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Fibrosis is a public health issue of great concern characterized by the excessive
deposition of extracellular matrix, leading to the destruction of parenchymal
tissue and organ dysfunction that places a heavy burden on the global healthcare
system due to its high incidence, disability, and mortality. Salvianolic acid B (SalB)
has positively affected various human diseases, including fibrosis. In this review,
we concentrate on the anti-fibrotic effects of SalB from a molecular perspective
while providing information on the safety, adverse effects, and drug interactions
of SalB. Additionally, we discuss the innovative SalB formulations, which give
some references for further investigation and therapeutic use of SalB’s anti-
fibrotic qualities. Evenwith the encouraging preclinical data, additional research is
required before relevant clinical trials can be conducted. Therefore, we conclude
with recommendations for future studies. It is hoped that this review will provide
comprehensive new perspectives on future research and product development
related to SalB treatment of fibrosis and promote the efficient development of
this field.
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1 Introduction

Fibrosis is characterized by the destruction of fibrous connective tissue, activation and
proliferation of fibroblasts, elevated collagen fiber secretion, and excessive deposition of
extracellular matrix (ECM) (Zhang and Zhang, 2020). Activation of myofibroblasts, which
produce ECM as effector cells in fibrotic illnesses, is a notable feature of these conditions
(Wynn and Ramalingam, 2012; Walraven and Hinz, 2018). According to reports, the
stimulation and maintenance of the myofibroblast phenotype are dependent on the
transforming growth factor-β (TGF-β)/Smad, wingless/Integrated (Wnt), and yes-
associated protein 1 (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ)
signaling pathways (Figure 1) (Piersma et al., 2015; Ricard-Blum andMiele, 2020). Notably,
excessive deposition of ECM within organs leads to the destruction or replacement of
parenchymal tissue, irreversible scarring, and organ dysfunction or failure, such as heart
failure, chronic renal failure, and chronic pancreatitis (King et al., 2011; Weiskirchen et al.,
2019). Currently, Nidanib and Pirfenidone are the only approved drugs for treating
idiopathic pulmonary fibrosis (IPF). However, they carry the risk of gastrointestinal and
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dermatological adverse reactions and cardiovascular events
(Henderson et al., 2020). Furthermore, there is currently no
specific treatment strategy for other tissue fibrosis (Rosenbloom
et al., 2017). Therefore, it is extremely urgent to investigate efficient
and safe anti-fibrotic therapeutic approaches.

Natural products are uniquely suited to treat fibrotic disorders
because of their high level of safety and precise efficacy (Wang Y.
et al., 2024; Deng et al., 2024; Liu et al., 2024; Xing et al., 2024). It
not only adjusts immune function but also lessens side effects from
other medications, slows the growth of fibrosis, and greatly
improves the quality of life for patients. Danshen, the dried
root of rhizome of Salvia miltiorrhiza Burge, a perennial herb
in the genus Salvia, family Labiatae, was originally recorded in
Shennong Bencao Jing. The main bioactive monomeric component
of the hydrophilic compounds of Danshen is salvianolic acid
B(SalB) (Figure 2A), which is produced through the
condensation of one molecule of caffeic acid and three
molecules of salvianic acid A (Liu et al., 2007). Modern
pharmacological research has found that SalB has anti-oxidant,
anti-apoptotic, anti-inflammatory, and anti-fibrotic effects (Guo
and Wang, 2022; Liu et al., 2023a; Yan et al., 2023; Zhou et al.,
2023). Moreover, it exerts protective effects on various organs and
tissues, such as the heart, liver, kidney, lung, skin, etc. (Figure 2B)
(Cao et al., 2012; Jia et al., 2019). Consequently, it has drawn a lot
of attention. Numerous studies have clarified SalB’s potential
therapeutic effectiveness in a wide range of pathological
conditions, including but not limited to myocardial infarction,
membranous nephropathy, ischemic brain injury, retinal defects,
intervertebral disc degeneration, diabetes mellitus, sepsis, and
various other ailments (Su et al., 2020; Chen et al., 2022a;

Zhang F. X. et al., 2022; Hu et al., 2022; Yan M. et al., 2023;
Wang et al., 2023).

Despite extensive confirmation of SalB’s anti-fibrotic
pharmacological action, no comprehensive literature has been
produced to summarize this effect and related mechanisms.
Therefore, Studies related to the anti-fibrotic effects of SalB
published in the last 23 years were identified through major
scientific databases (PubMed, Web of Science, Embase, Google
Scholar). Additional articles were identified through citation
tracking or by visiting journal websites. Keywords used during
the search included salvianolic acid B, fibrosis, fibrotic disease,
anti-fibrotic effects, pharmacological effects, pharmacological
mechanism, safety, drug interactions, combination therapy, and
new dosage.

2 Anti-fibrotic effect of SalB

2.1 Hepatic fibrosis

Hepatic fibrosis (HF) is a common pathological feature seen in
many etiologies of chronic liver disease and is an intermediate stage
in the disease’s progression (Tacke and Trautwein, 2015). It is
caused by excessive deposition of type I and type III collagen-
rich ECM in the liver, resulting in the formation of fibrous scars.
(Tacke and Trautwein, 2015; Zhao et al., 2016). Inhibiting hepatic
fibrogenesis is crucial for successful prevention and therapymethods
against chronic liver illnesses, as numerous studies have shown the
possibility of reversing liver injury at different stages of fibrosis (Lee
et al., 2015). Pro-fibrotic factors secreted by hepatic stellate cells

FIGURE 1
Schematic overview of pathological process and signaling pathways related to fibrosis. Wingless/Integrated (Wnt), plasminogen activator inhibitor-1
(PAI-1), matrix metalloproteinase (MMP), Yes-associated protein 1 (YAP), transcriptional coactivator with PDZ-binding motif (TAZ), transforming growth
factor-β (TGF-β), mitogen-activated protein kinase (MAPK), the protein kinase (AKT), mechanistic target of rapamycin (mTOR).
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(HSC) aid in the creation of collagen by bone marrow-derived
fibroblasts and myofibroblasts, which in turn contributes to the
development and progression of HF (Trautwein et al., 2015; Zhang
C. Y. et al., 2016). It is imperative to inhibit the proliferation,
activation, and migration of HSC for effective HF prevention
(Higashi et al., 2017).

2.1.1 TGF-β
TGF-β is the most effective cytokine for sustaining HF due to its

pro-fibrotic effects, and it is also an essential inducer of ECM
formation (Tsuchida and Friedman, 2017). SalB has
demonstrated its effectiveness in reducing diethyl nitrosamine-
induced HF via altering the TGF-β/Smad and mitogen-activated
protein kinase (MAPK) signaling pathways (Wu et al., 2019).
Additionally, SalB downregulates the expression of the fibrosis
gene plasminogen activator inhibitor-1 (PAI-1) and enhances
protein levels of α-smooth muscle actin (α-SMA) and collagen
type I (CoI), both indicative markers associated with HF.
Furthermore, enhancer factor 2 (EF2) acts as a downstream
effector within the TGF-β1 pathway and plays an essential role
in HSC activation and the progression of fibrosis. Zhang et al. found
that SalB exerts an anti-fibrotic effect by antagonizing TGF-β1-
induced activation of myocyte enhancer factor 2 (MEF2) at protein
and RNA levels (Zhang et al., 2019). Additionally, TGF-β1 promotes
fibrosis by enhancing autophagic flux through increasing cellular
autophagosomes, thus reducing the level of autophagy in fibrotic
tissues, which may be a potential target for anti-fibrotic therapy
(Weiskirchen and Tacke, 2019; Ye et al., 2020). Potent anti-fibrotic

agent SalB suppressed autophagosome formation and autophagic
flux in HSC by down-regulating the extracellular regulated protein
kinases (ERK), c-Jun N-terminal kinase (JNK), and p38-MAPK
pathways, leading to decreased expression of light chain 3β II,
autophagy-related gene 5 (Atg5), α-SMA, and CoI (Jiang et al.,
2022). To sum up, SalB might be a useful and potent TGF-β
antagonist to postpone the development of HF.

2.1.2 PDGF
Platelet-derived growth factor (PDGF) is a significant pathway

to promote HF (Roehlen et al., 2020). Fibroblasts produce PDGF in
response to stimulation, which causes active fibroblasts to develop
into myofibroblasts, which express the PDGF receptor (PDGFR).
The activation of the PDGF/PDGFR pathway drives the
proliferation and migration of HSC and promotes ECM
deposition, all of which advance the course of fibrosis
(Klinkhammer et al., 2018). Liu et al. employed molecular
docking and ion resonance biosensors to illustrate the strong
binding affinity between PDGFR-β and SalB, and SalB relieves
HF by inhibiting the PDGFR-β signaling pathway and inducing
HSC apoptosis, and inflammatory reaction of HSC (Liu et al.,
2023b). This suggests that Sal B exerts anti-fibrotic effects by
directly targeting the PDGFRβ signaling cascade.

2.1.3 Hedgehog
The hedgehog (Hh) pathway is thought to be connected with the

level of fibrosis and has the capacity to activate HSC (Choi et al.,
2009; Bar-Gal et al., 2012). Epithelial-mesenchymal transition

FIGURE 2
Plant morphology and medical part-dry root of Danshen and the chemical structure (2D and 3D) of SalB (A); SalB is effective for numerous fibrosis
diseases (B).
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(EMT) is a key process in which epithelial cells undergo phenotypic
changes from an epithelial state to a mesenchymal state (Zhao et al.,
2016). SalB effectively suppresses EMT in activated HSC by inducing
microRNA (miR)-152 via the Hh signaling pathway, which in turn
causes methyltransferase1 to be downregulated and Patched1 to be
demethylated (Yu et al., 2015). Furthermore, the importance of EMT
stimulated by Hh in the pathophysiology of HF has been shown in
an increasing number of studies (Song et al., 2019; Zhang
et al., 2022).

2.1.4 Wnt
HF is dependent on the Wnt signaling system, which coordinates

complex cell signaling networks, promotes HSC proliferative
activation, and interacts cooperatively with other pro-fibrotic
factors (Wang J. N. et al., 2018; Wang et al., 2024). Yu et al.
discovered that SalB inhibited the Wnt/β-catenin signaling
pathway, downregulated the production of miR-17-5p, and
reduced the expression of α-SMA and ECM to limit the activation
of HSC (Yu et al., 2016). Moreover, the specific mechanism of HF
delay following SalB treatment is due to upregulated LincRNA-p21’s
inhibition of HSC proliferation through the Wnt/β-catenin pathway
(Yu et al., 2017). These findings identify theWnt signaling pathway as
potentially important for therapeutic targets in HF.

2.1.5 NF-κB
The inflammatory response is mostly regulated by nuclear

factor-κ-gene binding (NF-κB), a transcriptional regulator that is
activated in chronic liver disorders and that promotes the
production and secretion of pro-inflammatory cytokines (Karin
and Ben-Neriah, 2000). Furthermore, the main ways that NF-κB
contributes to HF are through controlling hepatocellular damage,
altering inflammatory signaling pathways, and controlling fibrotic
responses in HSC (Luedde and Schwabe, 2011). Wang et al.‘s study
showed that SalB attenuated HF in mice by inhibiting the
proliferation and activation of HSC by regulating the miR-6499-
3p/LncRNA-ROR-mediated NF-κB signaling pathway (Wang et al.,
2022). Additionally, SalB exhibited a dose-dependent reduction in
the activation of nucleolus NF-κB, accompanied by an increase in
cytoplasmic NF-κB levels (Wang et al., 2012). Thus, the regulation of
the NF-κB pathway is one of the effective pathways of anti-HF
(Basso et al., 2021; Ciceu et al., 2021).

2.1.6 FGF
The fibroblast growth factor (FGF) family is involved in cellular

proliferation and differentiation, angiogenesis, wound healing, and
tissue regeneration (Degirolamo et al., 2016). FGF19 is an endocrine
gastrointestinal hormone that regulates the metabolism of bile acids
and possesses anti-fibrotic properties (Hirschfield et al., 2019).
Several studies have reported that the FGF19/FGF Receptor4
(FGFR4) signaling pathway exerts an anti-fibrotic effect primarily
through the inhibition of proliferative activation in HSC (Zhou et al.,
2017; Gadaleta et al., 2018; Hirschfield et al., 2019). SalB exhibits the
ability to upregulate the FGF19/FGFR4 pathway, which was
disrupted by lipopolysaccharide (LPS) treatment, with the result
that HSC activation and proliferation are inhibited (Tian et al.,
2021). Given these functions, the endocrine FGF has therapeutic
potential for inhibiting HSC.

2.1.7 UGCG
The development of HF is closely associated with the

overexpression of UDP-glucose ceramide glucosyltransferase
(UGCG) in several chronic liver illnesses (Li et al., 2021). SalB
considerably inhibits the progression of HF by inhibiting collagen
deposition and HSC activation (Li et al., 2023). This is accomplished
by the inhibition of UGCG by SalB, the additional reduction of
immune cell infiltration brought on by carbon tetrachloride, the
downregulation of α-SMA and CoI, and the suppression of
phosphorylated histone, a hallmark of hepatic DNA damage.

Based on the above studies, we can find that SalB exhibits anti-
HF properties by impeding HSC proliferation and activation as well
as suppressing collagen accumulation through diverse mechanisms,
including TGF, Wnt, PDGF, Hh, etc. (Figure 3). Since HF is a result
of multiple variables, even though the role of HSC in HF progression
is obvious, is SalB useful in treating other pathogenic factors?
Furthermore, all of the latest research confirms the efficacy of
SalB on a single target in the HF process; more investigation is
required to determine how several pathways interact.

2.2 Pulmonary fibrosis

Pulmonary fibrosis (PF) is an aberrant ECM deposition and
excessive fibroblast accumulation that causes a chronic, progressive
alveolar illness (Strieter and Mehrad, 2009). Lung epithelial cells are
damaged under the influence of various stimuli, which trigger
activation of the fibrotic pathway and subsequent collagen
deposition. Consequently, excessive mesenchymal stromal cells
and ECM replace normal lung tissue, leading to the structural
destruction of the alveoli, dyspnea as a result of diminished lung
compliance, and ultimately respiratory failure or death (Glass et al.,
2020; Wu et al., 2021; Lu et al., 2022).

2.2.1 TGF-β
TGF-β is the most potent pro-fibrotic mediator, inducing

ECM, EMT, and pro-fibrotic mediators’ production by
promoting the binding of Smad2/3 to Smad4, and driving
myofibroblast differentiation to promote the PF process (Hu
et al., 2018; Kramer and Clancy, 2018). Research has
elucidated that patients with PF can exhibit elevated
expression of TGF-β in their fibroblasts and airway epithelium
(Xu et al., 2016). TGF-β, which plays a vital role in the
development of PF, can stimulate airway smooth muscle
hyperresponsiveness, goblet cell hyperplasia, and increased
mucin secretion through Smad signaling (Ouyang et al., 2010;
Ojiaku et al., 2018). Liu et al. interfered with the bleomycin
(BLM)-induced PF model with SalB. The mechanism of SalB in
relieving PF involves inhibiting the TGF-β pathway, including
alleviating inflammatory injury, reducing disruption of alveolar
architecture and collagen deposition, and inhibiting
myofibroblast differentiation and EMT (Liu et al., 2016). SalB
is a key subtype of TGF-β1 that serves an essential part in PF
pathogenesis. It can attenuate CoI, α-SMA, and endogenous
TGF-β1 production and inflammatory processes while
inhibiting TGF-β1-induced proliferation, differentiation, and
fibroblast-to-myofibroblast transformation in PF (Zhang et al.,
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2014; Jiang et al., 2020). Thus, targeting the TGF-β signaling
pathway has emerged as an efficient therapeutic strategy for PF.

2.2.2 PAR1
Protease-activated receptor 1 (PAR1) promotion of PF is

attributed to various pathways that promote mitosis and
angiogenesis, modulate pulmonary vascular permeability, and
stimulate fibroblast migration (Kaneider et al., 2007; Tressel
et al., 2011). By down-regulating PAR1, SalB inhibits coagulation
factors, activates the fibrinolytic system, dissolves excessive fibrin
deposition, preserves the structural integrity of pulmonary tissues,
and suppresses fibrous tissue proliferation (Zhang et al., 2021).
Therefore, PAR1 may be a promising target for the prevention
and treatment of PF.

2.2.3 Nrf2
Compared to other organs, the lung is exposed to higher oxygen

tension and is the main organ in direct contact with inhaled oxidants.

When fibrotic lesions appear in lung tissue, the body’s antioxidants may
not be sufficient to counteract the significant amounts of oxidants that
result from an imbalance between oxidation and anti-oxidation (Amara
et al., 2010; Gao et al., 2024). In the meantime, the activated
inflammatory factors trigger the production of substantial quantities
of pro-fibrotic cytokines, which exacerbate oxidative stress in
pulmonary tissue and intensify fibrosis (Obayashi et al., 2000;
Kliment and Oury, 2010). SalB decreases malondialdehyde (MDA),
myeloperoxidase, and reactive oxygen species (ROS) levels and
increases superoxide dismutase activity, moreover, it inhibits
inflammatory factors and activates the nuclear factor erythroid 2-
related factor 2 (Nrf2) pathway to suppress myofibroblast
transdifferentiating (Liu et al., 2018; Lu et al., 2022). Furthermore,
SalB attenuated alveolar wall congestion, inflammatory cell infiltration,
and emphysema in PF rat lung tissues while exerting notable anti-
fibrotic effects. The results showed that Nrf2 was absent in PF areas,
while the SalB treatment could increase the expression of Nrf2 in
lung tissues.

FIGURE 3
The effect of SalB on the hepatic fibrosis. Transforming growth factor-β (TGF-β), microtubule-associated protein light chain 3 (LC3), autophagy-
related gene 5 (Atg5), myocyte enhancer factor 2 (MEF2), α-smooth muscle actin (α-SMA), collagen type I (CoI), plasminogen activator inhibitor-1 (PAI-1),
mitogen-activated protein kinase (MAPK), extracellular regulated protein kinases (ERK), c-Jun N-terminal kinase (JNK), platelet-derived growth factor
receptor-β (PDGFR-β), platelet-derived growth factor subunit B (PDGF-BB), interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor α (TNF-
α), microRNA (miR), wingless/Integrated (Wnt), nuclear factor-κ-gene binding (NF-κB), inhibitor of nuclear factor-κBα (IκBα), inhibiting kappa B kinase α
(IκKα), hyaluronic acid (HA), laminin (LN), procollagen III peptide (PIIIP), fibroblast growth factor receptor 4 (FGFR4), fibroblast growth factor 19 (FGF19),
UDP-glucose ceramide glucosyltransferase (UGCG), phosphorylation of Histone H2A Family Member X (γH2AX).
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2.2.4 MAPK and NF-κB
Chronic inflammation is a feature of PF, which is closely

associated with tissue damage resulting from the fibrotic response
(Paola et al., 2011). Increased microvascular permeability brought on
by ROS causes inflammatory cells to migrate and exacerbates the
inflammatory process (Hecquet and Malik, 2009). MAPK and NF-κB
are involved in chronic inflammation and oxidative stress-induced
hyperpermeability of endothelial cells. BLM encourages the release of
ROS, enhances endothelial cell permeability, and mediates apoptosis.
Subsequent investigations have shown that SalB protects endothelial
cells from oxidative stress injury by up-regulating the expression of
the tight junction gene, reducing the permeability of injured
endothelial cells, and counteracting the increase in ROS caused by
BLM through the MAPK and NF-κB signaling pathways (Liu et al.,
2018). SalB exhibits multiple features of anti-oxidant, inflammation
inhibition, and immune modulation, which are indispensable for the
treatment of PF (Ho and Hong, 2011).

In summary, one of S. miltiorrhiza’s most physiologically active
ingredients, SalB, modulates TGF-β, PAR1, and oxidative stress to
produce anti-fibrotic actions (Figure 4). But PF is a complex process
that leads to the loss of structural lung tissue. EMT and circulating
fibroblasts play a major role in controlling fibrosis, and their
biological characteristics will be important to take into account
when developing new treatment targets in the future to slow the
progression of PF through SalB.

2.3 Cardiac fibrosis

Cardiac fibrosis (CF) is cardiac interstitial remodeling caused by
excessive proliferative activation of fibroblasts and excessive
deposition of secreted collagen matrix (Yang et al., 2024).
Regardless of ejection fraction, CF is an essential event in the
transition of cardiac function from compensatory to

FIGURE 4
The effect of SalB on the pulmonary fibrosis. Transforming growth factor-β (TGF-β), mitogen-activated protein kinase (MAPK), extracellular
regulated protein kinases (ERK), c-Jun N-terminal kinase (JNK), collagen type I (CoI), collagen type III (CoIII), connective tissue growth factor (CTGF),
plasminogen activator inhibitor-1 (PAI-1), α-smooth muscle actin (α-SMA), tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), protease-activated
receptor 1 (PAR1), phospho-protein kinase C (p-PKC), tissue factor (TF)/coagulation factor VII (TF-VIIa), activated coagulation factor X (FXa),
thrombin-antithrombin complex (TAT), fibrinogen degradation product (FDP), urokinase type plasminogen activator (u-PA), tissue type plasminogen
activator (t-PA), coagulation factor II (FII), coagulation factor X (FX), nuclear factor erythroid 2-related factor 2 (Nrf2), glutathione (GSH), reactive oxygen
species (ROS), malondialdehyde (MDA), mitogen-activated protein kinase (MAPK), nuclear factor-κ-gene binding (NF-κB), occludin (OCLN), recombinant
junctional adhesion molecule 3 (JAM3), 8-Hydroxy-2′-deoxyguanine (8-OHDG), interleukin-6 (IL-6), matrix metalloproteinase-9 (MMP-9).
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decompensated period and represents one of the significant factors
contributing to mortality in patients with heart failure (Kanagala
et al., 2019). The formation of this phenomenon is closely associated
with the dysregulation of NF-κB, matrix metalloproteinase (MMP),
fibronectin (FN), α-SMA, and connective tissue growth factor
(CTGF), as well as the modulation of the renin-angiotensin-
aldosterone system (RAAS) (Oatmen et al., 2020).

2.3.1 NF-κB
NF-κB can participate in the occurrence and development of

pathological cardiac remodeling by regulating the synthesis and
release of ECM, cytokines, and chemokines (Wei et al., 2013;
Zhang et al., 2016). Increasing evidence substantiates that NF-κB
regulates the expression of vital genes in CF by intricate positive
and negative feedback mechanisms, facilitating myofibroblast
differentiation and promoting the fibrotic process (Li et al.,
2020; Gong et al., 2021). Abnormal proliferation and
differentiation of cardiac fibroblasts (CFB) can promote CF,
and SalB inhibits Ang II-induced CFB activation and
proliferation, as well as the fibrotic process by suppressing the
expression of NF-κB and pro-fibrotic factors and ECM
accumulation (Fan and Guan, 2016; Wang et al., 2018). More
importantly, SalB also exhibits cardioprotective effects by
protecting against LPS-induced cardiomyocyte injury through
the Toll-like receptor 4 (TLR4)/NF-κB/Tumor Necrosis Factor α
(TNF-α) pathway (Wang et al., 2011). In general, CF prevention
and treatment techniques place a high priority on inhibiting the
NF-κB signaling pathway via SalB’s effects (Wei et al., 2013).

2.3.2 TRIM8
The tripartite motif-containing protein (TRIM) family has been

acknowledged as an indispensable regulator in the process of
myocardial injury (Yin et al., 2016). Studies have shown that
heart tissue with strong TRIM32 expression further controls
cystic fibrosis (Chen et al., 2016). Additionally, TRIM72 has been
found to decrease fibroblast proliferation to promote fibrosis, while
the knockdown of TRIM8 has been clarified to reduce myocardial
ischemia-reperfusion injury (Zhao and Lei, 2016; Dang et al., 2020).
By down-regulating TRIM8 expression, SalB effectively prevents
oxygen radical generation and cardiomyocyte apoptosis via the
TRIM8/recombinant glutathione peroxidase 1 (GPX1) signaling
pathway both in vivo and in vitro (Lu et al., 2022). This
elucidates a potential mechanism underlying SalB-mediated
myocardial protection.

2.3.3 MMP-9
The MMP-9 maintains the dynamic microenvironmental

homeostasis of the ECM, involving collagen degradation
associated with cardiovascular remodeling (Qin et al., 2010;
Radosinska et al., 2017). In the context of myocardial infarction,
MMP-9 prevents angiogenesis and exacerbates CF(Wang et al.,
2021). During ventricular remodeling, MMP-9 activation
upregulates fibrotic signaling and facilitates CF (Frangogiannis
et al., 2002). SalB suppresses MMP-9 activity, diminishes the
ratio of CoI/III, enhances cardiac contractility, and mitigates
fibrosis (Jiang et al., 2010; Nandi et al., 2020). It is a competitive
inhibitor of MMP-9 that guards against structural damage to the
ventricles.

2.3.4 AMPK
Adenosine monophosphate-regulated protein kinase (AMPK), a

receptor of cellular energy status expressed in cardiomyocytes, is an
essential part of CF (Harada et al., 2015). Research has illustrated
that promoting the AMPK cascade can prevent cardiac hypertrophy,
repair cardiac function, and impede the progression of fibrosis (Yun
et al., 2014; Samanta et al., 2020). Ang II can stimulate collagen
production and secretion, as well as fibroblast proliferation (Leask,
2015). SalB attenuates Ang II-induced ECM deposition via the
forkhead box protein O1/miR-148a-3p axis and significantly
reduces the levels of CoIA1, CoIII A1, α-SMA, CTGF, and ROS
(Liu et al., 2023). By encouraging AMPK phosphorylation, SalB may
counteract Ang II’s pro-fibrotic action on CF.

2.3.5 IGFBP3
Insulin-like growth factor binding protein 3 (IGFBP3) has been

evaluated to regulate cellular proliferation and migration and
decrease activation of cardiac fibroblasts through epigenetic
mechanisms (Ding et al., 2023). Besides, IGFBP3 miRNA and
protein levels increase in CF. SalB inhibits the expression of
IGFBP3, triggering the vascular endothelial growth factor
receptor 2 (VEGFR2)/vascular endothelial growth factor A
(VEGFA) pathway to enhance ventricular remodeling,
angiogenesis, and collagen deposition linked to hyperglycemia,
ultimately protecting cardiac function (Li et al., 2020).

Natural products have multitargeted actions that show promise
in treating CF. SalB has the potential to serve as a complementary
therapeutic agent for CF and exert an anti-fibrotic effect by
modulating the formation of these substances (Figure 5). Even
though their therapeutic effects have been demonstrated to be
significant, the mechanisms of action are still unclear. Therefore,
more research is required to understand the unique pathophysiology
of CF and the synergistic process of SalB’s multi-point adjustments.

2.4 Renal fibrosis

Fibrous scar tissue generated by renal fibrosis (RF) replaces
functional tissue, which impairs the regenerative ability of the
kidneys and deteriorates renal function and tissue structure (Liu
et al., 2018; Lin et al., 2023). RF is a prevalent feature observed in
renal injury and the decline of renal function caused by various
etiologies, serving as a common pathway for the progression of
diverse chronic kidney diseases (Boor and Floege, 2012; Kramann
et al., 2013). To avoid or delay the onset of chronic renal disease
and improve the prognosis, it is imperative to target
and block RF.

2.4.1 TGF-β
TGF-β directly affects intrinsic renal cells, promoting cellular

proliferation and triggering podocyte clearance and apoptosis of
RTEC (López-Hernández and López-Novoa, 2012; Meng et al.,
2015). Wang et al. found that SalB alleviated tubular fibrosis by
inhibiting Smad2/3 phosphorylation as well as MMP-2 and MMP-
9 activity via TGF-β1/Smad (Wang et al., 2010). SalB reverses
TGF-β1-induced EMT, suppresses α-SMA expression, and
facilitates the restoration of tubular epithelial structure to
mitigate RF in vitro (Pan et al., 2011). A direct target of miRs
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is the TGF-β type II receptor, which regulates TGF-β signaling.
SalB therapy increases miR-106b expression and inhibits TGF-β
type II receptor expression to reduce TGF-β1-induced EMT (Tang
et al., 2014). Despite the current dearth of efficacious medications
for the treatment of RF, above numerous studies have manifested
that targeting the TGF-β cascade represents an efficacious
therapeutic approach for this condition.

2.4.2 HPSE
Heparinase (HPSE) is an endonucleating β-D-glucuronidase

that interacts with TGF-β to modulate the remodeling and
degradation of the ECM, and the release of various cytokines
(Ilan et al., 2006; Masola et al., 2014). The HPSE protein is
expressed in RTEC and actively participates in the TGF-β-
induced EMT in renal tubular cells (Masola et al., 2015). The
integrity of the filtration barrier and the operation of glomerular
filtration depends on this regulating mechanism (Masola et al., 2012;
Rabelink et al., 2017). Tubular epithelial fibroblast
transdifferentiation (TEMT) has been proposed as a viable
therapeutic option to decrease RF since it stimulates the

expression of several fibro-cytokines, which represent a critical
mechanism in the development of RF (Li et al., 2004; Liu, 2010).
SalB mitigates TEMT and has renal protective effects by down-
regulating the expression of FGF2/TGF-β1/α-SMA via the HPSE/
Syndecan-l axis (Hu et al., 2020).

2.4.3 PDGF
PDGF is a profibrotic mediator that induces fibroblast activation

and proliferation and promotes ECM contraction (Bonner, 2004).
Numerous pro-fibrotic mediators, such as TGF-β, TNF-α, and FGF,
exhibit PDGF-associated pro-fibrotic activity (Chaudhary et al.,
2007). At locations where renal interstitial fibrosis occurs, there is
an upregulation of PDGF-C expression, which stimulates PDGFRα
to further the fibrotic process (Eitner et al., 2008; Folestad et al.,
2018; Li et al., 2021). The efficacy of SalB in reducing renal
inflammation and CTGF production, improving renal function,
and inhibiting the progression of RF through the PDGF-C/
PDGFRα pathway has been well-documented (Yao et al., 2022).
In consequence, targeting PDGF with SalB presents a promising and
effective new strategy for treating RF.

FIGURE 5
The effect of SalB on the cardiac fibrosis. Toll-like receptor 4 (TLR4), nuclear factor-κ-gene binding (NF-κB), tumor necrosis factor α (TNF-α),
connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), collagen type I (CoI), fibronectin (FN), tripartite motif 8 (TRIM8), glutathione
peroxidase 1 (GPX1), superoxide dismutase (SOD), reactive oxygen species (ROS), malondialdehyde (MDA), matrixmetalloproteinase-9 (MMP-9), collagen
type III (CoIII), adenosinemonophosphate-regulated protein kinase (AMPK), forkhead box protein 1 (FoxO1), connective tissue growth factor (CTGF),
insulin-like growth factor binding protein 3 (IGFBP3), vascular endothelial growth factor A (VEGFA), vascular endothelial growth factor receptor 2
(VEGFR2), extracellular matrix (ECM).
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2.4.4 PTEN/AKT
Phosphatase Tensin Homolog (PTEN) dephosphorylates

protein kinase B (AKT), which inhibits pro-fibrotic signaling
pathways and epithelial cell transdifferentiating; furthermore, RF
is attenuated through the activation of AKT (Lan and Du, 2015; An
et al., 2022). The administration of SalB has been shown to enhance
renal function and prevent fibrosis by inhibiting Zeste gene
enhancer homolog-2 (EZH2) and H3 lysine 27 trimethylation
and down-regulating FN and α-SMA expression through the
PTEN/AKT pathway (Lin et al., 2023).

2.4.5 NLRP3
Nucleotide-binding oligomerization domain-like pyrin domain-

containing protein 3 (NLRP3) is becoming increasingly implicated
in the regulation of RF, as evidenced by the significant upregulation
of its expression in renal fibrotic tissue (Ke et al., 2018; Wu et al.,
2018; Mulay, 2019; Zhang and Wang, 2019). Moreover,
NLRP3 influences RTEC apoptosis through mitochondrial
connections in addition to promoting the advancement of the
disease by inducing an inflammatory reaction (Qi and Yang,
2018). The effect of enhancing RTEC viability and mitigating
cellular damage and apoptosis of SalB by modulating the TLR4/
NF-κB/NLRP3 pathway to increase mitochondrial membrane
potential levels (Zhang and Wang, 2019). Further, activation of
the NLRP3 cascade promotes RF through RTEC pyroptosis (Hutton
et al., 2016; Miao et al., 2019). To lessen renal injury, SalB enhances
the nuclear accumulation of Nrf2 and suppresses NLRP3 activation,
oxidative stress, and Caspase-1/Gasdermin D-mediated cellular
pyroptosis via the Nrf2/NLRP3 pathway (Pang et al., 2020).
According to the information above, SalB suppression of
NLRP3 regulates RF and may be a useful target for treating RF.

2.4.6 PI3K/AKT and Sirtuin1
The autophagy-lysosomal pathway is responsible for

maintaining the metabolic balance of the ECM by sequestering
FN within the cytosol and activating lysosomes for degradation in
fibrosis (Guo et al., 2020). Autophagy stimulation can decrease
synthesis, accelerate ECM degradation, and alleviate RF (Guo
et al., 2020). SalB controls the important autophagy-mediating
factor miR-145-5p to safeguard renal function. The mechanism is
activating cellular autophagy, reducing cell proliferation,
inflammation, and immune deposition via the
phosphatidylinositol-3-kinase (PI3K)/AKT pathway (Chen et al.,
2022a). SalB can also ameliorate autophagy and upregulate Sirtuin1,
which can both lessen renal pathological damage and improve renal
insufficiency (Pan et al., 2011; He et al., 2020). Additionally, it
inhibits the expression of fibrogenic factors. Consequently, SalB as
an autophagy mediator can protect renal function and ameliorate
RF injury.

2.4.7 Apoptosis
While the suppression of apoptosis ameliorates renal interstitial

fibrotic lesions, the degree of apoptosis of RTEC corresponds with
the grade of fibrosis, the index of renal interstitial damage, and the
degree of renal function impairment (Docherty et al., 2006; Teteris
et al., 2007). SalB therapy reduced ROS levels and lessened cellular
damage brought on by endoplasmic reticulum stress (ERS)
activation. It also suppressed the production of proteins linked to

apoptosis, such as p-JNK, C/EBP homologous protein, and BCL2-
associated X/B-cell lymphoma-2 (Dong et al., 2021). Intracellular
free fatty acid-mediated lipotoxicity induces apoptosis in RTEC and
contributes to fibrosis. This lipotoxicity is attenuated by SalB, which
reduces apoptosis and tubular injury by inhibiting the activation of
ERS and apoptotic markers (Mai et al., 2020).

SalB affects the fibrosis of renal tubular epithelial cells (RTEC)
by inhibiting various cytokines (PTEN, Ang II, TGF-β, EZH2, NF-
κB, PDGF-C, CTGF) and pathways (cellular pyroptosis, autophagy,
and apoptosis) (Figure 6). However, the pathophysiology of renal
fibrosis is still poorly known, and renal fibrosis involves the dynamic
process of various renal cells and inflammatory cells. Clinical
research is lacking from the small number of cellular and animal
tests that have been done so far, and several of the signaling
pathways remain unclear.

2.5 Skin fibrosis

Hypertrophic scar is a prevalent yet inadequately resolved
fibrotic dermatological condition, presenting as elevated,
erythematous, indurated, and non-elastic plaques (Finnerty et al.,
2016). They are among the most common side effects that arise
when cutaneous damage heals. Targeting its downstream effector
CD36, the SalB intervention lowers reticular fibroblast numbers and
fibrogenic factors, which in turn inhibit cell proliferation and the
production of skin scars (Griffin et al., 2021).

The pathogenesis of systemic sclerosis (SSc) is associated with
endothelial damage, fibroproliferative vasculopathy, and fibroblast
dysfunction (Taflinski et al., 2014; Garrett et al., 2017). TGF-β is a
highly potent inducer of cell proliferation and collagen synthesis
(Kim et al., 2015). SalB decreases skin thickness and collagen
deposition by regulating the TGF-β/Smad and MAPK/ERK
pathways, while down-regulating levels of CTGF, FN1, PAI-1,
and α-SMA (Liu et al., 2019).

2.6 Epidural fibrosis

Epidural fibrosis (EF) is formed by excessive deposition of
scar tissue in the epidural space following lumbar laminectomy
(Zhang et al., 2013). Postoperative back and lower extremity pain
is caused by the proliferation and adherence of scar tissue to the
dura mater, as well as fibrosis around and enclosing the nerve
roots (Fritsch et al., 1996; Ross et al., 1996). EF is therefore one of
the main causes of the syndrome known as “failed lumbar spine
surgery.” Inhibition of vascular regeneration and over-
proliferation of fibroblasts is a promising strategy for reducing
EF (Zhang et al., 2015). SalB inhibits the angiogenic factor VEGF,
which mitigates fibroblast proliferation and blood vessel
infiltration, reduces tissue adhesion, and prevents epidural
scarring (Chen et al., 2016).

2.7 Frozen shoulder

Current treatments for arthrofibrosis are limited in terms of
efficacy and diversity (Blessing et al., 2019). Fibro-proliferative tissue
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fibrosis is regarded as the primary pathological process underlying
frozen shoulder (FS) (Challoumas et al., 2020). SalB has been found
to have anti-inflammatory and anti-fibrotic effects in the treatment
of FS. SalB inhibits the CD36-mediated PI3K/AKT pathway,
downregulates the expression of fibrosis-associated molecules
such as CoI, CoⅢ, FN, and α-SMA, and blocks the pathologic
fibrotic process in vitro and in vivo (Yan et al., 2023).

2.8 Retinal fibrosis

Retinal fibrosis is a vascularized disease with excessive
deposition of large numbers of immune cells, myofibroblasts, and
ECM (Little et al., 2018; Tenbrock et al., 2022). A sustained low-
grade inflammatory response drives the formation of fibrosis-
associated lesions, facilitating the release of pro-fibrotic factors

and the deposition of fibrotic tissue. In addition, pro-angiogenic
astrocytes and microglia also contribute to the development of
fibrotic lesions by producing VEGF and FN (Uemura et al.,
2006). SalB attenuated the activation and proliferation of retinal
microglia and astrocytes induced by amyloid β-protein deposition,
along with the release of inflammatory factors through the β-
Secretase one pathway (Wang et al., 2023). This increased dark-
adapted and light-adapted amplitudes in mice restored the structure
and function of the retina, and was associated with the reduction of
ganglion cell apoptosis, attenuation of neuronal damage caused by
oxidative stress, and restoration of mitochondrial function (Tian
et al., 2008; He et al., 2018). According to other research, SalB
protects retinal pigment epithelial cells from oxidative stress damage
and H2O2-induced apoptosis while also restoring cell viability (Liu
et al., 2016). These effects are mainly attributed to the
activation of Nrf2.

FIGURE 6
The effect of SalB on the renal fibrosis. Transforming growth factor-β (TGF-β), matrix metalloproteinase-9 (MMP-9), matrix metalloproteinase-2
(MMP-2), α-smooth muscle actin (α-SMA), heparinase (HPSe), syndecan-1(SDC1), fibroblast growth factor2 (FGF 2), platelet-derived growth factor
receptor α (PDGFR-α), platelet-derived growth factor C (PDGF-C), connective tissue growth factor (CTGF), C/EBP homologous protein (CHOP), glucose
regulated protein 78 (GRP78), phosphatase tensin homolog (PTEN), protein kinase B (AKT), enhancer of zeste homolog-2 (E2H2), histone H3 lysine
27 (H3K27), fibronectin (FN), toll-like receptor 4 (TLR4), nuclear factor-κ-gene binding (NF-κB), nucleotide-binding oligomerization domain-like pyrin
domain containing protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), bcl-2 assaciated x protein (Bax), b-cell
lymphoma-2 (Bcl2), interleukin-18 (IL-18), interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), nuclear factor erythroid 2-related factor 2 (Nrf2),
gasdermin D (GSDMD), hioredoxin-interacting protein (TXNIP), phosphatidylinositol 3-kinase (PI3K), interleukin-2 (IL-2), interleukin-6 (IL-6),
microtubule-associated protein light chain 3B (LC3B).
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2.9 Pancreatic fibrosis

Pancreatic fibrosis is a prominent morphological alteration
observed in chronic pancreatitis, which is a multifaceted
pathological process driven by the activation of pancreatic stellate
cells (PSC) and distinguished by enhanced fibroblast proliferation
and deposition of ECM (Singh et al., 2019; Beyer et al., 2020).
Therefore, impeding the activation and proliferation of PSC is
considered an approach for anti-pancreatic fibrosis therapy. SalB
attenuates fibrotic damage, inhibits PSC activation and proliferation,
and lowers the concentration of MDA in pancreatic tissues, all of
which mitigate pathological harm (Lu et al., 2009).

2.10 Oral submucous fibrosis

Oral submucous fibrosis (OSF) is a chronic inflammatory
disease identified by aberrant collagen deposition and progressive
fibrosis of the subepithelial connective tissue in the oral submucosa

(Utsunomiya et al., 2005). OSF is also a disorder of collagen
metabolism caused by a disturbed balance of ECM synthesis and
degradation. SalB inhibits the transcription of pro-collagen genes
CoI and CoⅢ, and the expression of CTGF, IL-1β, and IL-6 by
modulating the AKT, MAPK/ERK, and TGF-β/Smad signaling
pathways (Dai et al., 2015a). It has notable anti-fibrotic action
and decreases collagen deposition as well.

The abovementioned studies validate the great potential of SalB
in fibrosis of skin, pancreas, oral mucosa, and other tissues
(Figure 7). However, further research is required to fully
understand the role of SalB in these tissues to produce relevant
and appropriate data for therapeutic trials and the interpretation
of findings.

3 Safety and adverse effects

SalB has many biological benefits, such as anti-inflammatory,
anti-oxidant, anti-fibrotic, and enhanced perfusion. It is extensively

FIGURE 7
The effects of SalB on fibrosis of other organs. Recombinant Cluster of Differentiation 36 (CD36), reactive oxygen species (ROS), collagen type I
(CoI), collagen type III (CoIII), plasminogen activator inhibitor-1 (PAI-1), α-smooth muscle actin (α-SMA), mitogen-activated protein kinase (MAPK),
transforming growth factor-β (TGF-β), extracellular regulated protein kinases (ERK), fibronectin (FN), connective tissue growth factor (CTGF), vascular
endothelial growth factor (VEGF), phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), extracellular matrix (ECM), recombinant beta-site APP
cleaving enzyme 1 (BACE1), nucleotide-binding oligomerization domain-like pyrin domain containing protein 3 (NLRP3), nuclear factor erythroid 2-
related factor 2 (Nrf2), glutaredoxin 1 (Grx1), malondialdehyde (MDA), interleukin-6 (IL-6), tumor necrosis factor α (TNF-α).
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used in phenolic acids. Thus, the safety and adverse drug reactions of
SalB have gradually become the focus of researchers’ attention.
Compared to the equivalent doses of caffeic acid and ferulic acid,
SalB does not induce the production of ROS or oxidative stress in the
walls of small veins, preventing an imbalance in oxidative and anti-
oxidant mechanisms (Du et al., 2017). Furthermore, a concentration
of SalB of less than 300mg/kgwon’t harm pregnant rats; at 100mg/kg,
SalB won’t harm developing embryos or cause genotoxicity. SalB was
tested for toxicity at a high dose of 750 mg/kg via the tail vein, and the
findings point to SalB’s safety (He et al., 2023). According to another
study, nebulized inhalation of SalB as a dry powder inhalation
formulation demonstrated satisfactory mobility and no mortality in
rat models. No significant side effects were noted in a randomized,
double-blind clinical trial of SalB at single ascending doses and
multiple ascending doses (Cheng et al., 2023). These findings
suggest a favorable safety profile for SalB. In addition, the rate of
fibrosis stage reversal was 36.67%, the rate of inflammation remission
was 40.0%, and the serum fibrosis markers were significantly
improved after 6 months of continuous use of SalB tablets (30 mg/
tablet, 2 tablets once, three times a day) in the treatment of patients
with hepatic fibrosis combined with consolidated hepatitis B.
Furthermore, all members of the SalB group displayed normal test
results and no adverse responses, indicating a high level of safety (Liu
et al., 2002). The aforementioned research has established the safety of
SalB in comparison to other synthetic medicines. To determine the
optimal supplemental dosage and duration for treating fibrosis in
different organs, as well as the possibility of hepatorenal toxicity when
used over an extended period of time, more preclinical research is still
required to support the data, and clinical studies are needed to
produce high-caliber evidence-based research.

4 Drug interactions

Drug interaction (DI) between SalB and several other
medications has been reported. For instance, the co-
administration of tanshinone and polyphenol extract contributed
to an increase in the area under the plasma concentration-time curve
and a decrease in the total plasma clearance of SalB (Guo et al.,
2008). When aspirin is taken together, SalB has a synergistic effect
that inhibits CD62p, a molecular marker of platelet activation and
extends SalB’s half-life by preventing the liver metabolizing enzyme
catechol-O-methyltransferase (COMT) from being active (Cao et al.,
2021). SalB also raises plasma levodopa levels after extended usage
and prevents levodopa from being methylated via COMT. The
activity of SalB was further enhanced in combination with ferulic
acid (Chen et al., 2022). Nonetheless, the majority of the recent
research on SalB’s DI focuses on synergistic potentiation rather than
minimizing harmful side effects. Additionally, little is known about
how SalB interacts with anti-fibrotic medications. Consequently,
further studies are required to clarify these possible connections.

5 Different dosage forms of SalB

The absolute bioavailability of SalB is only 3.9% after oral
administration of 50 mg/kg SalB to rats (Zhou et al., 2009).
Another study found that dogs fed 180 mg/kg SalB orally had an

AUC of 1680 ± 670 ng/mL h and a bioavailability of only 1.07% ±
0.43% (Gao et al., 2009). The main reasons for this include the
enterohepatic circulation phenomena, hepatic first-pass effect, and
inadequate permeability (Zhang et al., 2004a; 2004b; Wu et al., 2006;
Zhou et al., 2009; Li et al., 2019). This limits SalB’s effectiveness and
absorption in the gastrointestinal system and makes it less useful for
clinical use. Researchers have manipulated SalB into several
formulations to maximize its medicinal efficacy and increase its
bioavailability. SalB was transformed into a lyophilized powder and
dissolved in sodium chloride injection for intravenous infusion.
Pharmacokinetic analysis revealed that there was no discernible
accumulation of SalB in the body as the maximum plasma
concentration and area under the curve (AUC) rose
proportionately with increasing doses (Bi et al., 2016). Pulmonary
administration via dry powder inhaler circumvents first-pass effects
and diminishes enzymatic degradation reactions (Newman, 2017).
The drug concentration in the lungs was elevated by the dry powder
inhalation formulation of SalB, which had an AUC (0–1) that was
almost 2099.12 times higher than that of intravenous treatment
(Jiang et al., 2021). Loading SalB into a solid self-micro emulsifying
drug delivery system for lipid delivery prepared by coagulating the
liquid excipient into a powder (Bi et al., 2016). Higher bioavailability
is made possible by this technique, which also guarantees a more
effective medication delivery mechanism. Nanotechnology has
made a major impact on the advancement of medicine, as nano-
encapsulated natural products have better safety, stability, and
efficacy. Compared to previous formulations, SalB-loaded
PEGylated liposomes at an active dose of 100 mg/kg showed
higher than 4-fold plasma concentrations (Isacchi et al., 2011).
SalB’s bioavailability can be significantly increased by using
different dosage forms. However, less research has been done on
fibrosis treatment. Anti-fibrotic drug development at the nexus of
biology, pharmacy, and materials science may take an important
turn in this direction in the future.

6 Discussion

Natural products are crucial sources of modern drug discovery
and play a pivotal role in disease prevention and treatment. With the
advancements in molecular biology and modern chromatographic
separation techniques and the mechanisms of the fibrotic process
constantly being elucidated, an increasing number of natural anti-
fibrotic products are being discovered. SalB is considered a
promising treatment in the field of combating fibrotic diseases.
The details of its anti-fibrotic effects on multiple tissues and organs
through activation of different signaling pathways and modulation
of multiple targets are shown in Table 1. While significant progress
has been achieved in current research on the pathogenesis of fibrosis,
there are several challenges to translating this research into
clinical practice.

Adequacy of resources is a challenge for drugs derived from
natural products. The problem of natural product resources can be
greatly solved by synthesizing bioactive compounds having
pharmacological properties using either biotic or abiotic
approaches. Nevertheless, SalB extraction from the natural
product S. miltiorrhiza is the main method to obtain SalB.
However, according to some research, SalB can be produced
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TABLE 1 Anti-fibrotic effects of SalB.

Disease Animal/cell
model

Dosage and duration Mode of
administration

Described effects Pathways Refer

Hepatic
fibrosis

In vivo: DEN
induced Wistar rat

15, 30 mg/kg; 12weeks Gavage α-SMA↓, CoI↓, ERK↓, JNK↓,
p38↓,Smad2C↓,Smad2L↓,

Smad3C↓, Smad3L↓,PAI-1↓

TGF-β/Smad;
MAPK

Wu
et al.
(2019)

In vitro: TGF-β1
stimulated HSC

25, 50, 100μM; 24 h —

In vivo: DMN
induced SD rat

12.5 mg/kg; 3weeks Gavage α-SMA↓, MEF2A↓, MEF2C↓,
MARK↓

TGF-β/MEF2 Zhang
et al.
(2019)

In vitro: TGF-β1
stimulated HSC

1.10 μM; 24 h —

In vitro: TGF-β1
stimulated
JS1 and LX2

10 μM; 24 h — LC3BII↓,CoI↓,α-
SMA↓,Atg5↓,ERK↓, JNK↓

TGF-β1/
MAPK

Jiang
et al.
(2022)

In vivo: CCL4
induced C57BL/6J
mice

25,50 mg/kg; 4weeks Gavage CoI↓, α-SMA↓, PDGFR β↓,
IL-1β↓, IL-6↓, TNF-α↓, TGF-

β↓,COX-2↓

PDGFRβ Liu
et al.

(2023a)

In vitro: T6 and
LX-2 cell lines

5,10,20,40.80 μM; 24 h,48 h —

In vivo: CCL4
induced C57BL/6J
mice

100 mg/kg; 8weeks Gavage miR-152↓, CoI↓, α-SMA↓,
E-cadherin↑, PTCH1↑,

DNMT1↓

Hh Yu
et al.
(2015)

In vitro: HSC 10 μM; 48 h —

In vitro: HSC 10 μM; 48 h — miR-17-5p↓, LincRNA-p21↑,
CoI↓, α-SMA↓

Wnt/β-
catenin

Yu
et al.
(2017)

In vivo: CCL4
induced BALB/c
mice

50 mg/kg; 4weeks Gavage NF-κB↓, miR-6499-3p↑,
LncRNA-ROR↓, p-IκKα↓,p-
IκBα↓, CoI↓, TGF-β1↓,α-

SMA↓, IL-6↓, IL-1β↓, TNF-α↓

NF-κB Wang
et al.
(2022)

In vitro: T6 and
LX-2 cell lines

40,80 μM; 24 h,48 h,72 h —

In vivo: CCL4
induced SD rats

10.20 mg/kg; 6weeks Intraperitoneal
injection

NF-κB (nucleolus)↓, NF-κB
(cytoplasm) ↑,

IκBα(cytoplasm)↑,HA↓,LN↓,
CoI↓,PⅢP↓

NF-κB/IκBα Wang
et al.
(2012)

In vitro: LPS
stimulated LX2

1–5 μM; 72 h — FGFR4↑, FGF19↑, CoI↓,
α-SMA↓

FGFs Tian
et al.
(2021)

In vivo: CCL4
induced C57BL/6J
mice

30 mg/kg; 4weeks Intraperitoneal
injection

γH2AX↓, IL-1β↓, IL-6↓, α-
SMA↓, LC3B↑, P62↑

UGCG Li et al.
(2023)

In vitro: LX2,
WRL68

25, 50μM; — —

Pulmonary
fibrosis

In vivo: BLM
induced C57BL/
6 mice

10 mg/kg; 3weeks Intraperitoneal
injection

ERK↓, JNK↓, CoIA1↓,
CoIA2↓, CoⅠⅠⅠA1↓, CTGF↓,α-

SMA↓, PAI-1↓

TGF-β/Smad,
MAPK

Liu
et al.

(2016a)

In vitro: TGF-β
stimulated MRC-
5, A549, NIH/3T3

50 μg; 24 h —

In vitro: TGF-β1
stimulated MRC-5

1,10uM; 24 h TGF-β1↓, CoI↓,α-SMA↓ TGF-β1 Zhang
et al.
(2014)

In vitro: TGF-β1
stimulated MRC-5

0,20,50,100,200,300,400,500,600,700,800,900 μg/
mL; 24 h

— COI↓,α-SMA↓,TNF-α↓,
IL-1β↓

TGF-β1 Jiang
et al.
(2020)

In vitro: LPS
stimulated THP-1

0,10,25,50,75,100,125, 150,200 μg/mL; 48 h —

(Continued on following page)
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TABLE 1 (Continued) Anti-fibrotic effects of SalB.

Disease Animal/cell
model

Dosage and duration Mode of
administration

Described effects Pathways Refer

In vivo: BLM
induced SD rats

0.15,0.3,0.45 mg/kg; 28 days Inhalation PAR1↓, p-PKC/PKC↓,PAI-
1↓, CoI↓, TF-VIIa↓,FXa↓,
TAT↓, FDP↓, t-PA↑,u-PA↑,

FII↑, FX↑

PAR1/p-PKC Zhang
et al.
(2021)

In vivo: BLM
induced Wistar
rats

20 mg/kg; 2weeks Intravenous injection Nrf2↑,ROS↓,GSH↑,MDA↓,α-
SMA↓

Nrf2 Liu
et al.

(2018b)

In vitro: TGF-β1
stimulated MRC-5

40μM; 48 h —

In vivo: BLM
induced SD rats

10 mg/kg; 4weeks Inhalation COIA1↓, COⅠⅠⅠA1↓,
FN↓,iNOS↓,

MDA↓,MPO↓,TGF-β1↓,IL-
1β↓, IL-6↓, IL-18↓

— Lu et al.
(2022b)

In vitro: TGF-β1
stimulated
NIH-3T3

25,50,125 μg/mL; 48 h —

In vivo: BLM
induced C57BL/
6 mice

10 mg/kg; 1weeks Intraperitoneal
injection

TUNEL↓, OCLN↑, Survivin↑,
JAM3↑, ROS↓, 8-OHdG↓, IL-

1β↓, IL-6↓, MMP-9↓

MAPK,
NF-κB

Liu
et al.

(2018c)

In vitro:
H2O2 stimulated
EAhy926

50 μg/mL; 12 h —

Cardiac
fibrosis

In vitro: Ang II
stimulated CFBs

12.5,25,50 μM; 24 h — NF-κB↓, CoⅠ↓, FN↓, α-SMA↓,
CTGF↓

NF-κB Wang
et al.

(2018a)

In vitro: LPS
stimulated
cardiomyocytes

0.1,1,10 μM; 6 h — TLR4↓, NF-κB↓, TNF-
α↓, LDH↓

TLR4/NF-κB/
TNF-α

Wang
et al.
(2011)

In vivo: I/R
induced SD rats

20,40,60 mg/kg; 1weeks Intraperitoneal
injection

TRIM8↓, GPX1↑, SOD↑,
ROS↓, MDA↓

TRIM8/GPX1 Lu et al.
(2022a)

In vitro: I/R
stimulated
AC16 cells

10, 25,50μM; 24 h —

In vivo: ligation of
the left anterior
descending
coronary artery
induced SD rats

10 mg/kg; 2weeks Intravenous injection MMP-9↓, CoⅠ/ⅠⅠⅠ↓ MMP-9 Jiang
et al.
(2010)

In vivo: Ang II
induced BALB/c
mice

200 mg/kg; 4weeks Intravenous injection p-AMPK↑, FoxO1↑, miR-
148a-3p↑,α-SMA↓, CTGF↓,
CoIA1↓, CoⅠⅠⅠA1↓, ROS↓

AMPK/FoxO1 Liu
et al.

(2023c)

In vitro: Ang II
stimulated FBs

12.5,25,50 μM; 2 h —

In vivo: STZ
induced C57BL/6J

15,30 mg/kg; 16weeks Intraperitoneal
injection

IGFBP3↓,
VEGFA↑,VEGFR2↑,
CoⅠ↓,CoⅠⅠⅠ↓, ECM↓

IGFBP3 Li et al.
(2020a)

In vitro: hypoxia
incubator
stimulated
HUVECs

— —

Renal
fibrosis

In vivo: HgCl2
induced SD rats

10 mg/kg; 9weeks Gavage TGF-β1↓, p-Smad2↓,p-
Smad3↓, MMP-2↓,MMP-
9↓,α-SMA↓, E-cadherin↑

TGF-β/Smads Wang
et al.
(2010)

In vitro: TGF-β1
stimulated HK-2

1.10μM; 24 h —

In vitro: TGF-β1
stimulated HK-2

0.1,1,10,100 μM; 72 h — α-SMA↓, E-cadherin↑ TGF-β Pan
et al.
(2011)

(Continued on following page)
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TABLE 1 (Continued) Anti-fibrotic effects of SalB.

Disease Animal/cell
model

Dosage and duration Mode of
administration

Described effects Pathways Refer

In vitro: TGF-β1
stimulated HK-2

1.50 μM; 48 h — TGF-β↓,miR106b-25↑,α-
SMA↓, E-cadherin↑

TGF-β Tang
et al.
(2014)

In vivo: unilateral
ureteral
obstruction
(UUO) induced
C57BL/6J

6.25,12.5.25 mg/kg; 2weeks Intraperitoneal
injection

HPSe↓, SDC1↑, α-SMA↓,
TGF-β1↓, FGF-2↓,

E-cadherin↑

HPSe/SDC1 Hu
et al.
(2020)

In vitro: Ang II
stimulated HK-2

0.1,1, 10 μM; 24 h —

In vivo: UUO
induced SD rats

12.5 mg/kg; 2weeks Gavage PDGFR-α↓, PDGF-C↓,
CTGF↓, Caspase-3↓,
CHOP↓,GRP78↓

PDGF-C/
PDGFR-α

Yao
et al.
(2022)

In vitro: HAS
stimulated HK-2

20 μM; 48 h —

In vivo: UUO/
AAN induced
C57/6J

10 mg/kg; 2/4weeks Intraperitoneal
injection

PTEN↑, AKT↓,
EZH2↓,H3K27↓,
FN↓,α-SMA↓

PTEN/AKT Lin
et al.
(2023)

In vitro: TGF-β1
stimulated
NRK-49F

3,10,30 μM; 24 h —

In vitro:
Iopromide
stimulated HK-2

10,50, 100 μM; 3 h — TLR4↓, NF-κB↓, NLRP3↓,
ASC↓, Bax/Bcl2↓, IL-18↓, IL-

1β↓, TNF-α↓

TLR4/NF-κB/
NLRP3

Pei
et al.
(2022)

In vivo: I/R
induced Balb/c
mice

50,100,200 mg/kg; 6weeks Gavage Nrf2↑, NLRP3↓, GSDMD↓,
Caspase-1↓, IL-1β↓, TXNIP↓

Nrf2/NLRP3 Pang
et al.
(2020)

In vitro: HK-2 1,5,10,20,40,80 μM; 24 h —

In vivo: cBSA
induced SD rats

100 mg/kg; 2weeks Gavage PI3K↓, AKT↓,
Beclin1↑,LC3B↑, IL-2↓,IL-6↓,

IL-1β↓, TNF-α↓

PI3K/AKT Chen
et al.

(2022b)
In vitro: LPS
stimulated HMCs

—;24 h —

In vivo:
Adriamycin and
unilateral
nephrectomy
induced SD rats

50,100,200 mg/kg; 6weeks Gavage Sirtuin1↑, Beclin1↑,LC3B↑,
FN↓,α-SMA↓

Sirtuin1 He
et al.
(2020)

In vitro: TGF-β1
stimulated HK-2

100 μM; 24 h —

In vitro:
Iopromide
stimulated HK-2

10,50,100 μM; 3 h — ROS↓, p-JNK↓,CHOP↓,Bax/
Bcl-2↓, caspase-3↓, GRP78↓

— Dong
et al.
(2021)

In vivo: HFD
induced C57BL/6J

3,6.25,12.5 mg/kg; 4weeks Intraperitoneal
injection

Bax↓, Caspase-
3↓,ATF4↓,CHOP↓,
ATF6↓,IRE1α↓

— Mai
et al.
(2020)

In vitro: PA, TM,
TG stimulated
HK-2

1,10,100 μM; 24 h —

Skin fibrosis In vivo:
Tetracycline
induced JUN mice

100 μg/mL Intraperitoneal
injection

CD36↓, ROS↓, CoI↓,COⅠⅠⅠ↓,
PAI-1↓, α-SMA↓

CD36 Griffin
et al.
(2021)

In vitro: human
HTS fibroblasts

— —

In vivo: BLM
induced C57BL/
6 mice

10 mg/kg; 3weeks Intraperitoneal
injection

Smad↓, ERK↓, CoI A1↓, CoI
A2↓, CoⅠⅠⅠA1↓, FN1↓,
CTGF↓,PAI-1↓,α-SMA↓

TGF-β/Smad
MAPK/ERK

Liu
et al.
(2019)
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artificially using biotechnological means: rosmarinic acid, the
precursor compound for SalB, can be made into salvianolic acid
by creating a full biometabolic pathway for it in a strain of
Saccharomyces cerevisiae. This can be achieved by using
endogenous enzymes in the yeast chassis cells in conjunction
with an exogenous biosynthetic pathway (Di et al., 2013;
Mateljak et al., 2017). While it is possible to produce SalB
through a technological method, more research is necessary to
determine whether the molecules produced through this process
have the same pharmacological effects as SalB derived from
natural sources.

One more problem that must be resolved before SalB can be
used in the clinic is bioavailability. Due to SalB’s restricted oral
bioavailability, attempts are now being made in research to find
substitute formulations. Research is now being done on SalB’s
lyophilized powder, dry powder inhaler, and lipid carrier
alternatives. However, little is known about its use in fibrotic
disorders. The effectiveness of SalB in treating fibrotic diseases
has been confirmed. To enhance efficacy and improve
bioavailability, future research endeavors ought to concentrate on
the preparation of SalB into diverse dosage forms that are
customized to the unique features of the disease.

The comprehension of fibrotic molecules is improved through
modeling (Ricard-Blum and Miele, 2020). It is essential to create
predictive animal models, primary human tissue culture systems,
and virtualized medications based on particular genetic profiles of
fibrotic patients due to the developments of modern technology,
such as single-cell multi-omics. Before a medicine enters clinical
trials, its effect on particular molecular disease phenotypes can
be predicted.

One significant barrier to the development of anti-fibrotic
medications is the lack of suitable biomarkers for identifying
disease-specific traits (Wynn and Ramalingam, 2012). Therefore,
methods for quickly, non-invasively, and precisely determining the
anti-fibrotic efficacy of SalB are essential for its clinical application.
Normal repair processes require the production of FN, the release of
inflammatory agents, and the deposition of ECM during fibrosis. To
avoid off-target toxicity, more research is needed to ascertain
whether SalB can target key fibrotic components upstream and
downstream and whether its use affects the normal repair process in
any way. In addition, the majority of recent research on SalB’s anti-
fibrotic action focuses mostly on one target or pathway. On the other
hand, little is known about the ways in which various targets and
pathways interact. Thus, in order to more thoroughly understand
the overall regulation of SalB, we can conduct studies on the
regulatory mechanism of the intricate network of interacting
targets using techniques including single-cell sequencing,
proteomics, transcriptomics, and metabolomics.

Few comprehensive clinical investigations have been
conducted on the safety and side effects of SalB, despite
multiple preclinical studies showing the drug’s anti-fibrotic
efficacy in a variety of organs (Ma et al., 2017; Cheng et al.,
2023). There is an urgent need to address these issues through
large-scale clinical studies. Furthermore, selecting subjects for
clinical trials is difficult due to the diversity of clinical
conditions and the slow course of fibrosis. The development of
successful anti-fibrotic therapeutics depends on defining reliable
and valid predictors of the course of fibrotic disease and planning
clinical studies with distinct clinical outcomes to typify patients
prior to trial enrollment (Henderson et al., 2020).

TABLE 1 (Continued) Anti-fibrotic effects of SalB.

Disease Animal/cell
model

Dosage and duration Mode of
administration

Described effects Pathways Refer

In vitro: TGF-β
stimulated Human
skin fibroblasts

50,100,150,200,250 μg/mL —

Epidural
fibrosis

In vivo:
laminectomy
induced Wistar
rats

10,30,50 mg/kg; 8 weeks Gavage VEGF↓ — Chen
et al.

(2016a)

frozen
shoulder

In vivo: molding
plaster for 3 weeks
induced SD rats

50 mg/kg; 3weeks Intraperitoneal
injection

CD36↓, PI3K↓, AKT↓,α-
SMA↓, FN↓, CoI↓, COⅠⅠⅠ↓

CD36 Yan
et al.

(2023b)

In vitro: synovial
fibroblasts

0,20,50,100,200,300 μg/mL; 72 h —

Retinal
fibrosis

In vivo: 5×FAD
mouse

20 mg/kg; 12weeks Gavage BACE1↓, Aβ↓, NLRP3↓ BACE1 Wang
et al.
(2023)

In vitro:
H2O2 stimulated
retinal pigment
epithelium

50 μM; 24 h — Nrf2↑, Grx1↑, ROS↓ Nrf2 Liu
et al.

(2016b)

Chronic
Pancreatitis

In vivo: TNBS
induced SD rats

10 mg/kg; 8weeks Gavage MDA↓ — Lu et al.
(2009)

Oral
Submucous
fibrosis

In vitro: ANE
stimulated
MOMFs

0,3.125,6.25,12.5,25,25
50 μM; 24 h

— TGF-β↓, Smad↓, AKT↓,
ERK↓, CTGF↓, CoIA1↓,
CoⅠⅠⅠA1↓, IL-6↓,TNF-α↓

TGF-β/Smad,
AKT, ERK/
MAPK

Dai
et al.

(2015b)
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7 Conclusion

SalB has garnered interest due to its diverse array of anti-fibrotic
properties. Several studies have been done on SalB’s impact on fibrosis
in both cells and animals. SalB may be able to mitigate the fibrotic
process by modifying multiple aspects of immune cells, inflammatory
factors, oxidative stress, ERS, and pyroptosis to lessen the release of
fibrogenic factors, ECM over deposition, and fibroblast proliferation.
It is reasonable to conclude that SalB may be a pleiotropic molecule
exerting anti-fibrotic effects against numerous signaling cascades after
carefully reviewing the studies on SalB’s effects on fibrosis. There are
some limitations since the current study is a review that focuses on
SalB’s involvement in fibrosis in various organs. Firstly, as the study is
a review of the research that has been done, it falls short in terms of
offering clinical evidence supporting SalB’s use in the treatment of
fibrosis. Second, this review aims to shed light on the scope and
efficacy of SalB in treating fibrotic diseases by describing and
summarizing SalB’s effects on fibrosis in various organ tissues. It is
necessary to reevaluate from a different angle whether SalB’s
mechanism of action is similar for different fibrotic disorders or
whether similar therapeutic targets are present. Lastly, the evidence
that can be offered for this study is limited because there are not
enough studies on SalB for the therapy of fibrosis in other organs, such
as the skin, pancreas, retina, etc. All of these issues require further in-
depth research, discussion, and augmentation in the future.

In conclusion, additional excellent, advanced basic and clinical
research is required to fully comprehend how SalB affects fibrosis, to
enhance SalB’s therapeutic benefits, particularly with regard to
organ damage carried on by fibrosis, and to fulfill the intended
purpose of targeted therapy.
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