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Artificial intelligence tools promise transformative impacts in drug development.
Regulatory agencies face challenges in integrating AI while ensuring reliability and
safety in clinical trial approvals, drug marketing authorizations, and post-market
surveillance. Incorporating these technologies into the existing regulatory
framework and agency practices poses notable challenges, particularly in
evaluating the data and models employed for these purposes. Rapid
adaptation of regulations and internal processes is essential for agencies to
keep pace with innovation, though achieving this requires collective
stakeholder collaboration. This article thus delves into the need for
adaptations of regulations throughout the drug development lifecycle, as well
as the utilization of AI within internal processes of medicine agencies.
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Introduction

The healthcare landscape has recently witnessed a proliferation of AI applications,
many of which have found practical implementation through medical devices. These
applications span various medical specialties, including radiology (Samala et al., 2016),
dermatology (Esteva et al., 2017), ophthalmology (Abràmoff et al., 2018), pathology (Litjens
et al., 2016), genome interpretation (Kamps et al., 2017), biomarker discovery (Diaz-Uriarte
et al., 2022), and drug shortage studies (Pall et al., 2023). It is worthy to note, however, that
for applications like radiology, for instance, the use of AI is still far from routine, and needs
dedicated teams and skills (Shelmerdine et al., 2024). Furthermore, AI is making new
inroads into clinical trial processes (EMA, 2022), with the recent milestone of the first
wholly AI-designed drug (Chace, 2024). Although still in its nascent stages, the theoretical
potential of AI in pharmaceutical product development is vast, spanning from rational drug
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design and decision-making support to personalized medication and
clinical data management (Duch et al., 2007; Blasiak et al., 2020; D
Amico et al., 2023). Consequently, AI tools and applications are
poised to play an increasingly pivotal role across all stages of the
drug lifecycle, including drug discovery, manufacturing, nonclinical
testing, clinical research, and surveillance (Harrer et al., 2019; Gupta
et al., 2021; Hauben and Hartford, 2021; Kang et al., 2023). This
review elucidates the profound regulatory implications of AI’s
existing or potential involvement in pharmaceutical product
development at every stage of the drug lifecycle, particularly in
relation to the body of evidence utilized for clinical trials and
marketing authorization. As regulatory agencies are tasked with
ensuring the quality, safety, and efficacy of medicinal drugs and are
at the forefront of assessing these evolving methodologies, the
overarching aim of this paper is to comprehensively explore the
potential spectrum of AI applications in drug-related regulatory
science with proposals for actionable regulatory recommendations.
Additionally, this paper reviews the potential of AI to enhance and
optimize regulatory processes at regulatory agencies concerning
drug assessment, authorization, and post-authorization surveillance.

We will first give an overview of existing or potential AI
applications in the drug lifecycle, with step-specific questions
about the data and models used and the corresponding
regulatory challenges and policy implications. In a second part,
we will propose regulatory recommendations or adaptations that
may be required to meet those challenges. In a third part, we will
show how AI may help optimize and expedite internal regulatory
agencies’ processes, to the benefit of patients. We hope that this
perspective will contribute to accelerating relevant future regulatory
adaptations and understanding among all stakeholders in the field of
AI use in the drug lifecycle.

Policy implications regarding stepwise AI
applications in the drug lifecycle

The potential uses of AI are outlined here across different phases
of the drug life cycle, from drug discovery to clinical trials and post-
authorization activities.

AI algorithms are widely applied for drug discovery (Burki,
2019; Vamathevan et al., 2019). Quantitative structure-activity/
property relationship (QSAR/QSPR), as well as structure-based
modeling, new molecule design, and synthesis prediction, may be
addressed by AI (Jiménez-Luna et al., 2021; Paul et al., 2021; Vora
et al., 2023). Computational methods have been used for a long time
for ligand-binding probability calculations (Fujita and Winkler,
2016) and for ADMET (absorption, distribution, metabolism, and
toxicity) prediction (Norinder and Bergström, 2006; Beck and
Geppert, 2014). Several pharmaceutical companies are currently
working with AI organizations (such as companies and research
laboratories) along different lines (Paul et al., 2021). Recently, the
first wholly AI-designed drug entered clinical trials (Chace, 2024).
During the development of this new drug, TRAF2- and NCK-
interacting kinase (TNIK) was first identified as an anti-fibrotic
target using a predictive artificial intelligence (AI) approach (using
PandaOmics (Kamya et al., 2024)). Then, using generative AI
[Chemistry42 (Ivanenkov et al., 2023)], a small-molecule TNIK
inhibitor was designed (Ren et al., 2024). This drug entered two

phase I studies in 18 months, from target discovery to preclinical
candidate, including traditional testing in animal models, which is a
very short timeline. Regarding timelines and costs, it is usually
around 5.5–14.5 years (or more for target discovery) without the AI
approach to reach the preclinical stage. In terms of costs, the
traditional approach costs around 674 million dollars for a
preclinical candidate, whereas it is much lower with the AI
approach (Pun et al., 2024). The application of AI in drug
screening could reduce R&D costs by 50% while increasing
efficiency and accuracy (Wang et al., 2019). As another example
of a state-of-the-art recent AI application for drug discovery,
AlphaFold allows predicting protein structures at the atomic
level, potentially accelerating drug discovery in cancer research
(Abramson et al., 2024; Xu et al., 2024). Nevertheless, even if all
these technologies and their potentials seem impressive, most are at
preliminary stages, there are few success stories, and it still remains
to be determined if AI will really perform better and faster to develop
more and more new successful drug candidates (Schneider et al.,
2020; Bender and Cortés-Ciriano, 2021). Moreover, till now, in the
cases reviewed above, preclinical validation was carried out in
traditional animal models.

In addition to potentially helping predict toxicity of drug
candidates, AI approaches in preclinical testing can contribute to
replacing, reducing, and refining the use of animals (Luechtefeld
et al., 2018). This second incentive is quite powerful. As in drug
discovery, large amounts of toxicological data already exist and can
be used to construct AI tools that are relevant for toxicity prediction
(Mayr et al., 2016; Luechtefeld et al., 2018; Lysenko et al., 2018; Basile
et al., 2019; Wu et al., 2021). Non-animal approaches (such as
QSAR, read-across, PB/PK, metabolomics, and cell painting, to cite
just a few) rely as well on big toxicological, biological, and chemical
data (Bray et al., 2016; Luechtefeld et al., 2018; Liu et al., 2023), for
which quality should be thoroughly checked and ensured before
training any prediction model, given that new kinds of toxicity
cannot always be derived from previously learned ones (reliance
solely on historical toxicology data might not be sufficient in
several cases).

In the future, AI tools might be used for improving clinical trials
with digital twins and optimizing the control arms (EMA, 2022;
Fountzilas et al., 2022; Askin et al., 2023). They might help in patient
selection and monitoring (eligibility, suitability, motivation,
empowerment, adherence, and retention), thereby increasing
clinical trials’ success rates (Harrer et al., 2019). They could also
participate in designing more relevant trials, especially for precision
medicine (for a review, see (Fountzilas et al., 2022)). Patient selection
is the area where AI could be most used, followed by trial design (two
times less) and analysis (three times less) (Askin et al., 2023).
Overall, it is the mass and diversity of data that AI can process
that could make the difference. Biomedical data from different
origins (such as health insurance medical records, hospitals,
genomics, biobanks, and radiology) may indeed be used to
improve the enrolment and the design and follow-up of clinical
trials (Acosta et al., 2022). It is also used to generate synthetic clinical
data (synthetic patients) for accelerating precision medicine,
increasing the coverage of the population involved in the clinical
trial (Yu et al., 2018; EMA, 2022).

AI may be used to improve quality-by-design approaches
(Rantanen and Khinast, 2015; Manzano et al., 2021). This
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includes tools to deal with the interpretation of experimental big
data from various sources, such as real-time process control and
real-time quality assurance (Hussain et al., 1991; Takayama et al.,
1999; Rantanen and Khinast, 2015).

Pharmacovigilance (PV) is a data-driven field because it
necessitates the gathering, processing, and analysis of significant
amounts of data from a variety of very different sources (Carbonell
et al., 2015). Here, AI techniques may be used for signal detection,
data intake, or analysis (Hauben and Hartford, 2021). In practice, it
is used and recommended mostly for signal detection and
processing before data intake (Ball and Dal Pan, 2022; Martin
et al., 2022). Industrials have reported the performance of several
AI systems for signal detection and adverse event processing
(Schmider et al., 2019; Routray et al., 2020). One study showed
that the use of safety database data fields with dedicated AI
applications (artificial intelligence and robotic process
automation) as a surrogate for otherwise time-consuming and
costly direct annotation of source documents is viable and
feasible (Schmider et al., 2019). An example of an augmented AI
system with a neural network approach used for an accurate and
scalable solution for pharmacovigilance determination of adverse
event seriousness in spontaneous, solicited, and medical literature
reports was published (Routray et al., 2020). Data from a wide
variety of sources can theoretically be used, including real world data
such as electronic healthcare records (EHR) or social media
(Comfort et al., 2018; Ball and Dal Pan, 2022; Actualité, 2024).
AI can also be used for finer drug misuse detection (Afshar
et al., 2022).

Actionable recommendations

Regulatory agencies and stakeholders’
information needs- transparency &
explainability

In the fast-paced world of drug development, transparency is a
cornerstone of trust and accountability (Transparency, 2024).When it
comes to the application of artificial intelligence (AI), transparency
becomes even more crucial (Crossnohere et al., 2022). In this respect,
it is of utmost importance that stakeholders – especially regulators –,
have access to clear information about the AI models driving drug
development. Goals, data used, intended applications, advantages, and
drawbacks of AI models should be clear so that everyone understands
how they fit into each specific drug development. Regulators need this
level of transparency and explainability to assess accuracy, precision,
limitations, and uncertainties effectively (Hicks et al., 2022). One of
the answers is therefore explainable AI (Alizadehsani et al., 2024). This
is a recent discipline by itself (xAI). Several mathematical techniques
are used to render AI methods and results more easy to understand
(reviewed in (Holzinger et al., 2022)). In this respect, techniques like
SHapley Additive exPlanations (SHAP) and, Local Interpretable
Model-agnostic Explanations (LIME), Integrated Gradients, and
Counterfactual Explanations offer windows into the black box of
AI decision-making, providing clarity on the processes behind the
algorithms (Mertes et al., 2022; Kırboğa et al., 2023;Wang et al., 2024).
And transparency doesn’t end once the model is built. Since AI
models may evolve, regulators need to stay in the loop on updates and

changes, ensuring ongoing monitoring of their performance
and impact.

In summary, transparency is about empowering regulatory
agencies to acquire all the information they need to make
informed decisions. This is the first condition for regulators to be
able to assess AI use in drug development. They nevertheless have, of
course also to take further actions to keep on ensuring the safety of
patients treated with drugs in which AI has been used during one or
several steps of their development. Since data, models and
applications utilized when applying AI tools depend on the drug
lifecycle step (Figure 1A), we propose here stepwise regulatory
actions or adaptations. We also show how AI may help optimize
and expedite internal regulatory agencies’ processes, simplify review
timelines, and improve efficiency while maintaining the highest
safety standards (Figure 1B).

Challenges and corresponding proposals in
adjusting to AI’s use across the drug lifecycle

For the whole drug lifecycle, EMA suggests a risk-based
approach so that developers preemptively and proactively
establish the risks that need to be monitored and/or mitigated
(EMA, 2023a). The FDA and the MHRA address mainly the use
of AI in medical devices and for digital health technologies (sensors,
wearables, etc.) (federalregister, 2023; MHRA, 2024b; MHRA,
2024a). Different centers within the FDA (CBER, CDER, CDRH,
and OCP) also collaborate to leverage AI and other advanced
technologies to enhance the regulation of medical products
(FDA, 2024b). Overall, up to now, no regulatory
recommendation proposal for drug development has been
published. Stepwise (drug discovery, non-clinical and toxicity,
translational and clinical research, pharmaceutical manufacturing,
and pharmacovigilance), specific regulatory challenges are therefore
delineated here, together with points to consider and possible future
adaptations, which are presented in Table 1.

In the race for innovative therapies, AI emerges as a powerful
ally in drug discovery. Only one wholly AI-designed drug has
entered clinical trials thus far (Generative Artificial Intelligence
for Drug Discovery, 2024), and regulatory agencies are not
mandated to assess the methodologies used unless they
contribute to the overall body of evidence. However, as AI
models become integral to drug design, a dialogue between
regulators and developers becomes imperative to ensure
transparency and understanding of model performances as
regards their predictions’ accuracy and reproducibility (Table 1
A). Additionally, AI holds promise for accelerating drug
repurposing efforts, leveraging big data analysis to identify new
medical indications for existing drugs with unprecedented speed and
precision (Zong et al., 2022).

In regulatory science, and specifically in non-clinical testing and
toxicity prediction, AI tools have great potential to predict safety
outcomes, but their suitability remains to be determined. First of all,
these tools offer a promising avenue to potentially reduce or even
replace the traditional reliance on animal testing, which is a powerful
incentive (EMA, 2023a). Notably, the FDAModernization Act 2.0 in
the United States takes a stride forward by curbing the mandatory
use of animal models for toxicity predictions (Han, 2023). AI non-
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clinical models draw from a rich diversity of data sources—from
in vitro and in vivo experiments to expansive databases—employing
diverse algorithms and machine learning techniques (Maertens
et al., 2022). Toxicity predictions generated using AI (machine
learning on relevant biological, chemical, or toxicological data)
are inherently probabilistic and contingent upon the quality and
quantity of the input data, but they have great potential (Mayr et al.,
2016; Wu et al., 2021; Maertens et al., 2022). However, rigorous
assessment of the data andmodels used and potential adjustments to
regulatory frameworks will be necessary in the long run (Table 1 B)
(Paul et al., 2021). Several efforts have been made or are underway to
curate and reliably annotate toxicological databases (Lea et al., 2017;
Nair et al., 2020; Wu et al., 2023).

In translational and clinical research, several regulatory
projects regarding AI use are currently led by the FDA and
EMA (EMA, 2023a; FDA, 2024c), underscoring the burgeoning
potential of AI in these domains. During the COVID-19 pandemic,
AI played a crucial role in accelerating vaccine trials. Companies
like Moderna and Pfizer used AI to design trials, monitor patient
data, and streamline regulatory submissions. AI tools helped
identify suitable trial participants more quickly, designed

adaptive trial protocols that adjusted in real-time based on
interim results, and monitored adverse events to ensure
participant safety. This use of AI contributed to the
unprecedented speed at which COVID-19 vaccines were
developed and approved (reviewed in (Sharma et al., 2022)).
However, the current absence of regulations in this domain
raises pertinent questions, highlighting the pressing need for
new oversight (Arora and Arora, 2022). Take, for instance, the
digitization of clinical trials—an innovative approach leveraging
data from electronic health records (EHR), routine medical exams,
and various diagnostic tests. This digital transformation not only
streamlines patient selection but also opens doors for broader trial
participation. Yet, navigating the complexities of data management
in these trials necessitates transparency in AI algorithms (Kasahara
et al., 2024), and several open questions remain (Table 1 C).

In drug manufacturing, AI tools are also revolutionizing various
aspects, from process design and scaling up to advanced control and
fault detection. Both the FDA and EMA are actively crafting
recommendations in this domain (EMA, 2023a; FDA, 2024a).
While the full extent of AI’s impact is yet to be realized
(consultations are ongoing), it’s evident that the field is rapidly

FIGURE 1
Domains of potential or existing use of AI in the drug lifecycle and for internal regulatory agencies’ processes. (A) Already existing or potential AI uses
at each step of the drug lifecycle from drug discovery to post-market surveillance which are currently developed by researchers from academia and
industry. (B) Examples of AI applications existing or in development in medicine agencies (in clockwise order of complexity, starting from Integration of
big data from various sources and file formats in databases with automated annotations). These applications have the potential of enhancing and
streamlining internal agencies’ processes. They are developed collaborating with expert AI research groups.
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expanding (Table 1 D). Given that these techniques primarily
originate in industrial sectors, fostering closer collaboration
between manufacturers and regulators is imperative. Notably, the
real-time application of these methods on the factory floor poses
unique challenges, necessitating robust regulatory frameworks and
onsite inspections for compliance.

In pharmacovigilance, AI is gaining traction as a potent tool for
enhancing drug safety monitoring. The EMA’s reflection paper
acknowledges its significance, while the FDA’s discussion paper
delineates its role across case processing, evaluation, and automated
submissions prior to individual safety report submissions (EMA,
2023a; FDA, 2024c). In pharmacovigilance, regulators already take
advantage of AI techniques to better deal with big data from various
sources. Pharmacovigilance is therefore the field in which the use of
AI is now most mastered and is currently used by regulatory
agencies (Martin et al., 2022; Routray et al., 2020; Actualité,
2024), which may and should establish collaborations with
academic research laboratories to use AI for specific projects with
low-level or early detection signals.

More specifically, AI is used here for improving data analysis
from institutional databases (World Health Organization’s Vigibase,
EMA’s Eudravigilance, FDA’s Adverse Event Reporting System
(FAERS), etc.) by developing AI algorithms better than the
classic statistical ones. AI may also be used for improving data

quality in databases (symbolic AI), allowing better groupings before
analysis, increasing the number of cases by developing AI tools to
collect more data from physicians or patients; or using other sources
(EHR or social media) (Table 1 E).

Another key aspect is that as the landscape of drug development
evolves, it’s becoming increasingly clear that regulatory agencies will
need to bolster their expertise in AI. This demand for AI-specific
skills varies depending on the stage of drug development, so specific
stepwise upskilling of assessors will be required. Indeed, the
evaluation of the specific data, applications, and models used will
be needed for preparing corresponding scientific assessment reports
(see specific data sources and applications in Table 1).

Seizing AI opportunities: optimizing
regulatory processes

Regulatory agencies have to deal with amounts and sources of data
that are increasingly diverse and massive (raw data reports, real-world
data, images, tables, EHR, etc.). Beside the drug lifecycle, AI applications
would also increasingly find their place in regulatory assessments
(Figure 1B). Recent published advances come from the EMA
(Jornet, 2024). First, natural language processing and optical
character recognition tools may be used to annotate, extract, and

TABLE 1 Regulator’s considerations and possible regulatory actions by subject of potential interest in the different steps of the drug lifecycle.

Drug lifecycle
steps

Data related subjects Models and applications related
subjects

Considerations/possible
regulatory actions

A- Drug discovery Use of chemical and pharmacological
big data
Genetic association analysis, pathway
mapping, molecular docking, and
signature profile matching data

Mode of action/AI prediction
Ranking of promising drug compounds
Drug repurposing

If determinant in the body of evidence:
Assessing relevance of data used/ability to check
comprehensiveness and relevance models used

B- Non-clinical testing and
toxicity prediction

Use of toxicological big data Specific models for toxicity prediction (ex:
RASAR)

Assessing data used: ability to check
comprehensiveness and relevance
New regulatory standards for toxicity prediction if
used in animal full replacement methods
Evolution of pharmacopeial monographs

C-Translational and
clinical research

Synthetic data Digital twins Ability to check relevance of the synthetic data

EHR, data from various sources (omics,
imaging, pathology, etc.) real-world data

Clinical trial design optimization Checking/assessing data used
Relevance of potential regulatory action to be
determined

EHR, use of real-world data Selection of patients Expected regulatory adaptations needed

Use of clinical big-data (imaging,
pathology, omics, etc.)

Analysis of clinical trials Enhancement of classical routine clinical trial
analysis
Relevance of potential regulatory action to be
determined. Use of clinical big-data already in
research hospitals (clinical trials)

D- Pharmaceutical
manufacturing, QC, QA

Use of in-house firms’ data Specific models and applications: process
design, optimization, in-control advanced
process control, used before process or on-site

Potential confidentiality issues. Regulations to be
adapted
Knowledge of model precision, accuracy, and state-
of-the-art. For continuous production or models
used in live production control, specific training of
inspectors
Evolution of pharmacopeial monographs

E-
Pharmacovigilance (PV)

Usual and “Non-conventional” big-data
use: social networks, medical forums

Early or wider detection of PV signals/detection
from more sources and big-data

Validate relevance and usefulness of data
Check and test relevance of detections: part of
model training. Might be put in routine production
soon
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categorize relevant data from various sources submitted to these
agencies (files for clinical trials and marketing authorizations,
including text, tables, and images). The output will be implemented
in AI-amenable databases. An application could then assess the
contents and notify the relevant assessors. This would save time,
improve reproducibility, and reduce errors (sparing humans low-
added value and repetitive tasks). EMA uses AI to support the
validation of variations by flagging missing documents, detecting
dissimilarities, and automatically identifying changes. AI tools can
also find personal data, compare documents, do triage, and perform
automated literature reviews. At the European level, there are also
several other projects aimed at challenging and furthering AI use in a
regulatory setting. (EMA, 2023b; bundesgesundheitsministerium, 2024;
Regulatorische, 2024). A new NLP approach for harmonization of
European medicinal product information has also recently been
published (Bergman et al., 2022).

In the regulatory setting, AI tools may be used to categorize and
annotate texts from various sources and help implement progressively a
collective memory to compare files, perform pre-analyses, and produce
knowledge graphs (making comparisons easier). They could also,
theoretically, help as regulatory assessment assistants in the near future.

Perspectives and conclusion

Today, it is quite difficult to gather accurate data on AI use in
the lifecycle of drugs in published data except at the clinical trial
stage. This shows that information about AI use for health topics
or in health products is not readily and easily accessible. The first
major factor for relevant assessment by regulators of these tools
and applications is transparency, which goes with explainability
using relevant tools [see above and (Lundberg and Lee, 2017)].
The second will be adapting current recommendations for
developing new regulatory guidelines for AI use in the
healthcare setting and collaborating with researchers,
physicians, and the industry to improve the relevance of these
guidelines. This could foster transparency, which regulators, the
public, and health professionals demand (Vellido, 2019). Other
factors that have to be considered are the inherent complexity of
AI models and their “black-box” nature (Rudin, 2019) and
concerns about data privacy and security (Price, 2017). These
are the main factors that may question stakeholders, such as
patients and the general public. The international conference on
harmonization (ICH) has recently addressed the use of AI and
modeling for some topics related to the quality of drugs (e.g.,
product dissolution and in vivo/in vitro relationships/
correlations, purge and fate of impurities, container/closure
integrity, etc.) (ICH, 2021), which would impact the ICH
M7 guideline. The ICH M15 concept paper, “Model-Informed
Drug Development General Principles Guideline,” also considers
future approaches such as machine learning and AI (M15, 2022).
The ICH is therefore already considering the use of AI in drug
development.

Applications of AI for internal processes at agencies also have
great potential. To this end, there is important work to be done at
regulatory agencies for selecting and validating the data incremented
in the databases that will be useable to create the collective memory
to be used for better and quicker assessments. In any case, this will

require both collaboration with AI academic research laboratories,
and acquiring internal competencies.

As we look into the future of drug regulation amidst the
burgeoning era of AI, several critical questions subsist.

First of all, it remains to be determined what concrete steps can be
taken to ensure that all stakeholders are involved (including patient
associations in the larger frame of health democracy) in the utilization of
AI tools in drug development. This health democracy setting will be
important to better take into account potential ethical issues, such as
potential patient selection and monitoring of clinical study biases.
Another important point for the future will be to determine how
regulatory bodies can navigate the complexities of AI models, while
ensuring all corresponding ethical aspects. The ethical implications of
using AI in drug development, include potential bias in AI models,
informed consent, and patient autonomy. The use of AI may also raise
privacy concerns like data privacy issues, data security, patient
confidentiality, and compliance with regulations like GDPR. Potential
solutions to these concerns are to design strategies like implementing
robust data anonymization techniques, ensuring diverse and
representative data sets to reduce bias, involving all stakeholders
(including patient representatives), establishing transparent AI model
validation processes (transparency, explainability), and adhering to local
and international ethical guidelines and frameworks. Looking ahead,
international collaboration among regulatory authorities will be
instrumental in developing common responses and standards for
evaluating AI technologies in pharmaceutical development. By
harnessing the collective expertise and resources of global
stakeholders, regulators should forge an adaptive framework that
fosters transparency, innovation, and patient-centric outcomes.
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