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Chitosan (CS) has been extensively studied in wound care for its intrinsic
hemostatic and antibacterial properties. However, CS has limiting hemostasis
applications on account of its drawbacks such as poor adhesion in humid
environments and water solubility at neutral pH. CS-based biomaterials,
inspired by mussel-adhesive proteins, serve as a suggested platform by
biomedical science. The reports show that the mussel-inspired CS-based
hemostatic structure has negligible toxicity and excellent adhesiveness.
Biomedicine has witnessed significant progress in the development of these
hemostatic materials. This review summarizes the methods for the modification
of CS by mussel-inspired chemistry. Moreover, the general method for
preparation of mussel-inspired CS-based biomaterials is briefly discussed in
this review. This work is expected to give a better understanding of
opportunities and challenges of the mussel-inspired strategy for the
functionalization of CS-based biomaterials in hemostasis and wound healing.
This review is hoped to provide an important perspective on the preparation of
mussel-inspired CS-based hemostatic materials.
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1 Introduction

Chitosan (CS) has been extensively studied in effective bleeding control and wound
protection from infection due to its intrinsic hemostatic and antibacterial properties. This is
because CS is a natural cationic polysaccharide with abundant amino groups. The surface of
erythrocytes and platelets in blood is negatively charged, so CS can induce the aggregation
of erythrocytes and platelets, eliminating the electrostatic repulsion between them (Rao and
Sharma, 1997; He et al., 2013; Lee et al., 2013). The hemostatic mechanism of CSmaterials is
different from that of the conventional coagulation pathway and does not depend on the
patient’s own coagulation pathway and function, which makes it a good material for
coagulation and hemostasis. The approved commercially available dressing or gauze of CS
by the US Food and Drug Administration (FDA) was Celox, Trauma-Stat, HemCon,
PerClot, ChitoGauze, Celox Gauze etc. (Hickman et al., 2018). These products utilize the
electric charge of carboxylate and amine groups to bind with tissues and cells (Nainggolan
et al., 2018; Simpson et al., 2022). However, the presently available marketed CS hemostatic
materials have limitations such as high cost, poor mechanical properties, and water
solubility at neutral pH; application of pressure to stanch blood flow due to low
adhesion; and tendency to dissolve/deteriorate in the presence of blood (Singha et al.,
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2020). In addition, these materials cause the injury to rebleed once
removed from the site of application. Accordingly, it should be
necessary to exploit a new strategy for the improved CS-based
hemostatic compositions using functionalization of CS like
quaternization and phosphorylation and use of biocompatible
cross-linkers for maintaining the structural integrity and
enhancing tissue adhesion to achieve rapid hemostasis.

Catechol-functionalized materials are of particular interest
because, in nature, mussels secrete (3,4-dihydroxy-
L-phenylalanine, DOPA) moiety-rich adhesive proteins, and
these proteins exhibit strong water-resistant properties.
Inspired by mussels, Lee et al., discovered that the self-
polymerization of dopamine (DA) can form surface-adhering
polydopamine (PDA) films on the surface of a variety of
inorganic and organic materials in 2007 (Lee et al., 2007).
After that, mussel-inspired modification strategies have not
only been limited to introduce excellent self-adhesiveness as
coating materials but have rapidly incorporated into a wide
range of applications across the biomedical field. The mussel-
inspired CS modification strategy can endow CS-based
biomaterials with outstanding adhesive performance,
antioxidant property, antibacterial property, coating capacity,
high reactivity, chelation and coordination ability, bioactivity
and biocompatibility, and also affords a far-reaching platform for
the fabrication of various hybrid materials with specific
functions. It greatly expands the application of CS-based
biomaterials in the field of biomedicine (Li et al., 2021). There
are many forms of mussel-inspired CS-based biomaterials, such
as dressing, hydrogels, sponge, injectable gels, spray, and powder.
In recent years, the mussel-inspired strategy for CS has received
extensive attention and mussel-inspired chemistry has created a
library of CS-based biomaterials. In this work, we will focus on
summarizing the methodology of mussel-inspired modification
strategies for CS.

2 Mussel-inspired modification
strategies for CS

The multiple catechol-mediated interactions provide a
significant platform to fabricate versatile mussel-inspired CS-
based biomaterials, including catechol-functionalized (such as
dopamine (DA), DOPA, norepinephrine, and their derivatives)
biomaterials and gallol-functionalized (mainly natural plant
polyphenols such as gallic acid and tannic acid (TA)) materials
(Zhang RL. et al., 2019; Sanandiya et al., 2019; Shou et al., 2020; Li
Y. et al., 2022; Sun CY. et al., 2022; Zhao et al., 2022; Fang et al.,
2023). In addition to exploring bionic adhesives, mussel-inspired
chemistry also paves the way for the development of new multi-
purpose platforms, which are stimulus-responsive materials
(Huang et al., 2018; Xu et al., 2019; Li et al., 2021). By making
a general survey on the preparation of mussel-inspired CS-based
hemostatic materials, it is observed that there are two main
strategies for CS modification by mussel-inspired chemistry.
One is the PDA or other (which is formed by self-
polymerization of dopamine and its derivatives) modified CS;
the other is the covalent bonding of catechins or polyphenols
and their derivatives onto the CS backbone.

2.1 PDA or other products of self-
polymerization modified CS

Inspired by the composition of adhesion proteins in mussels,
it was found that self-polymerization of dopamine could be used
to create new coating materials (Lee et al., 2007). PDA coating
technology has attracted more and more attention because of its
simplicity and versatility. The initial oxidation can turn the
catechol groups of dopamine into quinones. The resulting
DA-quinone can undergo intramolecular cyclization and
reversible oxidation and then intramolecular rearrangement.
The proposed PDA structures were formed by charge transfer,
hydrogen bonding, and π–π interactions (Dreyer et al., 2013;
Faure et al., 2013; Liu et al., 2014; Patil et al., 2018). It was found
that dopamine can undergo oxidative self-polymerization under
acidic conditions, and its mechanism is similar to that under
alkaline conditions. Self-polymerization of dopamine is
particularly suitable for functionalized CS because the PDA
coating can further react with amines and sulfates through the
Michael addition reaction. Moreover, all the surfaces of
hemostatic materials can be unified by a convenient one-
step process.

Here are a few typical examples for PDA or other products of
self-polymerization modified CS. PDA can exist in the form of
nanoparticles (NPs) or thin films or other forms (Lee et al., 2007),
and there are two main categories to prepare PDA-NPs: one is to
prepare individual PDA NPs and then modify CS. Sun et al.,
fabricated CS-based alternative absorbable hemostatic sponges
that were synthesized by one-step mixing of oxidized dextran
(OD), carboxymethyl CS (CCS), and PDA-NPs via the
lyophilization method (Sun W. et al., 2022). The results indicated
that the interfacial interactions between the functional groups on the
OD/CC matrix and the catechol groups on PDA-NPs, which might
enhance the pore formation capability of the sponges during the
gelation process. The CS-based hemostatic sponges not only
accelerated the hemostatic process and prevent bacterial infection
but also promoted the healing process, as shown in Supplementary
Figure S1. The OD and CS composites were used as scaffolds for
multifunctional wound dressing platforms, and their three-
dimensional spongy structure made them have good blood and
tissue exudate absorption activity and compression elasticity. PDA-
NPs serve as a photothermal agent for antimicrobial therapy and an
active site for thrombin fixation. Similar to this, Zhang et al.
prepared PDA by the DA self-polymerization in a nearly neutral
solution at different concentrations and then covalently bound to
hydroxybutyl CS to form temperature-responsive CS-based
hydrogels (Zhang X. et al., 2019). Gao and Tao also did a similar
study (Gao et al., 2019; Tao et al., 2021); the individual PDA-NPs
were obtained with a one-pot synthesis and that the aromatic rings
on the surface of PDA NPs can adsorb a variety of drugs
(ciprofloxacin or curcumin etc.) via π–π stacking and/or
hydrogen bonding interactions to form drug-loaded mesoporous
polydopamine NPs. Interestingly, the CS-based biomaterials
obtained in these two groups were both stimulus-responsive.
Near-infrared (NIR) irradiation could activate the photothermal
PDA NPs to generate local hyperthermia for antibiosis. The other
includes composite NPs containing PDA, and the complexes used
dopamine with other substances to form polymers or NPs and then
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modification. From the literature, DA was directly dissolved in an
OD solution to form a PDA@OD complex by self-polymerized PDA
interacted with the OD through the Schiff base and non-covalent
bonds (Yin et al., 2022), and then, the PDA@OD complex was
dispersed in solution and mixed with CS@BSA@DP-NPs (CS-
coated bovine serum albumin (BSA)-NPs and loaded dracolin
perchloric (DP) acid salt) to obtain CS-based composite
nanohydrogels with excellent hemostatic properties. A similar
study was conducted by Guo et al., (Qiao et al., 2023). Although
the water solubility of poly (thiophene-3-acetic acid) (PTAA) is
insufficient, its antibacterial wound dressings are promising. PDA
was selected to cover the surface of PTAA to form PDA-coated
PTAA (PTAA@PDA), and it can enhance the hydrophilicity of
PTAA. PTAA@PDA photothermal properties were also further
improved due to the addition of PDA, and it modified
carboxymethyl CS in the presence of Fe3+ to obtain a novel
hemostatic hydrogel for wound healing. It is also very commonly
for PDA to overlay metal ions to form NPs, for instance, PDA
coating-reduced AgNPs to form PDA@AgNPs@bilayer hydrogels
containing CS for photothermal therapy (PTT), and the hydrogel
presents adhesiveness due to the catechol group on a PDAmolecule.
The skin test results demonstrated that the bilayer hydrogel could
accelerate infected skin generation by facilitating collagen deposition
(Li Y. et al., 2022). In addition, PTAA can also impart electrical
conductivity to hydrogel dressings because of electroconductibility.
The introduction of PDA into the hydrogel can enable it with both
high-efficiency antibacterial properties and conductivity. In
addition, PDA-decorated carbon nanotubes (CNTs-PDA) were
prepared with excellent dispersion, biocompatibility, and
antioxidant properties and cross-linked with boric acid-modified
CS to CS-CNT-based conductive wound dressings. The hydrogels
could effectively reduce the expression level of wound inflammatory
factors; accelerate collagen deposition, epithelial tissue, and vascular
regeneration; and thus promote wound healing (Deng et al., 2022).
CS/DA/diatom–biosilica composite beads (CDDs) were prepared by
the alkalization precipitation method using CS-dopamine mixed
solution and diatom–biosilica (DB). It was found that dopamine was
oxidized to polydopamine by analyzing the infrared spectra of the
beads and formed CDDs together with CS and DB. The
polydopamine complex could be oxidized and rearranged to form
5, 6-dihydroxyindoles under the alkaline condition, and the 5, 6-
dihydroxyindoles formed dehydrogenized indole carboxylate by
intramolecular cyclization or Michael reaction and finally
crosslinks to form PDA (Wang et al., 2018). The CDDs exhibited
good biocompatibility and hemostatic activity, and its diameter was
approximately 1.5 mm; it could also avoid the risk of blockage of
capillaries. However, CS blocked the pore structure of DB during the
preparation process, and this reduced the porosity of CDDs and
weakened the interface interaction between CDDs and blood.
Therefore, they improved the experiment by using TBA (tert-
butyl alcohol) to replace the water in wet CDDs to obtain CDD-
TBA. The reason is that TBA has a high freezing point and which
could be completely miscible with water and recover the porosity of
DB in the CDD-TBA matrix. More importantly, the surface tension
of TBA was lower than that of water, which could reduce the
capillary force in the materials to avoid network damage and
maintain the 3D network structure of CS-based biomaterials to
achieve the desired hemostatic effect (Li et al., 2020).

2.2 Grafting catechins or polyphenols and
their derivatives to CS backbone

Catechins or polyphenols and their derivatives could be grafted
to the main chains of CS through covalent bonds. CS is rich in
reactive functional moieties including -NH2 and -OH. Furthermore,
additional active sites (such as -CHO, -COOH, and -SH) can also be
introduced into CS via appropriate chemical modification methods.
These functional groups of CS can easily react with catechins or
polyphenols and their derivatives through formation amide, imine,
ester, and multifarious linkers. The catechol- or gallol-
functionalized CS can be endowed with multifunctional
properties, such as bio-adhesive/wet adhesion, antimicrobial,
biocompatible, anticoagulant, injectable, degradable, antioxidative,
angiogenic, and anti-inflammatory properties, which greatly expand
their biomedical applications including wound healing, hemostatic,
and tissue regeneration (Ong et al., 2008; Qu et al., 2018; Han et al.,
2020; Li et al., 2021).

There are so many pathways to form mussel-inspired CS-based
biomaterials. CS and its derivatives were grafted with dopamine,
such as quaternized CS was grafted with methacrylate, and then, CS-
based products were prepared using methacrylate anhydride (MA)
as medium (Han et al., 2020; He et al., 2020; Liu et al., 2022; Yang
et al., 2022). Inspired by the strong adhesive mechanism of mussels,
gallic acid was conjugated to chitosan backbone to obtain a tunicate-
inspired hydrogel through the chemical modification of the primary
amino groups of CS, as shown in Supplementary Figure S2
(Sanandiya et al., 2019). The adhesion of the tunicate-inspired
hydrogel exhibited two-fold greater adhesion ability in the wet
condition than did fibrin glue, a commercially available surgical
glue. The hemostatic function vis-à-vis the wet adhesiveness of the
synthesized chitosan-based material may be useful for facilitating
the shortcomings of the restorative tissue medicine. Based on the
route of methacrylate (MA)-modified CS, Dai et al. compounded
methacrylate anhydride dopamine (DAMA) and Zn-doped
whitlockite NPs (Zn-nWH) into methacrylate anhydride-
quaternized CS (QCSMA) to obtain a multifunctional hydrogel
dressing with hemostasis, disinfection, and wound healing
promotion (Yang et al., 2022). The adhesion strength of hydrogel
dressing was 0.031 MPa and hemostatic efficiency (129 ± 22s, 27 ±
5 mg) in organism was much higher than that of CS. The other
dopamine modified CS hydrogel was fabricated by cross-linking
with citric acid (CS-CA-DA) (Liu et al., 2022). MTT analysis showed
that dopamine modification improved the cell survival and
cell adhesion.

In order not to consume amino groups with antibacterial and
hemostatic effects, carboxymethyl CS(CMCS) was synthesized by
grafting monochloroacetic acid on the hydroxyl group of CS (Bi
et al., 2022; Huang et al., 2022; Rao et al., 2022; Rao et al., 2023;
Suneetha et al., 2023). Guo et al. prepared a series of high-strength
composite hemostatic cryogel based on poly (vinyl alcohol) (PVA),
carboxymethyl CS (CMCS), and DA by a foaming reaction and cry-
polymerization reaction to cope with lethal non-compressible
bleeding (Huang et al., 2022). The cryogel exhibited compression
stress and can withstand a weight of 1 kg without breaking. The
fungal mushroom-derived carboxymethyl CS-PDA hydrogels
(FCMCS-PDA) with multifunctionality (tissue adhesive,
hemostasis, self-healing, and antibacterial properties) were
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developed for wound dressing applications by Rao and Suneetha
group, respectively (Rao et al., 2022; Rao et al., 2023; Suneetha
et al., 2023).

Muco-adhesion occurs in two stages, namely, the contact stage
and consolidation stage. The charge interaction between CS and
mucin is reversible, while catechol-mediated interactions would
provide irreversible anchorage to mucin in the consolidation
stage. So hydrocaffeic acid (HCA) is often used to connect to the
CS chain directly as a good candidate catechol. The grafting of HCA
onto CS is easy to operate. Lee et al., have conducted a lot of work in
this research (Ryu et al., 2011; Kim et al., 2013; Lee et al., 2015; Shin
et al., 2017; Zhang RL. et al., 2019; Park et al., 2019; Xu et al., 2019;
Shin et al., 2021), and they have developed robust tissue adhesive
hydrogels consisting of catechol-functionalized CS which was
obtained by HCA grafting onto CS via formation amide and
thiol-terminated Pluronic F-127 in 2011 (Ryu et al., 2011). The
hydrogels with remnant catechol groups showed strong
adhesiveness to soft tissues and mucous layers and also
demonstrated superior hemostatic properties. CS-catechol
conjugates were obtained by a carbodiimide coupling method
using 3, 4-dihydroxy-hydroxycinnamic acid as a catechol donor
subsequently (Kim et al., 2013). This one-step chemical modification
of high-molecular-weight CS (approximately 100 kDa) dramatically
increased the water solubility of the CS derivative to 60 mg/mL at
pH 7.0. They then prepared a hemostatic hypodermic needle coated
with partially crosslinked catechol-functionalized CS that undergoes
a solid-to-gel phase transition in situ to seal the punctured tissue. In
addition, 100% of hemophilia mice survived jugular injection. This
adhesive coating of self-sealing hemostatic needles may help prevent
bleeding-related complications in more clinical settings (Shin et al.,
2017; Shin et al., 2021). Moreover, a catechol-conjugated glycol CS
was proposed as an alternative hemostatic hydrogel with negligible
immune responses, enabling the replacement of CS-catechol (Park
et al., 2019). The addition of ethylene glycol did not significantly
modify the adhesive properties and hemostatic ability of the
hydrogel but dramatically reduced the immune response.
Antibacterial activity is also essential for qualified wound healing.
The quaternized CS was chosen to be modified by HCA due to its
respectable antibacterial, blood cell adhesion, and hemostasis
(Zheng et al., 2020; Li L. et al., 2023; Wang et al., 2023). The
obtained catechol-functionalized CS could combine with other
substances to prepare hemostatic materials such as cotton
dressing, injective hydrogels, and some materials that were even
stimulus-responsive. 3,4-Dihydroxyphenylacetic acid (DOPAC) is
another candidate catechol; Yin et al. prepared
catechol–hydroxybutyl CS (HBCS-C) by grafting hydroxybutyl
groups and DOPAC to the CS backbones (Shou et al., 2020). In
this procedure, a thermo-responsive CS-based hydrogel was
obtained as an injectable therapy approach for tissue adhesion
and hemostasis. Ren et al. also obtained catechol-functionalized
CS hydrogels by grafting CS with DOPAC (Guo et al., 2015). Tannic
acid (TA) contains a great number of pyrogallol and catechol units
and possesses antioxidative, anticarcinogenic, antimutagenic, and
antibacterial performances, and it is a cheap natural dendritic
polyphenol (Quideau et al., 2011). Similar to dopamine, TA can
generate poly (tannic acid) (PTA) to graft with CS backbone. Gallic
acid was conjugated to CS through the chemical modification of the
primary amino groups of CS (Oh et al., 2015; Ho et al., 2018;

Sanandiya et al., 2019; Huang et al., 2022). These materials all had
very strong tissue adhesion and gave full play to the properties of
catechol to CS-based biomaterials.

3 General method for preparation of
mussel-inspired CS-based biomaterials

Catechins or polyphenols and their derivatives react with CS or
its compounds in a variety of approaches, not only through
hydrogen bonding, π–π stacking, cation-π interaction, and
coordination with metal oxides but also through Schiff base
bonds or Michael addition reaction (Ejima et al., 2013; Rodriguez
et al., 2015; Gebbie et al., 2017; Waite, 2017; Patil et al., 2018). In
summary, the general method can be roughly divided into three
categories, namely, chemical cross-linking, metal–ion cross-linking,
and hybrid cross-linking.

3.1 Chemical cross-linking

The chemical cross-linking method is the most common
method for the preparation of mussel-inspired CS-based
biomaterials, which can be chemically crosslinked through the
following two ways, of which one is direct coupling between
amine and carboxyl groups; “grafting catechins, or polyphenols
and their derivatives to CS backbone” is basically linked in this
way. All HCA, DOPAC, and TA use their carboxyl groups to react
with amino groups of CS chains. DA can also be linked to modified
CS in this way (Han et al., 2020). However, the ultimate formation of
CS-based hemostatic materials is not so simple, and there are many
reactions during the preparation process, which is the second way of
cross-linking. The other way is through alkaline pH, NaOH, NaIO4,
enzymes, or catalysts to promote the oxidation of catechol groups to
form benzoquinone, and then, with other amine groups, catechol
groups by Schiff base bonds, or Michael addition reaction to form
CS-based materials base-on performance needed. “PDA or other
products of self-polymerization modified CS” usually attaches PDA
to a skeleton of a CS in this way. Gao’s group verified that PDA NPs
could be used as a building block to cross-link with amine-rich
glycol CS (GCS) through Schiff base reaction and/or Michael
addition to form an injectable hydrogel (Gao et al., 2019) and
that the aromatic rings on the surface of PDA NPs can adsorb a
variety of drugs (ciprofloxacin etc.) via π–π stacking and/or
hydrogen bonding interactions, thus giving the CS-based
hemostatic materials more excellent antibacterial activity and
wound healing. For mussel-inspired CS-based biomaterials, the
amines of them are cross-linked to quinones by Michael addition
and/or Schiff base formation has not been determined until now. To
date, the consensus on the catechol-amine coupling reactions has
been that they coexist in a mixed mode and are difficult to decouple
from each other. Lee et al., conducted an in-depth study of the effect
of temperature on the reaction between Michael addition and/or
Schiff base formation (Shin et al., 2021). They found that for high-
temperature oxidation (i.e., 60°C), Michael addition was a dominant
oxidative coupling reaction, which weakened the CS-catechol
attachment force on the needle surface. In contrast, during low-
temperature oxidation (4°C), Schiff base formation was dominant,
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which strengthened the film attachment force on the needle surface,
resulting in continued bleeding, owing to a dearth of tissue transfer
after the injection, as shown in Figure 1.

3.2 Metal ion cross-linking

The cross-linking method of metal ions is mainly through the
cross-linking of metal ions and catechol groups through the
complexation (Guo et al., 2015; Yavvari and Srivastava, 2015; Fan
et al., 2016; María et al., 2019). Fan et al., devised a mussel-inspired
hydrogel with an easy-to-use double cross-linking mechanism by
using metal ion cross-linking method, as shown in Supplementary
Figure S3 (Fan et al., 2016). The first layer of cross-linking was
achieved by the interaction of CS modified by catechol with Fe3+.
Then, genipine was used to cross-link the exposed amino groups of
CS to realize the internal cross-linking of the second layer. This
double-cross-linked hydrogel has good biocompatibility and tissue
adhesion. The similar study was carried out by dissolving HCA
modified CS in ethanol/water 1:1 solution to coordinate with Fe3+ to
obtain an interpenetrated polymer network (IPN) (María et al.,
2019). Metal–ligand complexation of the catechol groups of
catechol-functionalized CS present in the network with the ferric
cation 20 mM was reached. In another study, CS modified with high
substitution of catechol (70% substitution) explored the effect of
pH on the reaction of Fe3+ with catechol. The hydrogels induced by

Fe3+ were essentially a double cross-linked system consisting of
covalent cross-linking and coordination cross-linking under acidic
conditions, and the preparation of hydrogels induced by Fe3+ was a
dynamic reversible process (Guo et al., 2015).

3.3 Hybrid cross-linking

Hybrid cross-linking was developed to combine the advantages
of chemical cross-linking with physical cross-linking. Chemical
cross-linked hydrogels have good mechanical strength and
stability, but their gumming speed is relatively slow, and they are
not sensitive to stimulation (Xu et al., 2015), which can be
significantly improved by hybrid cross-linking. A kind of bio-
adhesive hydrocaffeic acid-modified CS colloidal particles (HCA-
CS/TPP CPs) containing synthetic catecholamine groups was
prepared via application of the pickering emulsions stabilized
(Zhang RL. et al., 2019). Cucurbit was employed as a non-
covalent linker to facilitate interactions between catechol-
functionalized CS (CAT-CS) and superparamagnetic γ-Fe2O3

NPs to enhance interactions between the two species (Qiao et al.,
2019). Li H. et al. (2022) reported a novel CS-poly (ethylene glycol)-
hydrocaffeic acid (CS-PEG-HA) hybrid hydrogel with the double-
network cross-linked. The first network was obtained by the
oxidation reaction of CS-HA using NaIO4; then, the secondary
cross-linking occurred between dibenzocyclooctyne (DBCO)-

FIGURE 1
Oxidative coupling pathway of catecholamine polymers through Michael addition and/or Schiff base formation (Shin et al., 2021).

FIGURE 2
Summary and illustration of current preparation strategies of mussel-inspired CS-based biomaterials for hemostasis.
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functionalized CS-HA and four-arm PEG tetrazide. This dual-
component hydrogel integrates the adhesive nature of the
catechol group, the good mechanical properties of PEG, and the
biocompatibility of the CS material. It is hypothesized that the
incorporation of catechol and PEG groups might enable the CS
hybrid hydrogel to overcome the limitations to traditional
commercial wound dressings and rapid hemostasis. An NIR
light-activated multifunctional hydrogel was developed based on
the dynamic reversible borate and hydrogen bonds cross-linking
between quaternization CS derivatives and alternatively containing
phenylboronic acid and polydopamine (Peng et al., 2024).

4 Conclusion and outlook

Mussel-inspired CS-based biomaterials have several advantages,
such as biocompatibility, biodegradability, antibacterial activity,
applicability in various formulations with hydrogels, sponges, and
bandages, as well as various chemical modifications with hydrophilic
and hydrophobic groups (Shokrani et al., 2022; Li WC. et al., 2023;
Yang et al., 2023; Han et al., 2024). The preparation of CS-based
hemostatic materials has been the focus of scientific workers is
summarized in Figure 2. However, the physicochemical and
biological properties of chitin cannot be precisely controlled
because they depend on its biological origin, molecular weight,
and degree of acetylation. This has also led to a significant gap
between research on mussel-inspired CS hemostatic materials and
clinically approved products, and in order to address this issue,
scientists should also fully consider the adhesion mechanism and
clinical limitations to the materials. In addition, modern medicine
requires new smart CS-based biomaterials such as external stimuli-
responsive materials, so the mussel-inspired strategy will
continuously attract increasing attention in CS modification for
biomedicine.
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