate
cancers in comparison to non-neoplastic tissues that were adjacent
to the tumors, it was not detected in any other forms of
malignancies. The fact that knocking down PCA3 reduces AR
signaling, as well as cell growth and survival, suggests that
modulating AR signaling in tumor cells may be possible by
overexpression of PCA3. There is a partial elevation of
epithelial indicators such as cytokeratin-18, claudin-3, and
E-cadherin when PCA3 is knocked down, while there is a
downregulation of the mesenchymal marker vimentin (Lemos
et al., 2016). Additionally, PCA3 is responsible for regulating
the expression of significant genes that are associated with
cancer and are associated with mitogen-activated kinase 1, cell
adhesion, signal transduction, apoptosis, and angiogenesis. (Lemos
et al., 2016). Further, a PCA3 operational model is now under
consideration. According to this model, PCA3 functions as a
dominant-negative oncogene that suppresses the activity of the
unidentified tumor suppressor Prune Homolog 2 (PRUNE2)),
which is the prune gene in fruit fly hybrids with its human
equivalent. The procedure relies on RNA editing, namely, the
production of double-stranded RNA, to achieve this goal. that is
PRUNE2/PCA3 (Salameh et al., 2015). When compared with
serum PSA, the combination of urine PCA3 and fusion gene
TMPRSS2-ERG has the potential to significantly reduce the
number of prostate biopsies that are not necessary. This
combination can also boost the specificity of the diagnosis of
prostate cancer. The long noncoding RNA known as SChLAP1,
which stands for second chromosomal locus associated with
prostate is significantly expressed in twenty-five percent of
prostate cancer cases (Prensner et al., 2013). There is a
substantial correlation between its expression and the likelihood
of mortality, clinical progression, biochemical recurrence,
metastasis specifically related to prostate cancer. In cases of
colorectal cancer, its expression is higher. By interacting with
the Switch-Sucrose Non-Fermentable (SWI/SNF) complex for
the purpose of chromatin remodeling, SChLAP1 is able to
reverse the effects of SWI/SNF, which are known to decrease
tumor growth (Prensner et al., 2013). Biochemical recurrence
after radical prostatectomy can be independently predicted by
this lncRNA., according to an analysis of SChLAP1 expression
using in situ hybridization (ISH) (Mehra et al., 2014). This long
non-coding RNA (lncRNA) is a useful biomarker for prostate
cancer patients that is found in tissues. who are at a greater risk of
CRPC advancement. Furthermore, the expression of SChLAP1 was
found to connect with the progression of prostate cancer that was
likely to be fatal (Mehra et al., 2016). In normal prostate tissues and
non-cancerous prostate epithelial cells, the expression of the long
noncoding RNA known as SPRY4 intronic transcript 1 (SPRY4-
IT1) is seen to be much higher in patient samples and inPC3 cells
(Lee et al., 2014). siRNA knockdown of SPRY4-IT1 decreased the
spread of PC3 cells and their invasion, and also increased the
number of cells that underwent apoptosis. According to the results
of an RNA chromogenic ISH test, SPRY4-IT1 was easily identified
in all prostate cancer samples with varying Gleason scores ranging
from 6 to 10 (Lee et al., 2014). Due to its selectivity for prostate
cancer and its ability to be easily detected using conventional
clinical staining methods on tissue samples, this long noncoding
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RNA is a promising candidate for use as a diagnostic biomarker.
MALAT1, which stands for metastasis-associated lung
adenocarcinoma transcript 1, is a long noncoding RNA that
was initially discovered to may be overexpressed in tissues of
non-small-cell lung cancer patients with a high propensity to
metastasize? (Ji et al., 2003). Recent research has demonstrated
that MALAT1 is also overexpressed in various types of human
cancer, such as those that affect the breast, pancreatic, colon,
prostate, and liver (Lin et al., 2007; Konishi et al., 2016).
MALAT1 overexpression was shown to be related with markers
of poor prognosis in prostate cancer, which includes a high
Gleason result, advanced stage of tumor node metastasis, and
serum PSA levels that were greater than 20 ng/mL.
Furthermore, the expression of MALAT1 was considerably
higher in hormone-resistant prostate cancer (CRPC) than in
cases of prostate cancer that detect hormones (Ren et al., 2013).
A study that analyzed MALAT1 expression in prostate cancer
patients whose biopsies came back positive and those whose did
not found the disease, this lncRNA was shown to be considerably
greater in biopsy-positive samples (Wang et al., 2014). This finding
suggests as a potential diagnostic biomarker, urine MALAT1 could
be useful. By combining EZH2-antibody RNA
immunoprecipitation with high-throughput sequencing analysis,
it was also determined that MALAT1 binds to EZH2. (Wang et al.,
2015). A favorable link between MALAT1 and EZH2 has been
shown, and it has been suggested that MALAT1 plays a significant
part during the course of CRPC cell line migration and invasion

facilitated by EZH2 (Wang et al., 2015; Misawa et al., 2017).
Therefore, increasing evidences demonstrate that lncRNAs are
potential regulators of tumorigenesis in prostate cancer (Zhang A.
et al., 2016; Ramnarine et al., 2019; Ma G. et al., 2016).

4.4 LncRNAs in autophagy regulation in
prostate cancer

A few of studies have evaluated the function of lncRNAs in the
regulation of autophagy in prostate cancer. The high expression of
lncRNA HULC can promote the survival. The HULC silencing
can reduce survival rate and enhance apoptosis in prostate cancer.
HULC downregulation increases radiosensitivity and stimulates
autophagy through Beclin-1 upregulation and mTOR
downregulation (Lambert et al., 2018). The lncRNA RHPN1-
AS1 downregulation can stimulate apoptosis and autophagy in
prostate cancer. LncRNA RHPN1-AS1 sponges miR-7-5p to
upregulate EGFR for induction of mTOR to suppress
autophagy (Ma X. et al., 2022). On the other hand, the
function of REST in the suppression of LINC01801 can
transcriptionally stimulate autophagy in enhancing
neuroendocrine differentiation of prostate cancer (Chang et al.,
2023). Moreover, MKNK1-AS1 and INE1 have been identified as
autophagy-related lncRNAs that determine the survival rate of
prostate cancer (Li et al., 2021). Figure 3 highlights the function of
lncRNAs in prostate cancer.

FIGURE 3
The function of lncRNAs in prostate cancer.
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5 LncRNAs and bladder cancer

5.1 LncRNAs in bladder cancer progression

Different kinds of lncRNAs can be distinguished from one
another on the basis of their function, genomic location, and
subcellular localization (Cao Y. et al., 2020). There are five
different types of lncRNAs that are categorized according to their
position in the genome. The long non-coding RNAs can be grouped
into several types, such as sense, antisense, bidirectional, intergenic,
and intronic. One example of an intergenic long noncoding RNA is
H19, another is UCA1, and a third is MALAT1. (Ariel et al., 2000;
Xue et al., 2017; Jiao et al., 2018). Intronic lncRNAs includelncRNA-
LET, SPRY4-IT1, and BLACAT1 (He et al., 2013; Zhao et al., 2015;
Zhuang et al., 2017a). Antisense long noncoding RNAs (lncRNAs)
include SNHG16 and GAS5 (Cao et al., 2018; Avgeris et al., 2018),
GAS5 transcripts can be either coding RNA or bidirectionally long
noncoding RNA. (Wang et al., 2018). On top of that, Two groups are
composed of long noncoding RNAs.: nuclear lncRNAs and
cytoplasmic lncRNAs, depending on where they are located
inside the cell. BLACAT2 and LBCS were shown to be localized
in the nucleus of bladder cancer cells, according to the results of
investigations involving subcellular fractionation and in situ
hybridization (ISH) (He W. et al., 2018; Liu P. et al., 2019). Both
ARAP1-AS1 and LSINCT5 were shown to be abundant in the
cytoplasm of BC cells, as opposed to other proteins (Zhu et al.,
2018; Teng et al., 2019). In addition, long noncoding RNAs are
categorized into four categories based on the roles that they perform:
guide, decoy, signaling, and scaffold lncRNAs. As an illustration,
LNMAT1 was responsible for the promotion of lymphatic
metastasis of bladder cancer. This was accomplished via
enhancing CCL2 promoter recruitment of hnRNPL, which
increased the production of CCL2 (Chen et al., 2018). DBCCR1-
003 has the potential to bind to DNMT1 and so block the
methylation of DBCCR1 in BC that is mediated by DNMT1.
Following this, the overexpression of DBCCR1-003 resulted in a
considerable reduction in the proliferation of bladder cancer cells as
well as the death of these cells (Zhuang J. et al., 2015). Through the
process of sponging miR-101-3p, SPRY4-IT1 was able to increase
the rate of bladder cancer cell growth and spread (Liu D. et al., 2017).
This was accomplished by upregulating zeste homologue 2 (EZH2).
In addition, long noncoding RNAs (lncRNAs) are capable of
performing their tasks within the transcriptional levels, after the
fact, and regulation of epigenetics, independent of the categories that
they fall under. The long noncoding RNA (lncRNA) is a regulatory
gene that has the potential to exert a significant effect on several
biological processes. These activities include cell death, cell
proliferation, cell maturation, and cell specialization. For
example, Luo et al. reported that an increase in the expression of
H19 led to an increase in the proliferation of bladder cancer cells
(Luo et al., 2013). When compared with normal tissues, the
prevalence of GAPLINC was shown to be considerably higher in
bladder cancer tissues. The inhibition of GAPLINC led to the
promotion of cell cycle arrest at the G1 phase, as well as the
inhibition of a capacity to migrate and invade (Zheng et al.,
2018). A similar effect was observed when SNHG16 was knocked
down, which led to the halt of the cell cycle at the G1 phase and
enhanced apoptosis in bladder cancer cells (Cao et al., 2018).

Through its interaction with WDR5, overexpressed
BLACAT2 was able to generate intratumoral and peritumoral
lymphangiogenesis, which in turn increased the invasiveness of
bladder cancer cells (He W. et al., 2018). Furthermore, Not only
did MEG3 overexpression inhibit cell invasion and migration, but it
also made bladder cancer cells more responsive to cisplatin, a
chemotherapeutic agent. (Kim and Tannock, 2005).

5.2 LncRNAs in bladder cancer therapy
resistance

In clinical practice, chemotherapy is the first-line treatment for
breast cancer, and it is effective in reducing tumor masses in the
majority of patients (Zhang et al., 2021). However, after repeated
treatment cycles, the majority of patients gradually lose their ability
to respond to treatment, and they eventually experience a recurrence
of their tumor (Kurtova et al., 2015). The chemotherapeutic
response in BCa has been demonstrated to be altered by a
number of different long noncoding RNAs. Cisplatin, a
fundamental substance used in the initial phase of chemotherapy
treatment, has been demonstrated to dramatically enhance the
prognosis in patients who are sensitive to the treatment (Herr
et al., 2007). Through its role as an oncogene, TUG1 is able to
directly sponge miR-194-5p and promote the production of EZH2.
There is a correlation when miR-194-5p levels are low and
CCND2 expression is high which causes BCa cells to become
more resistant to the chemotherapy drug cisplatin (Yu et al.,
2019). In addition to this, increasing the sensitivity of BCa cells
to adriamycin is achieved by TUG1 knockdown (Sun Z. et al., 2019).
A knockdown of LINC00857 makes breast cancer cells more
sensitive to cisplatin. This is accomplished via controlling the
expression of the LMAN1 gene, which suggests that
LINC00857 has the ability to modulate sensitive patient
responses to platinum-based chemotherapy (Dudek et al., 2018).
A high level of HIF1A-AS2 in cisplatin-resistant breast cancer cells
causes an increase in the production of HMGA1, which in turn
limits the transcriptional activity of proteins belonging to the
p53 family. This, in turn, has an effect on the apoptosis that is
caused by cisplatin (Shin et al., 2019). According to the findings of a
recent study (Li Y. et al., 2019), When DLEU1 restores the
expression of the target gene HS3ST3B1, it improves cisplatin
resistance through competitive regulation of miR-99b. It has been
demonstrated that the downregulation of MALAT1 increases the
susceptibility of BCa cells to cisplatin through the miR-101-3p/
VEGFC axis (Liu P. et al., 2019). The susceptibility of breast cancer
cells to cisplatin has been discovered to be suppressed by MST1P2,
which regulates miR-133b/SIRT1 signaling (Chen J. et al., 2020). It
has been demonstrated that UCA1 can reduce the susceptibility of
BCa cells to cisplatin by increasing the expression of Wnt6 (Fan
et al., 2014a). In addition, long noncoding RNAs have the ability to
boost the chemosensitivity of breast cancer cells to cisplatin and
suppress treatment resistance. As an illustration, the overexpression
of MEG3 may cause BCa cells to become more sensitive to the
chemotherapeutic medication cisplatin (Feng et al., 2018).

Another cytotoxic chemotherapeutic drug that is used to treat
BCa cells is gemcitabine; nevertheless, the majority of patients, in a
manner comparable to those who were treated with cisplatin,
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ultimately experience a recurrence of their tumors (Kim and
Tannock, 2005). When gemcitabine is used as a treatment, the
increase of LET makes it more difficult for BCa to return. It is worth
noting that the proinflammatory cytokine TGFβ1 has the ability to
directly reduce the levels of LET expression in individuals who are
resistant to gemcitabine (Zhuang et al., 2017b). However, FOXD2-
AS1 is responsible for the positive regulation of ABCC3 protein
through the targeting of miR-143. Evidence suggests that this
protein’s knockdown suppresses not only the 50% inhibitory
concentration of gemcitabine but also invasion, the expression of
ABCC3 protein in gemcitabine-resistant BCa cells, and drug
resistance-related genes (MDR1, LRP1 MRP2). (An et al., 2018).
There is a correlation between high levels of CDKN2B-AS
expression and poor gemcitabine sensitivity. Conversely, the Wnt
signaling pathway is rendered inactive by decreased levels of the
CDKN2B-AS gene, which eventually has an effect on the sensitivity
of BCa cells to gemcitabine (Xie et al., 2018). There is a correlation
between the high expression of GHET1 and the poor gemcitabine
sensitivity in patients with breast cancer, and the knockdown of
GHET1 is related with an increase in gemcitabine-induced
cytotoxicity (Li B. et al., 2019). In addition, UCA1 is responsible
for the activation of the transcription factor CREB by its interaction
with its promoter, which ultimately results in the production of miR-
196a-5p. Conversely, the inhibition of UCA1 leads to a reduction in
chemosensitivity to cisplatin and gemcitabine by reducing the
proliferation of BCa cells (Pan et al., 2016). It has been
discovered via additional research that lncRNAs also have a
significant role in the chemosensitivity of BCa to doxorubicin.
Doxorubicin induces cell death, and an increase in
GAS5 decreases treatment resistance to doxorubicin. (Shang
et al., 2016; Zhang et al., 2017). Increased cell proliferation and
decreased doxorubicin chemosensitivity are effects of HOTAIR
overexpression., whereas doxorubicin induces cell death.
TUG1 role in EMT and radioresistance is mediated via the miR-
145/ZEB2 axis, which is responsible for the radioresistance of BCa.
Reduced expression of TUG1 enhances radiosensitivity in BCa by
repressing the targeting gene The HMGB1 gene (Jiang et al., 2017a;
Jiang et al., 2017b).

5.3 LncRNAs as biomarkers in
bladder cancer

The expression of thirteen potential long noncoding RNAs was
recently assessed by Duan et al. in bladder cancer that was matched
to healthy tissue in the surrounding area. They reported a panel of
lncRNAs that were expressed differently, and these lncRNAs were
then examined using blood samples. There was a discernible
difference in the expression of three long noncoding RNAs
(MALAT1, SNHG16, and MEG3) in the blood of healthy
persons in contrast to serum from both cancerous and
noncancerous bladder diseases (Taheri et al., 2018; Duan et al.,
2016). It is possible that this panel could aid patients in detecting
bladder cancer. There is a statistical correlation between the
histological grade and TNM stage of bladder cancer and the
expression of several lncRNAs in this malignancy. (Zhuang C.
et al., 2015; Zhan et al., 2016a; Zhan et al., 2016b; Chen M. et al.,
2016; Li J. et al., 2016; XianGuo et al., 2016). These lncRNAs include

HIF1A-AS2, SUMO1P3, PANDAR, CCAT2, PVT1, and NEAT1.
Furthermore, according to Chen et al. (Chen et al., 2015), there is a
positive correlation between the expression of lncRNA-n336928 and
the stage of the bladder tumor, the histological grade, and the
patient’s survival. There is a correlation between
GHET1 overexpression and tumor growth, low survival rates,
lymph node status, and the existence of advanced lymph nodes
(Li et al., 2014). In bladder cancer, GHET1 expression is more than
in surrounding tissues that are unaffected. The presence of lymph
node metastases in these individuals is linked to elevated levels of
MALAT1 expression, which is also connected with higher grades of
histological evaluation and the stage of the tumor (Li et al., 2017).
According to other studies (Li et al., 2017; Fan et al., 2014b), the
presence of MALAT1 overexpression is a leading indicator of poor
survival in these individuals. There is a correlation among patients
with muscle-invasive bladder cancer and elevated TUG1 levels in
their metastatic tumors (Iliev et al., 2016). TINCR expression levels,
on the other hand, have just been established as being related with
advanced TNM stage (Chen et al., 2016b). In contrast, a positive
correlation was found between low expression of BANCR and
MIR31HG and the TNM stage (He et al., 2016a; He et al.,
2016b). Moreover, a decrease in the expression of MEG3 is
linked to a decrease in the percentage of patients who survive
without recurrence (Duan et al., 2016). In bladder cancer, lower
GAS5 levels are linked to higher pathological grades and a lower
disease-free survival rate. (Zhang et al., 2017).

5.4 LncRNA/ceRNA axis in bladder cancer

Cancer cell stemness, a characteristic of cancer cells that is
similar to that of stem cells, has been demonstrated to have a
significant role in the development of tumors, the processes of
metastasis and recurrence, as well as the development of
treatment resistance (Li K. et al., 2023; Tsui and Chan, 2020; Lee
et al., 2022). When it comes to human malignancies, particularly
bladder cancer, it has been established that lncRNA-mediated
ceRNA networks play a role in the creation and maintenance of
cancer cell stemness. Zhan et al. (Zhan et al., 2020) discovered
bladder cancer was associated with elevated expression of the sex-
determining region Y-box2 (SOX2) overlapping transcript
(SOX2OT). Furthermore, they found that bladder cancer stem
cells were more likely to undergo self-renewal, migration,
invasion, and tumorigenicity when SOX2OT expression was
up. This was accomplished by means of miR-200c “sponging”
and, as a result, increasing SOX2 expression, which is an
essential regulator of cancer stemness (Zhu et al., 2021; Mamun
et al., 2020). Furthermore, it was shown that through its modulation
of the miR-125b/smad2 axis, the oncogenic long noncoding RNA
HOXA cluster antisense RNA 2 (HOXA-AS2) enhances the
stemness of bladder cancer cells by elevating the expression levels
of cancer stem cell markers like OCT4. KLF4, CD44, HMGA2, and
ALDH1A1, (Wang F. et al., 2019). Furthermore, it has been reported
that a specific type of antisense RNA known as potassium calcium-
activated channel subfamilyM regulation beta subunit 2 (KCNMB2-
AS1) has the ability to improve the stemness of bladder cancer cells.
This is accomplished via modulating the miR-3194-3p/
smad5 signaling pathway, which in turn increases the expression
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of cancer stem cell markers like ALDH1, Oct4, Nanog, CD133, and
Nanog. (Chen et al., 2021). Microfilaments, microtubules, and
intermediate filaments are the components that make up the
eukaryotic cytoskeleton, which is distinguished by its intricate
fibrous reticular structure. A growing body of data has proven
the cytoskeleton is responsible for signal transduction, cell
motility, intercellular transport, and cell division. As a
consequence, the cytoskeleton plays a part in the uncontrolled
proliferation and migration of cells that occur throughout the
evolution of cancer (Eli et al., 2022; Datta et al., 2021). It has
been revealed that the lncRNA-mediated ceRNA network is
responsible for the rearrangement of the cytoskeleton in the
advancement of bladder cancer. For example, Lv et al. (Lv et al.,
2017) discovered both human bladder cancer tissues and cell lines
exhibit elevated levels of lncRNAH19. Furthermore, they discovered
that cytoskeleton reorganization results from overexpression of
lncRNA H19. This is accomplished via boosting paxillin and
F-actin expression, which are a pair of cytoskeletal proteins
involved in cancer cell movement, adhesion, signal transduction,
and motor activity (Kim et al., 2009).

Surgical procedures, chemotherapy, and radiation therapy are
the conventional therapies for bladder cancer now available. On the
other hand, there is a subset of individuals who have bladder cancer
who remain refractory to chemotherapy or radiation, and as a result,
they have a recurrence of their tumor (Patel et al., 2020; Hensley
et al., 2022). In order to achieve improved outcomes for patients
with bladder cancer, one of the most significant challenges is to
overcome resistance to chemotherapy and radiation. Multiple
studies have found that lncRNAs are associated with the ceRNA
network and the development of radiation or chemotherapy
resistance in bladder cancer. Based on these findings, they
discovered networks that target lncRNA-mediated ceRNA might
potentially make cancer cells more sensitive to doxorubicin,
gemcitabine, and cisplatin. Additionally, along the miR-145/
ZEB2 pathway, the lncRNA TUG1, which is significantly
expressed at an elevated level in bladder cancer samples and
cells, promotes epithelial-mesenchymal transition (EMT) and
reduces the susceptibility of cancer cells to ionizing radiation
(Tan et al., 2015). By suppressing the production of HMGB1, the
promotion of metastasis by a conserved nuclear protein in a variety
of malignancies, TUG1 silencing was shown to improve
radiosensitivity in a xenograft model, according to the findings of
another study (Jiang et al., 2017b; Tripathi et al., 2019).
Furthermore, Recent studies that looked at lncRNA signatures in
bladder cancer patients who had radiation therapy found that
molecular mechanisms related to radiation responses are
connected with a 10-lncRNA signature. Furthermore, A small
rise in radiosensitivity was observed in bladder cancer cells when
one of these lncRNAs was knocked down. (Khan et al., 2021).

5.5 LncRNAs in autophagy regulation in
bladder cancer

The lncRNAs are also potential regulators of autophagy in
bladder cancer. The lncRNA SNHG1 is able to interact with
catalytic subunit PP2A and stimulate autophagy to enhance
metastasis of bladder cancer (Xu et al., 2020). The lncRNA

ADAMTS9-AS1 stimulates PI3K/Akt/mTOR axis to suppress
apoptosis and autophagy in bladder cancer (Yang et al., 2021). In
spite of these discussions, more efforts are required regarding
understanding the role of lncRNA-mediated autophagy regulation
in bladder cancer (Figure 4).

6 LncRNAs and renal cancer

6.1 LncRNAs in renal cancer progression and
drug resistance

The lncRNAs have been considered as regulators of drug
resistance in kidney cancer (Barth et al., 2020). The sorafenib
resistance-associated long noncoding RNA (SRLR) in RCC was
firstly tested for functionality by Xu and colleagues. (Xu et al.,
2017), who mentioned that SRLR was shown to improve treatment
resistance with sorafenib, a multi-kinase inhibitor. Tissue from
sorafenib-resistant patients and cells from skin cancer patients
both showed an upregulation of SRLR. In terms of the
mechanism, SRLR has a direct interaction with the transcription
factor NF-KB, which then leads to the stimulation of IL-6
transcription and release of IL-6 by RCC cells in an autocrine
manner. The inhibition of receptor tyrosine kinases, such as
VEGFR and PDGFR, by sorbafenib is circumvented as a
consequence of this, which leads to the activation of the
STAT3 pathway. It was demonstrated through experiments that
this is true both in vitro and in vivo (Xu et al., 2017). In a research
that looked at SRLR in polycystic ovarian syndrome (Saab et al.,
2020), the link between SLRL and IL-6 was only recently verified
because it was only just discovered. Higher expression levels of the
long noncoding RNA SRLR were found to be associated with a
decreased progression-free survival (PFS) in a clinical dataset
consisting of 95 patients with recurrent colorectal cancer (RCC)
(hazard ratio = 0.407, 95% confidence interval = 0.222–0.744, p =
0.003). Furthermore, this association was also associated with low
levels of IL-6 and a lack of benefit from sorafenib treatment. A major
influence on resistance to treatment with sunitinib, a multikinase
inhibitor, for RCC is exerted by the long noncoding RNA (lncRNA)
that is activated in RCC patients who have sunitinib resistance
(ARSR) (Qu et al., 2016). Through a mechanism that involves
functioning as a competitive endogenous RNA (ceRNA), ARSR is
able to sequester miR-34 and miR-449, which in turn leads to a rise
in the concentrations of the endpoints AXL and c-MET, which
ultimately leads to the promotion of sunitinib resistance. Through
sunitinib-resistant cell lines, the ARSR gene is overexpressed, and in
turn, By activating FOXO transcriptional factors, AXL enhances the
expression of the ARSR gene. This indicates that there is a positive
feedback loop between AXL and ARSR in kidney cancer that is
resistant to sunitinib. The transfer of sunitinib resistance from cells
that are resistant to sunitinib to cells that are sensitive to sunitinib
can also occur through the process of exosome-mediated
transmission, which is an intriguing phenomenon. In vivo and
in vitro research have demonstrated that targeting ARSR could
be considered as a possible treatment option for sunitinib
resistance. (Qu et al., 2016). Both of these experiments were
conducted. These findings are supported by the fact that
pretreatment ARSR levels in the plasma of RCC patients are
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substantially connected with poor progression-free survival (PFS)
for high vs. low ARSR expression (hazard ratio = 2.9, 95%
confidence interval = 1.2–7.1, p = 0.017), respectively (Qu et al.,
2016). The ARSR sequence’s single nucleotide polymorphisms were
also recommended as possible biomarkers for the outcome of RCC
in a research that was conducted not too long ago. Numerous
investigations have demonstrated which NEAT1—the nuclear
paraspeckle assembly transcript and its role as an oncogenic long
noncoding RNA have already been thoroughly examined (Klec et al.,
2019). There is evidence that NEAT1 contributes to the
development of resistance to chemotherapy (Shin et al., 2019; An
et al., 2017). Because it acts as a sponge for miR-34a, NEAT1 may be
able to block the response to sorafenib therapy in RRC. This is
accomplished through the control of the NEAT1/miR-34a/c-MET
axis (Liu F. et al., 2017). There have been previous reports that
c-MET and miR-34a have an effect on chemoresistance in various
types of cancer, such as osteosarcoma and esophageal cancer (Hara
et al., 2019; Sun Z-Y. et al., 2019; Pu et al., 2017). Furthermore,
NEAT1 has a great deal of expression in RCC cell lines as well as
tissues. In addition, there was a correlation between the
overexpression of NEAT1 and the change from epithelial to
mesenchymal (EMT), as well as a substantial correlation with
poor overall survival and progression-free survival in lung cancer.
However, the study conducted by Liu et al. did not include any
univariate or multivariate analyses, nor did it include any xenograft
models (Liu F. et al., 2017).

It has already been established that the long noncoding RNA
ADAMTS9 antisense RNA 2 (ADAMTS9-AS2) plays a role in the
development of treatment resistance in cancer. Tamoxifen resistance
is worsened by ADAMTS9-AS2 downregulation in breast cancer.
but its downregulation was related with improved sensitivity to
temozolomide in glioblastoma (Yan et al., 2019; Shi et al., 2019).
This suggests that its role may vary depending on the kind of cancer
being treated. Downregulation of ADAMTS9-AS2 is seen in RCC,
and a substantial association is shown between high expression and
improved overall survival (Song et al., 2019). Increasing the
expression of FOXO1 and restoring chemosensitivity to 5-
fluorouracil and cisplatin were both outcomes of overexpressing
ADAMTS9-AS2, which was accomplished by the sequestration of
miR-27-3p. Nevertheless, there is a lack of evidence carried out in
in vivo tests (Song et al., 2019). To this day, chemotherapy is not a
viable therapeutic choice for RCC since it has been demonstrated to
be unsuccessful; hence, the direct practical significance of the study
is restricted (Amato, 2000). Targeting long noncoding RNAs, on the
other hand, has the potential to overcome chemoresistance in RCC
in the future and open the door for chemotherapy to be considered a
viable therapeutic choice for RCC. In a study that was conducted by
Liu and colleagues (Liu L. et al., 2019), it was discovered that the long
noncoding RNA known as growth arrest specific transcript 1
(GAS5) has an effect on the resistance of RCC to sorafenib. It
has already been proven on several occasions (Ma C. et al., 2016) that
GAS5 has a tumor suppressive function in the development and

FIGURE 4
The function of lncRNAs in bladder cancer.
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progression of reactive phase carcinoma. In terms of its influence on
sorafenib resistance, it was demonstrated that it acts as a sponge for
miR-21. Furthermore, it was found that the elevation of GAS5 led to
the upregulation of the transcription factor sex determining region
Y-box protein 5 (SOX5), which in turn conferred enhanced
sensitivity to sorafenib (Ma C. et al., 2016). Multiple models,
both in vitro and in vivo, were used to demonstrate this
statement. These findings are supported by the fact that all of the
effectors in the GAS5/miR-21/SOX5 pathway, as hypothesized by
Liu et al. (Ma C. et al., 2016), have already been found to be effectors
in chemoresistance on their own (Gao et al., 2018; Chen Z. et al.,
2020; Chen et al., 2019; Dai et al., 2017).

6.2 LncRNAs as diagnostic and prognostic
factors in renal cancer

There have been a number of research studies that have focused
on lncRNAs with the objective of identifying new biomarkers and
gaining a knowledge of the molecular processes that they use to
impact the beginning and development of recurrent cardiac tumors
(Outeiro-Pinho et al., 2020; Song et al., 2014; Wang et al., 2017; Xue
et al., 2019). When compared to their counterparts that code for
proteins, lncRNAs are far less expressed. This might be a significant
obstacle for their application in clinical practice, since it is extremely
difficult to identify them in a reliable manner (Mattick and Rinn,
2015). The investigation of these compounds need to be encouraged,
despite the fact that technical advancements might be able to
overcome the limits that are currently in place. The most
pertinent research that reported lncRNAs as possible diagnostic,
prognostic, predictive, and monitoring biomarkers in randomized
controlled trials (RCTs) were emphasized in this article. These
investigations were conducted on tissue and liquid biopsies. As
opposed to sncRNAs, there is a dearth of published information
about lncRNAs as diagnostic biomarkers for randomised controlled
trials. More than 20 years ago, Thrash–Bingham and colleagues
(Thrash-Bingham and Tartof, 1999) made the groundbreaking
discovery that the expression of lncRNA varied not only between
RCC subtypes but also between subtypes of RCC. It was discovered
through the use of semiquantitative PCR that the expression of
lncRNA antisense Hypoxia Inducible Factor (aHIF) was
significantly higher in ccRCC in comparison to pRCC (Thrash-
Bingham and Tartof, 1999). Technology has advanced, and these
findings were subsequently verified in 2011, when Bertozzi and
colleagues (Bertozzi et al., 2011) discovered a differential expression
of lncRNA aHIF between RCC and MNT, as well as between non-
pRCC and pRCC tissue samples. This was one of the first times that
these findings were validated. In a different research, which included
102 ccRCC and 50 NRT, the lncRNA CYP4A22–2/3 was able to
differentiate between ccRCC and NRT with an area under the curve
(AUC) of 0.790 (Ellinger et al., 2015). Ren and his colleagues (Ren
et al., 2016) conducted an investigation in 2016 to determine the
level of expression of the long noncoding RNAs UC009YBY.1 and
ENST00000514034 in a collection of 70 ccRCC and 70 MNT cells.
These authors observed that the two lncRNAs were able to detect
RCC tissue with a sensitivity of 54.29% and a specificity of 82.86%
for the former, and with a sensitivity of 60.00% and a specificity of
67.14% for the latter (Ren et al., 2016). Last but not least, a recent

research revealed that the lncRNA HOX Transcript Antisense RNA
(HOTAIR) might potentially serve as a diagnostic biomarker for
colorectal cancer, uncovering an area under the curve (AUC) of
0.9230 (Dasgupta et al., 2018). After doing a search of the relevant
literature, we discovered that there were only two publications that
were relevant to the evaluation of the potential of lncRNAs as RCC
diagnostic biomarkers in liquid biopsies. Using two different sets of
ccRCC and AC serum samples, Wu and colleagues (Wu et al., 2016)
investigated the expression of five different long non-coding RNAs
(lncRNAs): lncRNA–low expression in tumor (LET), Plasmacytoma
Variant Translocation 1 (PVT1), Promoter of CDKN1A Antisense
DNADamage Activated RNA (PANDAR), Phosphatase and Tensin
Homolog Pseudogene 1 (PTENP1), and long intergenic non-protein
RNA 963 (linc00963). These biomarkers, when integrated in a panel,
were able to identify malignancy with a sensitivity of 79.2% and a
specificity of 88.9% in the training set (consisting of 24 ccRCC and
27 AC), and with a sensitivity of 67.6% and a specificity of 91.4% in
the testing set (consisting of 37 ccRCC and 35 AC) (Wu et al., 2016).
Following that, the serum expression of the long noncoding RNA
GIHCG was evaluated in a total of 46 samples, including 46 ccRCC
and 46 AC. The expression of GIHCG was able to differentiate
between ccRCC and healthy donors with a sensitivity of 87.0% and a
specificity of 84.8%. Particularly remarkable is the fact that it was
able to differentiate between early-stage ccRCC and AC (31 stage I
ccRCC vs. 46 ACs) with a sensitivity of 80.7% and a specificity of
84.8% (He ZH. et al., 2018).

6.3 LncRNAs in autophagy regulation in
renal cancer

The lncRNAs can also regulate autophagy in renal cancer.
However, only one experiment has evaluated the function of
lncRNAs in the modulation of autophagy in the renal cancer.
LncRNA HOTAIR is able to sponge miR-17-5p to induce
autophagy through Beclin-1 upregulation in the induction of
sunitinib resistance (Li D. et al., 2020). Table 1 summarizes the
lncRNAs involved in the regulation of urological cancer progression.

7 Discussion

In the last 10 years, a growing body of research has
demonstrated that lncRNAs have a significant role in both the
beginning and the advancement of bladder cancer. As of right
now, typical biomarkers for bladder cancer are still quite
uncommon. This is because they do not possess high sensitivity
and specificity, and their use is also rather expensive. There is a need
for the development of new biomarkers for the early detection and
prognosis of bladder cancer. This is because bladder cancer has a
high recurrence rate and a poor prognosis, even after successful
transurethral resection and systemic therapy. The purpose of this
study is to provide a concise summary of the expression, function,
and molecular processes of lncRNAs, as well as the clinical
implications of lncRNAs in the diagnosis and prognosis of
bladder cancer. There has been research conducted on the
molecular processes of lncRNAs in bladder cancer. These
mechanisms include lncRNAs interacting with DNA, RNA, and
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proteins. Both the urine supernatant and the plasma of patients with
bladder cancer can be enriched with circulating long noncoding
RNAs, which may offer a more favorable potential for developing
novel tests for bladder cancer. There is a strong correlation between
the abnormal expression of thirty-six lncRNAs and a number of
clinical features that are associated with bladder cancer. For the
purpose of acting as diagnostic or prognostic markers for breast
cancer, the increased lncRNAs offer advantageous traits because of
their low expression and less evolutionarily conserved nature. As a
result, we investigated thirty lncRNAs that were upregulated in
order to identify possible clinical indicators. UCA1 has reasonably
good sensitivity, specificity, and area under the curve (AUC), and it
may be regarded the most viable diagnostic biomarker for bladder
cancer. This is based on the dissection of fifteen upregulated long
noncoding RNAs that are connected with the size of the tumor seen
in bladder cancer patients. The need of doing large-scale
investigations in cells and clinical specimens prior to the
development of new lncRNA biomarkers for clinical diagnosis
cannot be overstated. In this context, the diagnostic and
therapeutic performance of bladder cancer will be facilitated by
large and systematic investigations on lncRNAs. The fact that there
is now no lncRNA that can be used to the particular diagnosis,
prognosis, and therapy of bladder cancer is something that should be
taken into consideration. At the same time that microRNAs, circular
RNAs, and exosomes all play significant roles in the development of
breast cancer, microRNAs are also involved. According to the
information that we currently possess, the combination of
mRNAs, microRNAs, and lncRNAs would presumably be more

effective in improving the early diagnosis and prognosis of bladder
cancer (Liu XS. et al., 2021).

Autophagy is indeed a complex biological process that exerts
varying effects in different types of tumors, including those within
the genitourinary system. In the context of these cancers, autophagy
can play dual roles as both a tumor suppressor and promoter,
depending on factors such as the specific type of cancer, its stage, and
the presence of particular genetic mutations. For instance, in
prostate cancer, autophagy has been shown to support tumor cell
survival and therapy resistance, particularly in advanced stages
where cells experience hypoxic and nutrient-deprived conditions.
Conversely, in the early stages, autophagy can suppress
tumorigenesis by preventing the accumulation of damaged
organelles and proteins, thus maintaining cellular homeostasis.
This dual role underscores the need to understand the specific
context in which autophagy operates, as it influences treatment
strategies and outcomes. Moreover, the regulatory mechanisms of
autophagy in genitourinary cancers are influenced by a variety of
pathways and molecular interactions, including those involving
lncRNAs. For example, in bladder cancer, lncRNAs such as
TUG1 and SNHG1 have been implicated in modulating
autophagy and contributing to therapy resistance through
interactions with key signaling pathways like PI3K/Akt/mTOR
and PP2A catalytic subunit, respectively. The complexity is
further compounded by the fact that lncRNAs can act as either
oncogenes or tumor suppressors, depending on their expression
patterns and the regulatory networks they engage with. This
variability necessitates a nuanced understanding of the molecular

TABLE 1 The lncRNA-driven regulation of urological cancer progression.

Urological cancer LncRNA Remark References

Prostate cancer LNC-565686 Increase in the proliferation rate and inhibition of apoptosis via enhancing
SND1 stability

Qin et al. (2023)

Prostate cancer LncRNA TMPO-AS1 Enhancement in the bone metastasis through Wnt upregulation Wang et al. (2023a)

Prostate cancer LINC01801 Inhibition of LINC01801 by REST to mediate neuroendocrine
differentiation of prostate tumor through autophagy induction

Chang et al. (2023)

Prostate cancer LncRNA SNHG4 Enhancement in the cell survival and induction of enzalutamide resistance Dong et al. (2023)

Prostate cancer LncRNA TYMSOS Silencing this lncRNA impairs the growth, division and EMT Xia et al. (2023)

Prostate cancer TPT1-AS1 Autophagy stimulation to enhance survival Chen et al. (2024b)

Prostate cancer CTBP1-AS Suppressing TP63-induced activation of S100A4 Wu et al. (2024)

Prostate cancer A1BG-AS1 Transfer by exosomes and reduction in the prostate cancer progression
through ZC3H13-induced m6A modification

Yang et al. (2024)

Bladder cancer LncRNA BCCE4 Increase in the interaction of PD-L1 and PD-1 Zheng et al. (2023)

Bladder cancer LncRNA AGAP2-AS1 Interaction with IGF2BP2 to enhance tumorigenesis Zhao et al. (2023)

Bladder cancer LncRNA-RP11-498C9.13 Antisense lncRNA-RP11-498C9.13 promotes ROS-induced mitophagy to
enhance tumorigenesis

Song et al. (2023)

Bladder cancer LncRNA PVT1 Generating positive feedback loop with STAT5B to increase carcinogenesis Li et al. (2023b)

Bladder cancer LncRNA XIST miR-129-5p/TNFSF10 control to increase cancer progression Kong et al. (2024)

Bladder cancer LINC00592 Inducing promoter methylation of WIF1 in carcinogenesis Wu et al. (2023b)

Bladder cancer LncRNA MEG Suppressing EMT through Snail downregulation Wang et al. (2024b)

Renal cancer PVT1 Increase in stemness Wang et al. (2023b)
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and genetic landscape of each cancer type to effectively target
autophagy-related pathways in therapeutic settings. Consequently,
more comprehensive studies integrating multi-omics approaches
are needed to elucidate these intricate mechanisms and optimize
therapeutic strategies targeting autophagy in genitourinary cancers.

Without a shadow of a doubt, long noncoding RNAs play a
significant part in the development of several forms of cancer,
including rheumatoid cancer, in terms of the biology that
underlies the disease, the beginning of cancer, and its spread to
distant metastases (Seles et al., 2016). Despite all of the promises and
recent breakthroughs in research on lncRNAs, the functional role of
lncRNAs is still unknown. lncRNAs have the potential to be
connected to a wide variety of physiological and pathological
roles, as was previously demonstrated. Nevertheless, phenotypic
manifestation and the consequences that it has for the person are
of the utmost significance in the end. To research phenotypic
expression, it is necessary to alter lncRNAs in order to
understand the possible implications of these RNAs. This can be
accomplished by a variety of methods, including as the deletion of
the promoter region or the whole gene, the incorporation of a
premature polyadenylation sequence, antisense oligonucleotide
blocking, and other methods (Gutschner et al., 2013; Li and
Chang, 2014).

A comprehensive understanding of the role of long non-coding
RNAs (lncRNAs) in autophagy, particularly in the context of
therapy resistance and urological cancers, necessitates the
integration of multi-omics data. By leveraging genomics,
transcriptomics, and proteomics, researchers can construct a
holistic view of the regulatory networks that underpin the
function of lncRNAs. Genomics data provide insights into the
genetic variants and mutations that may influence lncRNA
expression and function. Identifying single nucleotide
polymorphisms (SNPs) and copy number variations (CNVs)
associated with lncRNA genes can help in understanding their
role in cancer susceptibility and progression. For instance,
genomic studies can reveal mutations that disrupt the regulatory
elements of lncRNAs, thereby affecting their transcription and
subsequent impact on autophagy-related pathways.
Transcriptomics data, obtained through RNA sequencing (RNA-
seq), offer a detailed landscape of lncRNA expression profiles across
different tissues and stages of cancer. This data can identify
differentially expressed lncRNAs that are implicated in
autophagy. Moreover, transcriptomic analyses can elucidate the
co-expression networks between lncRNAs and protein-coding
genes, highlighting potential regulatory interactions that govern
autophagic processes. Proteomics data, derived from mass
spectrometry and other techniques, allow for the quantification
and identification of proteins that interact with lncRNAs. These
protein-lncRNA interactions are crucial for understanding the
mechanistic roles of lncRNAs in autophagy. For example,
proteomics can uncover how lncRNAs modulate the activity of
key autophagy-related proteins such as Beclin-1 and mTOR.
Additionally, proteomic analyses can identify post-translational
modifications of proteins that are regulated by lncRNAs, further
elucidating their functional roles. Integrating these multi-omics data
can reveal the complex regulatory networks involving lncRNAs in
autophagy. For example, combining transcriptomic and proteomic
data can identify lncRNAs that are co-expressed with autophagy-

related genes and their corresponding protein products. Genomic
data can then be used to pinpoint genetic variants that influence
these regulatory networks. This integrated approach can also aid in
the identification of potential biomarkers and therapeutic targets for
overcoming therapy resistance in urological cancers. By
incorporating multi-omics data, researchers can achieve a more
comprehensive understanding of how lncRNAs regulate autophagy,
thereby providing new avenues for therapeutic intervention and the
development of personalized medicine strategies in
urological cancers.

The lncRNAs have emerged as crucial regulators in the
development of therapy resistance in various cancers, including
prostate, bladder, and renal cancers. These lncRNAs can modulate
drug resistance through multiple mechanisms, such as interacting
with miRNAs, affecting gene expression at the transcriptional and
post-transcriptional levels, and altering signaling pathways. For
instance, the lncRNA HOXD-AS1 is upregulated in castration-
resistant prostate cancer (CRPC) and interacts with WDR5 to
promote the expression of genes involved in cell cycle
progression and drug resistance, such as UBE2C, FOXM1,
CDC25C, AURKA, and PLK1. This interaction enhances
chemotherapy resistance and cell proliferation, making HOXD-
AS1 a potential target for overcoming drug resistance in prostate
cancer. Another example is the lncRNA NEAT1, which is
overexpressed in docetaxel-resistant prostate cancer cells.
NEAT1 sponges miR-34a-5p and miR-204-5p, leading to
increased expression of ACSL4, which contributes to docetaxel
resistance. In bladder cancer, lncRNAs also play significant roles
in mediating chemotherapy resistance. The lncRNA TUG1, for
instance, is implicated in cisplatin resistance by sponging miR-
194-5p and promoting EZH2 expression, which in turn affects
cell cycle regulation and apoptosis. Another lncRNA, UCA1,
enhances cisplatin and gemcitabine resistance by activating the
transcription factor CREB and promoting the expression of miR-
196a-5p. In renal cancer, the lncRNA SRLR contributes to sorafenib
resistance by interacting with NF-κB and promoting IL-6
transcription, which activates the STAT3 pathway. Similarly, the
lncRNA ARSR mediates sunitinib resistance by acting as a
competitive endogenous RNA for miR-34 and miR-449, leading
to increased levels of AXL and c-MET, which are associated with
drug resistance. These examples highlight the diverse mechanisms
through which lncRNAs regulate therapy resistance, including
modulation of miRNA activity, gene expression, and signaling
pathways, making them promising targets for developing novel
therapeutic strategies to overcome drug resistance in
cancer treatment.

The dual role of autophagy as both a tumor suppressor and
promoter is indeed complex and context-dependent. Autophagy can
act as a tumor suppressor in the early stages of cancer development
by maintaining cellular homeostasis and preventing the
accumulation of damaged organelles and proteins, which could
lead to genomic instability and oncogenic transformation. In this
phase, autophagy helps eliminate potentially malignant cells and
suppresses tumor initiation. However, in established tumors, cancer
cells can hijack the autophagic process to survive under stressful
conditions such as hypoxia, nutrient deprivation, and therapeutic
interventions. This switch from tumor-suppressive to tumor-
promoting roles of autophagy is influenced by various factors,
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including the tumor type, stage of cancer, and the cellular
microenvironment. Several pathways and mechanisms contribute
to this context-dependent switch. For instance, the mTOR pathway,
a central regulator of cell growth and metabolism, inhibits
autophagy under nutrient-rich conditions, supporting cell growth
and proliferation. Conversely, during nutrient starvation, mTOR
activity decreases, leading to the induction of autophagy, which can
provide metabolic substrates to sustain cancer cell survival and
growth. Additionally, hypoxia-inducible factors (HIFs) activated
under low oxygen conditions can induce autophagy to adapt to
hypoxic stress, thereby promoting tumor progression and resistance
to therapy. The involvement of specific lncRNAs in modulating
these pathways further underscores the intricate regulation of
autophagy in cancer. For example, lncRNA HULC and RHPN1-
AS1 have been shown to regulate autophagy and influence therapy
resistance in prostate cancer through their interactions with mTOR
and EGFR signaling, respectively. Understanding these conditions
and mechanisms is crucial for developing targeted therapeutic
strategies that can modulate autophagy appropriately depending
on the cancer context.

The availability of a number of instances for deletion of lncRNA
in cultured cells and animal models, both with and without
phenotypic alterations, has recently increased. Neat1, for
instance, is a highly abundant long noncoding RNA that is
closely related to MALAT1. It is necessary for the development
of the mammary glands and the corpus luteum, as well as for the
potential of breastfeeding and the creation of pregnancy in mice
(Standaert et al., 2014; Nakagawa et al., 2014). On the other hand,
knocking out MALAT1 does not appear to have any discernible
effects on the pre- and post-natal development of mice (Eißmann
et al., 2012; Peters et al., 2016; Zhang et al., 2012; Nakagawa et al.,
2012). The deletion of HOTAIR results in surviving mice, but it also
causes the spinal vertebrae and metacarpal bones to undergo
metamorphosis. On the other hand, the knockout of Fendrr
(Foxf1 adjacent non-coding developmental regulatory RNA) leads
to embryonic death (Kogure et al., 2013; Sauvageau et al., 2013). Due
to the fact that only a small portion of lncRNAs have been studied up
until this point, it is not yet feasible to reach a definitive conclusion
that explains in full the activities of lncRNAs and their role in
physiological and pathological processes. All of the efforts that are
being made are ultimately being done with the intention of
enhancing the management of cancer in people. To this day, not
a single long noncoding RNA has been included into clinical regular
practice that is based on urological guidelines (Ljungberg et al., 2015;
Babjuk et al., 2013; Hakenberg et al., 2015). However, there are a few
candidates that show great promise for treating various forms of
cancer (Mouraviev et al., 2016; Chang et al., 2016; Parasramka et al.,
2016). In addition, several strategies have been investigated in order
to make use of lncRNAs as possible therapeutic agents in the
treatment of various forms of cancer. tiny interfering RNAs,
ribozymes, aptamers, antisense oligonucleotides, natural antisense
transcripts, and tiny compounds are some examples of the methods
that fall under this category (Mouraviev et al., 2016; Parasramka
et al., 2016). The same may be said for these drugs; they have not yet
been included into the standard clinical oncological practice. The
use of lncRNAs in RCC is still in its infancy in 2016, with just a few
intriguing candidates giving the possibility of application as
biomarkers or novel treatment targets. Before the therapeutic use

of lncRNAs in patients with RCC becomes a reality, there are still a
number of applications and fundamental research investigations
that need to be carried out in order to completely understand the
underlying processes of their activities.

The role of lncRNAs in regulating autophagy and therapy
resistance in urological cancers indeed varies depending on
cancer type, stage, and specific genetic mutations. The
manuscript discusses how lncRNAs like HULC and RHPN1-AS1
influence autophagy and therapy resistance in prostate cancer by
interacting with pathways like mTOR and EGFR signaling. This
indicates that lncRNAs can either promote or inhibit autophagy
based on their interactions with specific pathways, which can vary
depending on the cancer context. For example, HULC promotes
survival and resistance to radiotherapy in prostate cancer by
upregulating Beclin-1 and downregulating mTOR, while RHPN1-
AS1 suppresses autophagy through miR-7-5p sponging and EGFR
activation, highlighting the diverse regulatory roles of lncRNAs in
autophagy depending on the cellular environment and specific
mutations. Additionally, in bladder cancer, lncRNAs like
TUG1 and SNHG1 have been shown to modulate autophagy
through interactions with signaling pathways such as miR-145/
ZEB2 and PP2A catalytic subunit, respectively. The specific
impact of these lncRNAs on autophagy and therapy resistance
can vary depending on the genetic makeup of the cancer cells
and their microenvironment. This context-dependent nature
underscores the need for detailed studies to understand the
precise conditions under which lncRNAs switch roles from
tumor suppression to promotion. Such studies can provide
critical insights into how lncRNAs can be targeted for
therapeutic interventions, offering a pathway to personalized
medicine in treating urological cancers.

The potential of lncRNAs and autophagy-related markers as
diagnostic, prognostic, and therapeutic tools in cancer, particularly
urological cancers, is promising but indeed requires further
validation. As outlined in the manuscript, several lncRNAs, such
as HOTAIR, MEG3, and MALAT1, have shown strong correlations
with cancer progression, metastasis, and resistance to therapies. For
instance, HOTAIR’s involvement in modulating chromatin states
and influencing gene expression linked to cancer aggressiveness has
been extensively documented, suggesting its potential as a
biomarker. However, while preclinical studies and initial clinical
observations support their utility, large-scale clinical trials and real-
world evidence are necessary to establish their efficacy and safety as
clinical biomarkers or therapeutic targets. In particular, the use of
lncRNAs as therapeutic targets has been mostly explored in
preclinical settings, such as in vitro studies and animal models,
demonstrating the feasibility of targeting these molecules to
modulate autophagy and other cancer-related pathways. For
example, the suppression of specific lncRNAs like MALAT1 and
HOTAIR has shown to inhibit tumor growth and metastasis in
animal models. However, translating these findings into effective
clinical interventions requires addressing challenges such as
ensuring the specificity and delivery of lncRNA-targeted
therapies, minimizing off-target effects, and understanding the
complex interactions within the tumor microenvironment. The
development of reliable methods for detecting and quantifying
lncRNAs in clinical samples is also crucial for their application as
biomarkers. Therefore, while the potential clinical applications of
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lncRNAs and autophagy are compelling, rigorous validation
through clinical trials is essential to confirm their utility in
improving cancer diagnosis, prognosis, and treatment.

8 Conclusion

In order to effectively treat prostate cancer, it is necessary to
tailor treatment plans to each individual patient because the
disease process is both lengthy and diverse. The molecular
processes that are responsible for the pathogenesis of prostate
cancer have been gradually revealed as a result of extensive
fundamental medical research that has been carried out over
the course of the past few years (Smolle et al., 2017). Patients
whose condition is resistant to standard anti-hormonal therapy
have seen a significant increase in their life expectancy as a result of
the introduction of innovative anti-androgens into clinical
practice. In the event that certain biomarkers, such as the AR-
V7 splice variation in mCRPC, are identified, the treatment may be
modified accordingly. LncRNAs are engaged in each and every one
of these phases in the growth of the tumor. They could be able to
sustain cellular proliferation and invasion independent of
androgens, enhance the progression toward castration-resistant
states, or preserve androgen-related pathways in the event that
androgens are depleted. Some long noncoding RNAs are already
being employed as diagnostic biomarkers, while others may be
used in the future. Different patterns of lncRNA expression can be
used to make prognostic or predictive statements. As therapeutic
targets, lncRNAs have the potential to improve the effectiveness of
anti-tumor drugs and contribute to the slowing down of the
progression of prostate cancer. The method known as RNAi
can be utilized to control the production of lncRNAs. Within
the framework of this technique, small double-stranded RNAs,
such as siRNA, are utilized to cause a degradation of their target
lncRNA through the RNA-induced silencing complex (RISC)
(Chen et al., 2016c). It is therefore possible to employ the RNA
interference technique to successfully lower the expression levels of
long noncoding RNAs that have the potential to cause tumors.
Antisense oligonucleotides, also known as ASOs, are comprised of
either short single-stranded RNAs or DNAs that are antisense to
their target long noncoding RNA (Lin et al., 2011). This is yet
another approach that may be utilized. Furthermore, the
utilization of small molecules has the potential to, for instance,
make it impossible for HOTAIR to interact with LSD1 and PRC2
(Chandra Gupta and Nandan Tripathi, 2017; Tsai et al., 2011). It
has already been demonstrated that the therapeutic use of the H19-
regulated double-stranded DNA plasmid BC-819 has been
evaluated and found to be effective in patients who have
bladder cancer (Gofrit et al., 2014). The majority of research
that has been conducted on the use of lncRNAs as therapeutic
targets has been conducted on cell cultures or animal models, and
there have been very few studies that have been conducted on
human beings. In addition, the precise role of a great number of
long noncoding RNAs is still unclear. This is due to the fact that

they do not necessarily share a single target or function inside a
cell. Furthermore, depending on the kind of tumor, the same
lncRNA may perform a variety of other activities. As a result,
the utilization of lncRNAs as therapeutic targets may result in
unanticipated side effects or significant adverse responses. In spite
of this, the more complete our understanding of the role of
lncRNAs becomes, the more effective and extensive their
therapeutic applications will be. As a result of current study,
more long noncoding RNAs that are implicated in the etiology
of prostate cancer, as well as their molecular effects and the
possible implications for clinical management, will be discovered.
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Glossary
ncRNAs Non-Coding RNAs

lncRNAs Long Non-Coding RNAs

mRNAs Messenger RNAs

miRNAs MicroRNAs

MVBs Multivesicular Bodies

CRPC Castration-Resistant Prostate Cancer

HIFs Hypoxia-Inducible Factors

EZH2 Enhancer of Zeste Homolog 2

AR Androgen Receptor

EGFR Epidermal Growth Factor Receptor

EMT Epithelial-Mesenchymal Transition

TGFβ1 Transforming Growth Factor Beta 1

mTOR Mechanistic Target of Rapamycin

PTEN Phosphatase and Tensin Homolog

VHL Von Hippel-Lindau

VEGF Vascular Endothelial Growth Factor

PDGF Platelet-Derived Growth Factor

HOTAIR HOX Transcript Antisense RNA

GAS5 Growth Arrest-Specific 5

FOXM1 Forkhead Box M1

SOX2 SRY-Box Transcription Factor 2

HMGA1 High Mobility Group AT-Hook 1

NF-κB Nuclear Factor Kappa B

AXL AXL Receptor Tyrosine Kinase

c-MET Mesenchymal-Epithelial Transition Factor

IL-6 Interleukin 6

STAT3 Signal Transducer and Activator of Transcription 3

UCA1 Urothelial Cancer Associated 1

PCA3 Prostate Cancer Antigen 3

TMPRSS2-
ERG

Transmembrane Protease Serine 2 - Erythroblast Transformation-
Specific Related Gene

SChLAP1 Second Chromosomal Locus Associated with Prostate Cancer 1

PVT1 Plasmacytoma Variant Translocation 1

MALAT1 Metastasis-Associated Lung Adenocarcinoma Transcript 1

HOXD-AS1 HOXD Antisense Growth-Associated Long Non-Coding RNA 1

NEAT1 Nuclear Enriched Abundant Transcript 1

SOX5 SRY-Box Transcription Factor 5

PRC2 Polycomb Repressive Complex 2

MDM2 Mouse Double Minute 2 Homolog

SND1 Staphylococcal Nuclease and Tudor Domain Containing 1

PTX Paclitaxel

RCC Renal Cell Carcinoma

ccRCC Clear Cell Renal Cell Carcinoma

MNT Metanephric Tumor

TUG1 Taurine Upregulated Gene 1

CYP4A22 Cytochrome P450 Family 4 Subfamily A Member 22

GHET1 Gastric Carcinoma High Expressed Transcript 1

BLACAT2 Bladder Cancer Associated Transcript 2

SPRY4-IT1 Sprouty 4 Intronic Transcript 1

LINC00857 Long Intergenic Non-Protein Coding RNA 857

TINCR Terminal Differentiation-Induced Non-Coding RNA
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