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Panax ginseng (P. ginseng), a traditional and highly valued botanical drug, has
been used for thousands of years and is known around the world for its uses in
food, medicine, and healthcare. The comprehensive study of P. ginseng is crucial
for the quality assurance of medicinal materials and optimal resource utilization.
Despite being present in trace amounts, P. ginseng volatile oil has a wide range of
chemical metabolites with important medicinal potential. The volatile oil has
shown promise in defending the cardiovascular system, as well as in terms of its
ability of antibacterial, anti-aging, anti-platelet coagulation, anti-inflammatory,
support the nervous system nutritionally, and shield it from harm. Due to its low
composition and lack of thorough investigation, P. ginseng volatile oil’s
therapeutic applicability is still restricted although it exhibited many benefits.
This review aims to provide insights into the chemical composition, extraction
processes, pharmacological effects, and mechanisms of action of P. ginseng
volatile oil, and to provide theoretical support and guidelines for future research
and clinical application.
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1 Introduction

Panax ginseng C.A.Mey. [Araliaceae, Ginseng radix et rhizoma], as a traditional
botanical drug with a long history, has occupied a pivotal position in Chinese traditional
medicine since ancient times. P. ginseng has a slightly bitter and warm taste, serving as a
great tonic that can boost energy, restore the pulse, nourish the spleen and lungs,
replenish blood, calm nerves, and improve intelligence (National Pharmacopoeia
Commission, 2020). With the development of modern science and technology, more
medicinal values of P. ginseng have been gradually explored by researchers around the
world, and its application fields have been expanded from food and health products to the
medical field (Mancuso and Santangelo, 2017). More than 300 active metabolites,
including polysaccharides, ginseng peptides, ginsenosides, flavonoids (Liu et al.,
2020), volatile oils, organic acids, alkaloids, trace elements, and vitamins, have been
identified (Su et al., 2023). The medicinal value of P. ginseng is not only reflected in its
polysaccharides, ginsenosides and other metabolites, volatile oil as one of the metabolites.
Although it only accounts for about 0.02%–2.5% (Peng et al., 2017; Sun et al., 1993), its
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biological activity cannot be ignored. P. ginseng volatile oil (GVO)
has shown significant efficacy in cardiovascular protection,
antimicrobial, anti-aging, anti-platelet aggregation, anti-
inflammatory, nutritional support, and neurocellular protection.
The diversity of its chemical metabolites and the potential of its
pharmacological activities provide a wide scope for future
developmental studies.

In recent years, relatively little research has been conducted on
the volatile oil of ginseng, and limited data are available for
reference. This has prompted us to conduct a more
comprehensive and in-depth exploration of it. In this paper, we
will analyze the chemical composition of GVO, discuss the volatile
oil metabolites extracted from different parts of P. ginseng and
their pharmacological effects, and also investigate the effects of
different regions and years of growth on the volatile oil content of
P. ginseng. The summary was further refined with the help of the
newidea.ai (https://www.newidea.ai/home). In terms of the
extraction process, this paper will compare the advantages and
disadvantages of traditional and modern methods and explore
their effects on the composition and medicinal effects of volatile
oils. In terms of pharmacological effects and mechanisms of action,
this paper will detail the effects of GVO on the cardiovascular
system, anti-inflammatory, antibacterial, anticancer, etc., and
explore its potential molecular targets and mechanisms of
action (Figure 1). In summary, this paper will provide a

comprehensive theoretical basis for the research and application
of GVO and point out the direction for future development and
utilization. Through in-depth exploration of the chemical
composition, pharmacological activity and mechanism of action
of GVO, we expect to be able to provide scientific support for the
in-depth development and clinical application of P.
ginseng resources.

2 The phytochemical composition of
GVO

GVO possesses a distinct aroma. The P. ginseng aroma
developed through organic culture method (OCM) and GAP
method exhibited the highest levels of beet saponin and
aromatic alkene, which are recognized as key metabolites of the
P. ginseng aroma (Lee et al., 2012). In research, GC-MS is
commonly utilized to assess the composition and quality of
volatile oils (Daferera et al., 2000). Through this method,
modern scholars have identified 369 metabolites in GVO,
comprising 154 hydrocarbons, 35 ketones, two aldehydes,
55 esters, 37 alcohols, 12 acids, 22 nitrogen-containing
metabolites, and 52 other metabolites (Qiu et al., 2008), as
shown in Figure 2; Table 1. Among the volatile metabolites of
P. ginseng, closely related to the aroma properties of the plant are

FIGURE 1
Summary of the composition and effect of GVO. GVO has a special aroma, and its main metabolites are Linoleic acid, panaxynol, panaxydol and so
on. It has anti-inflammatory, antioxidant, anti-aging, anti-cancer, neuroprotective, and fatigue-relieving properties.
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sesquiterpenoids, accounting for about 40% of the volatile oil,
followed by panaxynol and panaxydol (Cho et al., 2012). Currently,
over 20 types of polyacetylene derivatives have been isolated from
P. ginseng (Yeo et al., 2017), including panaxynol, panaxydol,
panaxydiol, panaxytriol, panaxacol, panaxyne epoxide,
ginsenoyne A− K. Recently, new polyacetylenes metabolites
with carbonyl group replacing the hydroxyl group had been
isolated such as 9,10-epoxyheptadecan-4,6-diyn-3-one, one-
ethoxy-9,10-epoxyheptadecan-4,6-diyn-3-one and 9,10-epoxy-
16-heptadecan-4,6-diyn-3-one.

2.1 A chemical analysis of the volatile oils
extracted from different parts of the P.
ginseng plant

2.1.1 Volatile oil metabolites in flower buds
The volatile oil content of P. ginseng varies across different parts of

the plant. Although P. ginseng flowers (GFs) buds are not recorded in
the Chinese Pharmacopoeia (2020 edition), GFs are also non-traditional
medicinal parts with anti-fatigue and immune-enhancing properties.
Studies have shown that the composition of volatile oils in P. ginseng

FIGURE 2
The main metabolites of GVO and its differences under diverse processing conditions. (A) Proportion of different types of metabolites of GVO. (B)
Heat map of chemical composition differences among fresh ginseng G1, white ginseng G2, and red ginseng G3.
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flowers generally remains consistent over time (Mao et al., 1989). The
volatile oil extracted from it is a light yellow transparent oily liquid with
a yield of about 0.2%. After identification, 23 chemical metabolites were
identified from 51 chromatographic peaks, including 10 sesquiterpenes,
eight alkanes, 2 esters, and one ketone, accounting for 43.5%, 34.8%,
8.7%, 8.796, and 4.3% of the total volatile oils, respectively (Figure 3).
Among the sesquiterpenes, α-solaninene (Figure 3A), α-
sandalpinene, β-sandalene and (3Z,6E)-α-farnesene were
discovered for the first time.

Furthermore, some scholars have used GC-MS analysis to
identify 45 chemical metabolites in the volatile oil of P. ginseng
flowers (Ma et al., 1992). Among them, the highest content is
Linoleic acid (37.06%) (Figure 3B), followed by Stearic acid
(17.77%) (Figure 3C). Other main metabolites include
aldehydes, enals, unsaturated alcohols, higher alkanes, alkynes,
etc. Distribution density and accumulation of oil cells affect
volatile oil content. Therefore, P. ginseng flowers may contain
volatile oils that are closely related to oil cell growth and

TABLE 1 Partial metabolites of GVO.

Categorization Metabolite name Molecular formula CAS

Terpenoid β-Guaiene C15H24 88-84-6

β-patchouline C15H24 514-51-2

β-farnesene C15H24 18794-84-8

NNNb-elemene C15H24 251-713-0

α-cubebene C15H24 17699-14-8

zingiberene C15H24 495-60-3

A-Neoclovene C15H24 4545-68-0

Humulene C15H24 6573-98-6

Sqalene C30H50 7683-64-9

caryophyllene C15H24 13877-93-5

β-caryophllene C15H24 87-44-5

Alcohols sulfole160 C16H34S 25360-09-2

ergostenol C28H48O 632-32-6

Chondrillast-7-enol C29H50O 18525-35-4

hydroxy steroids C29H48O 68555-08-8

β-sitosterol C29H50O 5779-62-4

panaxynol C17H24O 81203-57-8

panaxydol C17H24O2 72800-72-7

panaxydiol C17H24O2 63910-76-9

(-)-panaxytriol C17H24O3 87005-03-6

Ketones, aldehydes β-saccharostenone C29H46O 2034-72-2

β-sitostenone C29H48O 1058-61-3

pacoch3 C17H34O 2922-51-2

octylaldehydes C8H16O 124-13-0

Phenols, heterocyclics 4-ethenyl-2-methoxyphenol C9H10O2 7786-61-0

vita plus E C29H50O2 59-02-9

n-hexatricontane C36H74 630-06-8

octatriacontane C38H78 7194-85-6

n-henicosane C21H44 629-94-7

alkane c15 C15H32 629-62-9

1, 2-hexadecene epoxide C16H32O 7320-37-8

Frontiers in Pharmacology frontiersin.org04

Xu et al. 10.3389/fphar.2024.1436624

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1436624


development (McAdam et al., 2020). As P. ginseng blooms after
3 years, its early accumulation of substances is deeper, providing
more energy and nutrients to oil cells. Consequently, the volatile
oil content is the highest in three-year-old P. ginseng flowers (Du
et al., 2023).

2.1.2 Volatile oil metabolites in stems and leaves
Traditionally, P. ginseng leaves have been utilized in China as a

medicine for treating diseases. In comparison to P. ginseng roots, its
leaves have a shorter growth period and lower cost, making them both
economically and medicinally valuable. However, little attention has
been given to the chemical composition of the volatile oil in P. ginseng
leaves. In a study, P. ginseng leaves and stems were extracted, yielding
a black-green crystalline volatile oil of 0.14% (Liu et al., 2002).

A total of 54 metabolites were identified, predominantly
consisting of aliphatic (69.0%), terpenoids (21.5%) and aromatic
(2.4%). The major metabolites identified in these parts include
Palmitic acid (36.1%) (Figure 4A), followed by (E)-β-farnesene
(15.4%), Linoleic acid (9.8%) (Figure 4B), phytol (5.6%)
(Figure 4C) and methyl hexadecoate (2.9%) (Figure 4D).
Sesquiterpene hydrocarbons accounted for 20.3%, while oxidized
sesquiterpene hydrocarbons accounted for 0.6%, and monoterpene
hydrocarbons accounted for 0.6% of terpenoids (Jiang et al., 2014).

2.1.3 Volatile oil metabolites in fruits
P. ginseng fruit is the dried ripe fruit of P. ginseng. Its chemical

metabolites include ginsenoside, volatile oil, carbohydrate and sugar,

amino acid and allaloids, vitamins and minerals. A total of
23 volatile metabolites, mainly composed of sesquiterpenes, have
been identified from P. ginseng fruits of three different colors, red
fruit, yellow fruit, and orange fruit, such as (E)-β-farnesene
(Figure 5A), β-Elemene (Figure 5B), Santene, Cedarene
(Figure 5C), and α-neoclovene (Figure 5D). The total
sesquiterpene content of red fruits is the highest, followed by
orange and yellow fruits, with significant differences between
samples. Yellow fruits contain a significant amount of δ-selinene
(Figure 5E), β-caryophyllene, α-farnesene ginsenosol and cadinol
(Figure 5F). As a consequence, P. ginseng fruit has different volatile
(Cui et al., 2020).

2.1.4 Volatile oil metabolites in rhizomes
There are more than 40 kinds of chemical metabolites in the

volatile oil of P. ginseng root, mainly including esters, monoterpenes,
alkanes, and sesquiterpenes. As part of the sesquiterpene family,
sesquiterpenoids are characteristic metabolites of GVO. Such as β-
Ginsenene, (−)-α- Gurjunene (Figure 6A), β-Elemene, β-
Caryophyllene (Figure 6B), β-New clove tricycline (molecular
formula C15H24) and sesquiterpene oxygen-containing
metabolites (mainly referring to alcohols such as spartanol,
ginsenosol, and -(−)globulol (Figure 6C)) α-Juniperol, etc., with a
molecular formula of C15H24O) (Richter et al., 2005; Ding, 2008). It
was found that the content of total volatile oil in roots increased with
the growth age of P. ginseng. A study was conducted by steam
distillation to extract the volatile oil content in P. ginseng reeds, and

FIGURE 3
The main metabolites of GVO in flower buds. (A) α-solaninene. (B) Linoleic acid. (C) Stearic acid.
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the yield was 0.35%. The main differences with P. ginseng root were
palmitic acid, 2,6-ditert-butyl-4-methylphenol (Figure 6D) and
methyl octadenoate, with the contents of 2.08%, 1.80% and
1.44%, respectively (Zheng et al., 1989).

The composition of volatile oils from different parts of P. ginseng
varies, as shown in Figure 7. Sesquiterpenes were the most abundant
metabolites in flowers, followed by alkanes and esters. The stems and
leaves contain sesquiterpenes, aromatic metabolites. The fruit of P.
ginseng has the highest percentage of sesquiterpene content
compared to other parts of the plant. In P. ginseng root, the
main metabolites are sesquiterpenes and alkanes. In addition to
this, there is also oil in P. ginseng seeds. P. ginseng seed oil is mainly
composed of non-volatile fatty acids, followed by phenolic
compounds (Zhu et al., 2010; Lee et al., 2013)

2.2 Effects of different regions on the volatile
oil content of P. ginseng

The volatile oil composition and content of P. ginseng varied in
different regions and years of growth, as shown in Figure 8. A study

was conducted to compare and summarize the quality and yield of
GVO from several counties under the provinces of Jilin, Liaoning,
and Heilongjiang with those of Korean ginseng. Among the P.
ginsengs of different ages and origins, the one with the highest
volatile oil yield was the four-year-old Antu P. ginseng, and the one
with the lowest yield was the six-year-old Jian P. ginseng. The mean
value of the volatile oil yield of P. ginseng roots from all origins was
0.056%, with an RSD of 26%, indicating that the volatile oil content
of P. ginseng differed significantly among different origins and ages
(Wang, 2016).

Different growth forms of P. ginseng have varying levels of
volatile oil content. The volatile oils of cultivated P. ginseng (CG),
transplanted P. ginseng (TG) and mountain cultivated P. ginseng
(MCG) were extracted by headspace solid-phase microextraction-
gas chromatography-mass spectrometry, followed by
chromatographic identification using n-alkane standard (C7-
C30). Calculating and comparing the aldehydes, terpenes,
alcohols, alkynes, esters, and other metabolites of three types of
P. ginseng, it was found that the content of terpenoids was the
highest, with CG (85.91%), MCG (90.27%), and TG (76.89%),
respectively. However, a difference in alkyl alcohol content

FIGURE 4
The main metabolites of GVO in stems and leaves. (A) palmitic acid. (B) Linoleic acid. (C) phytol. (D) methyl hexadecoate.
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between P. ginseng samples of different origins was not statistically
significant (Gu et al., 2022).

2.3 Effect of concoction on the volatile oil
composition of P. ginseng

When P. ginseng is steamed and dried, it is produced as red
ginseng. Research has indicated that the conversion of P. ginseng
into red ginseng leads to a loss in total volatile oil content ranging
from 63.89% to 74.54%, averaging 69.50% (Wu et al., 1992). In
addition, the composition of volatile oil is altered during this
process, as depicted in Figure 2B. The transformation of P.
ginseng into red ginseng results in a change in the composition
of GVO. The main metabolites of red ginseng oil (RGO) include
linoleic acid, palmitic acid, β-sitosterol, γ-sitosterol, and
stigmasterol, which are also present in GVO. The relative content

of C4-C6 metabolites in red ginseng and fresh ginseng differs
significantly, with fresh ginseng containing 1.04% of C4-C6

metabolites compared to red ginseng. Fresh ginseng contains three
C10 monoterpenes, while red ginseng contains only one. The content
of soy sterols and β-sitosterol also differed in red ginseng and P.
ginseng. Notably, the content of stigmasterol in five-year-old and six-
year-old red ginseng was reported to be 23.84 mg/g and 27.46 mg/g,
respectively. The content of beta-sitosterol in five and six-year-old P.
ginseng was 72.58 mg/g and 82.14 mg/g (Lee et al., 2018) respectively.
In addition, a study comparing the volatile characteristics of fresh,
white and red ginseng, found that fresh P. ginseng had a stronger odor
than red ginseng (Abd El-Aty et al., 2008). The main functional
groups identified in white and red ginseng were alcohols, ketones,
esters, and phenols, with acids being found only in fresh P. ginseng.
Therefore, it can be hypothesized that during the processing of fresh
ginseng, many volatile metabolites may disappear or increase
(Cho, 2015).

FIGURE 5
The main metabolites of GVO in fruits. (A) (E)-β-farnesene. (B) β-Elemene. (C) Cedarene. (D) α-neoclovene. (E) δ-selinene. (F) cadinol.
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For different concoctions, the content of stigmasterol
(metabolite 1) and beta-sitosterol (metabolite 2) in P. ginseng
varied greatly from year to year. Of the three concocted forms,
the total metabolite content of red ginseng was least affected by year.
White P. ginseng showed the greatest variation in content and had
the highest levels of metabolites in the six-year-old. So when it comes
to experiments related to P. ginseng phytosterols, researchers need
to choose according to their own experimental requirements (Lee
et al., 2018).

Although there are differences in the composition of volatile oils
derived from red ginseng and P. ginseng, their pharmacological
effects, mechanism of action, targets and pathways are comparable.
RGO has been found to possess antitumor activity (Lee et al., 2010).
It inhibits tumor transformation and blocks the activation of NF-kB,
AP-1, and MAPK, as well as the expression of COX-2 (Truong et al.,
2018). This anticancer pathway is similar to that of GVO. β-
sitosterol and linoleic acid (Yasuda et al., 2009) present in RGO
have been identified as effective substances with anti-tumor and
neuroprotective properties (Lee et al., 2017). β-Sitosterol promotes
cell cycle arrest and apoptosis in breast cancer cells (Vundru et al.,
2013), prostate cancer cells (von Holtz et al., 1998), and inhibits
proliferation of human gastric adenocarcinoma cells and xenograft
tumors. Furthermore, RGO also has anti-inflammatory effects (Bak
et al., 2012a), which can significantly reduce the serum levels of NO,
IL-6 and TNF-a in mice, as well as the expression of colon

inflammation markers iNOS, COX-2, IL-6, IL-1β and TNF-α
(Truong et al., 2019). Similarly, GVO can also reduce the
aforementioned inflammatory factors in the serum to achieve
anti-inflammatory effects.

Red ginseng, exhibits higher antioxidant activity due to the
increase in phenolic metabolites induced by steam during the
preparation process (Kang et al., 2006). RGO can effectively
inhibit DPPH and ABTS free radicals. It may also significantly
reduce the levels of liver enzymes (ALT and AST) in the serum of
mice, increase the levels of antioxidant enzymes (SOD and CAT),
reduce the content of DNA oxidation products (8-OHdG)
(Ullah et al., 2021), and protect the liver from oxidative stress.
Moreover, red ginseng oil also directly scavenges ROS (Meerson
et al., 1982), inhibits lipid peroxidation, and protects cells from
oxidative damage by inhibiting the MAPK signaling pathway to
induce the expression of cellular antioxidant enzyme activity (Abe and
Berk, 1998). In addition, RGO also has antibacterial effects (Reyes
et al., 2017) and has the ability to control acne. It promotes anti-
melanin production (Saba et al., 2020), hair growth, and protects the
skin from UVC radiation (Truong et al., 2021). GVO is similar to red
GVO chemical composition. However, during the processing of red
ginseng, somemetabolites are lost while new substances are produced.
Both types of volatile oil exhibit similar pharmacological effects, but
further comparative studies are necessary to determine which one
yields superior results.

FIGURE 6
The main metabolites of GVO in rhizomes. (A) (-)-α- Gurjunene. (B) β-Caryophyllene. (C) -(-)globulol. (D) 2,6-ditert-butyl-4-methylphenol.
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2.4 Effects of different growth years on the
volatile oil content of P. ginseng

The volatile oil content of P. ginseng varies with the plant’s age,
generally showing an increasing trend as the ages. The older the P.
ginseng, the better its quality, mainly due to the accumulation of
active metabolites with age. Research has found that the relative
abundance of a-cadinol, a-bisabolol, thujob-sene, and
n-hexadecanoic acids in volatile oils increases most significantly.
By comparing the relative amounts of these metabolites, the quality
of GVO can be evaluated (Qiu et al., 2008).

Principal metabolite analysis (PCA) was performed on the
volatile oil of P. ginseng during the third, fifth and eighth year
growth periods, and it was found that there were significant
differences in the volatile oil of different years. In particular, the
samples of groups 7, 8 and 9 had obvious dispersion compared with
other groups, which proved that there was a significant difference in
the composition of eight-year-old P. ginseng compared to samples of
other ages. The spots on samples 1, 2, and three are located in
smaller areas, indicating that the chemical composition differences
of the samples over the past 3 years are relatively small.

Samples 1, 2, and three all have spots located in smaller areas,
indicating that there is very little difference in chemical composition
between the samples over the course of the past 3 years.

3 Extraction process of GVO

The volatile oil of P. ginseng is composed of various metabolites
with low content, solubility, and boiling points, as well as highly
unstable properties. Therefore, the efficiency and rationality of the
extraction method are crucial. Volatile oil extraction methods can be
classified into traditional and innovative methods. Traditional
methods include steam distillation, impregnation, infiltration, and
reflux extraction. With technological advancements, new methods
such as ultrasonic extraction, microwave extraction, semi-biomimetic
extraction, and solid phase microextraction have been developed
(Table 2). Among the available techniques, supercritical fluid
extraction technology offers a higher extraction rate and less
pollution, although it is not suitable for large-scale production. The
composition of volatile oils from traditional Chinese medicine can
vary based on the extractionmethod. Themost appropriate extraction
method should be chosen based on the specific circumstances.

3.1 Traditional extraction methods

3.1.1 solvent extraction (SO)
Solvent extraction is a common method used in practice. Based

on the solubility properties of GVO, it can be extracted using the

FIGURE 7
Volatile oil content of P. ginseng in different parts.
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soxhlet extraction method or cold immersion method with organic
solvents like petroleum ether (30–60°C), ether, or carbon
tetrachloride. The working principle involves the solvent
penetrating the cell membrane of botanical drugs, dissolving
soluble substances, creating a concentration difference between
the inside and outside of the cells, and allowing the solute to
permeate out of the cell membrane (Kuang, 2011). After vacuum
distillation to eliminate organic solvents, the extract is obtained.
Subsequently, hot ethanol is employed to dissolve the extract, which
is then cooled, filtered to remove impurities, and the ethanol is
reclaimed to obtain clean oil.

The extract can also be re-distilled to acquire a purer essential
oil. Studies have explored the extraction of volatile oil using various
solvents. Research indicates that the extraction process utilizing

water as the solvent can yield the highest levels of phenolic
substances and flavonoids (El et al., 2011). This extraction
method is straightforward, practical, and enables the extraction of
the natural metabolites of plant volatile oil. However, extracting
essential oils through leaching with organic solvents is more intricate
and often leads to significant solvent residue problems.

3.1.2 Steam distillation method
Research has shown that steam distillation is the most efficient

method for obtaining volatile oils, with an extraction efficiency of 93%
according to studies (Aziz et al., 2018). The volatile oil is not mixed
with water. When the combined vapor pressures of the volatile oil and
water equal the atmospheric pressure, the solution boils. If further
heated, the volatile oil can be distilled out with water vapor.

FIGURE 8
Average yield of GVO by region. The average volatile oil yield of P. ginseng from Jilin, Liaoning, and South Korea in China was compared with. It was
found that the volatile oil content of four-year-old P. ginseng: Jilin Province > Liaoning Province > Korea. Five-year-old P. ginseng: Korea > Liaoning
Province > Jilin Province. Six-year-old P. ginseng: Liaoning Province > Korea > Jilin Province.

TABLE 2 Comparison of different extraction processes for GVO.

Extraction method Extraction
rate

Advantages and disadvantages

Steam distillation 0.3%-0.5% Advantages: Suitable for samples with high volatile metabolite content, such as plant essential oils. Disadvantages:
The ratio of sample to water mixture must be well controlled, otherwise it will affect the separation effect.

Reflux extraction 0.1%-0.3% Advantages: High efficiency. The reflux extraction method requires less reference solvent, is relatively simple to
operate, and has higher efficiency.

Disadvantages: High solvent consumption.

Ultrasonic extraction
technology

0.05% Advantages: The extraction efficiency is high, and the temperature during the time is low.
Disadvantages: Issues such as high container requirements, noise, and equipment amplification.

Supercritical fluid extraction 1.12% Advantages: High extraction efficiency, recyclable extraction fluid, preventing pollution to the human body and
environment during the extraction process.

Disadvantages: The recovery rate is influenced by the matrix in the sample; Extracting polar substances requires
adding polar solvents and operating under high pressure, resulting in higher equipment investment.
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During extraction, the crude powder of the raw material can be
soaked in water in a still and then directly heated and distilled, or the
raw material can be placed on a perforated partition plate net. As the
steam generated by heating the water passes through the raw
material, the volatile oil is heated and distilled out simultaneously
with the water vapor. Collect distillate, cool it and separate the oil
layer (Pei, 2016). This method for extracting GVO offers advantages
such as simple equipment, easy operation, low cost, large yield, and
high recovery rate of volatile oil, However, it should be noted that the
raw materials are prone to coking due to the intense heat.
Additionally, the heating of volatile oil during the extraction
process can lead to chemical reactions such as molecular
isomerization, which can affect the composition and reduce the
value of the volatile oil (Ma et al., 1985).

Although traditional extraction methods are commonly used in
production, they come with some inherent drawbacks. Apart from
long extraction times, they necessitate a large amount of solvent and
energy. Prolonged contact with hot water or steam can degrade
certain metabolites and hydrolyze them. Furthermore, the lack of
adjustable parameters in these methods makes it challenging to
control the process selectivity and essential oil concentration (Yang
et al., 2014).

3.2 Modern extraction methods

3.2.1 Supercritical fluid extraction (SFE)
For the extraction of plant volatile oils, supercritical fluid

extraction (SFE) is a relatively new and efficient method. SFE is
faster, more convenient, and more selective than traditional
extraction methods, with higher extraction rates and lower
temperatures. In a study, the process of extracting volatile oil
from supercritical CO2 was optimized by using raw sun-dried P.
ginseng as raw material. Response surface analysis was employed to
determine the optimal extraction conditions (Cui et al., 2016). The
results indicated that an extraction pressure of 38MPa, an extraction
temperature of 55°C, a static extraction time of 2 h, and a dynamic
extraction time of 1 h resulted in an extraction rate of 1.12%. This
method allows for the simultaneous separation of high and low
boiling point substances, resulting in a product that is richer in oil
metabolites. In addition, it enables the extraction of both volatile and
non-volatile GVO, significantly improving the overall yield
(Pourmortazavi and Hajimirsadeghi et al., 2007). In the study of
P. ginseng seed oil extraction, it was found that supercritical fluid
extraction yielded higher oil content compared to compression or
solvent extraction. The highest yield of P. ginseng seed oil extracted
by supercritical fluid extraction was 17.48% at 500 bar and 65°C (Lee
et al., 2013). This technology utilizes CO2 as a supercritical fluid,
which prevents the destruction of active metabolites and facilitates
the development of new drugs. Furthermore, it reduces labor
requirements and the use of organic solvents, thereby reducing
pollution from the three wastes, making it a modern technology for
the extraction of natural essential oils that is vigorously promoted
and widely used.

3.2.2 Microwave-assisted extraction method
Microwave-assisted water distillation (MAHD), which employs

water as a solvent, is a sustainable and eco-friendly approach for

extracting volatile oils from plants (Golmakani and Rezaei, 2008).
During the extraction process, microwave power, liquid-material
ratio, extraction time and other parameters have a significant impact
on the extraction efficiency. Compared with traditional extraction
methods, MAHD significantly shortens extraction time and
improves extraction efficiency of essential oils (Shang et al.,
2020). There are studies using this method to extract essential oil
and polyphenols from camphor leaves, and the yield of essential oil
under optimal conditions is 3.26% ± 0.05%. Microwave radiation
has the potential to harm cell membranes through cell expansion,
modification of intracellular structures, impairment of oil-rich
glands and cells, acceleration of the movement of aqueous
solutions, and dispersion of internal metabolites (Chen et al., 2016).

3.2.3 Ultrasound-assisted extraction (UAE)
The ultrasonic extraction method is the use of ultrasound

cavitation, mechanical effects, and thermal effects to increase the
frequency and speed of the molecular movement of substances, to
promote contact between the solution and the material, from the
target to obtain more metabolites (Raj and Dash, 2020; Yang et al.,
2021). It has the advantages of time-saving, energy-saving, and low-
temperature extraction is conducive to the protection of active
metabolites, it is a rapid and efficient new extraction method.

In one study, raw natural-dried P. ginseng powder was used as
raw material and ether as solvent in a soxhlet extractor with
ultrasonic cleaner at reflux for 90 min in this method. The ether
was recovered to obtain the ether leachate, which was subjected to
hydrodistillation to collect the distillate. Extracted with ether
5 times, followed by dehydration with anhydrous sodium sulfate
and drying to a constant weight. The content determination results
revealed that the volatile oil content obtained from the 90-min
extraction using the ultrasonic extraction method was in line with
the findings reported in the literature (Song, 1991). In another study,
ultrasound-assisted pretreatment extraction (UAPE) was employed
to extract essential oils from the peels of Tribute citrus (TC) peels,
resulting in significantly higher yields compared to traditional
hydrodistillation (HD). It has been demonstrated that ultrasonic
extraction has a higher extraction rate compared to the conventional
method. However, this technique is not suitable for large-scale
production (Li et al., 2022).

4 The pharmacological effects of GVO
and its mechanism of action

Recently, the pharmacological properties of P. ginseng have been
discovered, revealing its potential in areas such as anti-aging, anti-
diabetes, anti-cancer, analgesia, antipyretic, anti-stress, anti-fatigue,
sedation, and protein-promoting activities (Zhou et al., 2023). The
study mainly focuses on the elaboration of ginsenosides, P. ginseng
polysaccharides. At present, it has been discovered that the fat-
soluble metabolites of P. ginseng possess anti-inflammatory,
antitussive, antihypertensive, anti-fatigue, anti-tumor, cholesterol-
lowering, and central-nervous-exciting effects. In addition, it is
worth mentioning that the pharmacological effects and chemical
composition of P. ginseng can be influenced by various factors,
including species, geographic location, cultivation, environment,
harvesting, storage, and post-harvest processing.
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4.1 Cardiovascular effects

GVO has a beneficial therapeutic effect on cardiovascular
diseases. The petroleum ether extract of P. ginseng has been
shown to significantly inhibit diacylglycerol acyltransferase
(DGAT) (Lee et al., 2004) and acyl-CoA: cholesterol
acyltransferase (ACAT) (Rho et al., 2005) in rat liver
microsomes. ACAT has been explored as a potential target for
drug intervention in hyperlipidemia and atherosclerosis (Chhabria
and Mahajan, 2009). The preventive mechanism involves inhibiting
ACAT in the intestines, liver, and arteries, thereby reducing plasma
total cholesterol and low-density lipoprotein cholesterol levels,
preventing cholesterol esterification, and reducing cholesterol
deposition in arterial walls (Kwon et al., 1997). Spectral analysis
identified the chemical structures of metabolites in the petroleum
ether extract as (9R,10S)-epoxy-16-heptadecene-4, 6-diyne-3-one,
(9R,10S)-epoxyheptadecan-4,6-diyne-3-one and 1-methoxy-
(9R,10S)-epoxyheptadecan-4,6-diyne-3-one, which inhibit ACAT
activity in a dose-dependent manner with IC50 values of 35 µM,
47 µM, and 21 µM, respectively. Additionally, ACAT inhibitors
isolated from the hairy roots of P. ginseng, identified as panaxynol,
panaxydol, panaxydiol, and panaxytriol, inhibit rat liver ACAT with
IC50 values of 94, 80, 45, and 79μM, respectively.

In myocardial ischemia, panaxynol reduces ST-segment
elevation by decreasing serum MDA and CTn-I levels, increasing
SOD, GSH, and GSH-Px enzyme activities, and enhancing NO
concentration and NOS activity, thereby mitigating oxidative
damage and myocardial injury (Alanko et al., 1994). GVO has
been less well studied in cardiovascular disease, and limited data
are available for reference. However, the pharmacological effects of
panaxynol in ameliorating myocardial injury have also been
demonstrated in studies in other plants. Inflammatory vesicle
protein complex (NLRP3) is involved in innate immunity in
ischemic heart disease (Wang et al., 2020). Panaxynol also
inhibits the NLRP3 inflammasome via the HMGB1/TLR4/NF-κB
axis, significantly reducing myocardial infarction area and apoptosis,
and alleviating myocardial damage and neutrophil infiltration (Ding
et al., 2023).

4.2 Anti-inflammatory effect

Relevant pharmacological studies have proved that GVO has
anti-inflammatory effects, as shown in Table 3. The main anti-
inflammatory metabolite, panaxynol, can non-competitively inhibit
15-hydroxyprostaglandin dehydrogenase in the cytoplasm
(Fujimoto et al., 1998). Zuo Xu conducted a study using xylene

to induce mouse ear swelling. After treatment with GVO, the
earpieces of different experimental groups of mice were weighed
and their swelling and inhibition rates were calculated. The results
indicated a significant inhibitory effect of GVO on ear swelling in
mice. In vitro inflammatory cell experiments showed that GVO
possesses the ability to suppress the expression of MyD88 and
TLR4 proteins, decrease the phosphorylation level of P65 in
RAW264.7 cells, and inhibit the NF-kB signaling pathway, thereby
exerting anti-inflammatory effects (Zuo, 2021). Acute lung injury, an
acute inflammatory disease, can also be ameliorated by panaxydol
(PX), a metabolite of GVO. PX has been shown to significantly
improve pathological changes in the lungs of mice, reduce
pulmonary edema, inflammation, and ferroptosis (Li et al., 2021).
The mechanism involves the selective inhibition and upregulation of
the Keap1-Nrf2/HO-1 pathway, which markedly attenuates LPS-
induced inflammation and ferroptosis.

Depression, often linked to inflammatory factors, is another
condition where GVO shows promise. Depressed patients typically
exhibit elevated levels of cytokines such as IL-1β and TNF-α
(Rethorst et al., 2013). A novel herbal inhalation preparation
combining GVO with other essential oils, known as CSHVO, has
been developed. CSHVO has been shown to enhance the
proliferation and viability of PC12 cells by inhibiting cort-
induced apoptosis. Additionally, CSHVO intervention
significantly reduced the expression levels of pro-inflammatory
cytokines IL-1β, IL-6, TNF-α, and IFN-γ, while increasing the
levels of anti-inflammatory cytokines IL-4 and IL-10. This
suggests that the anti-depressive activity of CSHVO may be
related to the inhibition of inflammatory cytokine release and the
alleviation of neuroinflammation (Shuangli et al., 2024). Moreover,
panaxynol from other plants has been shown to exert anti-
inflammatory effects by inhibiting the secretion of inflammatory
cytokines TNF and IL-6 in BV-2 microglial cells, preventing their
overactivation. This is achieved through the suppression of the NF-
κB/i-κB-α inflammatory signaling pathway, which increases the
secretion of brain-derived neurotrophic factor (BDNF) and
tyrosine kinase receptor B (TrkB) proteins in the hippocampus of
mice, thereby achieving anti-depressive effects (Zhao et al., 2021).

In summary, the anti-inflammatory effects of GVO are mediated
through multiple mechanisms, including the inhibition of key
inflammatory pathways and cytokines, as well as the modulation
of neuroinflammatory responses. These findings highlight the
potential of GVO as a therapeutic agent for inflammatory
diseases and related conditions. Panaxydol in P. ginseng volatile
oil has anti-inflammatory effects. Panaxynol from other plants has
shown anti-inflammatory effects, and it remains to be investigated
whether it has the same effect in GVO.

TABLE 3 The targets and mechanisms of GVO in anti-inflammatory.

Activities Model Treatment Mechanism References

GVO Balb/c mice RAW264.7
Cells

Mouse:10%(v/v), 5%(v/v), 1%(v/v) Cells:1 μg/mL,
0.8 μg/mL, 0.6 μg/mL

NF-KB pathway Zuo (2021)

Panaxydol C57BL/6 mice BEAS-2B
cells

C57BL/6 mice:20 mg/kg panaxydol BEAS-2B cells:
10, 20, 40, and 80 μg/mL

Keap1-Nrf2/HO-1 pathway Li et al. (2021)

Chang Shen Hua
volatile oil

Male SD rats PC12 cells Male SD rats:0.1 mL/kg, 0.05 mL/kg PC12 cells :
80 μg/mL, 40 μg/mL, 20 μg/mL

cAMP-PKA-CREB signaling
pathway

Shuangli et al.
(2024)
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4.3 Antibacterial effects

Pharmacological studies have shown that the antibacterial
mechanism of GVO may involve the synergistic action of
multiple metabolites, such as disrupting bacterial cell wall and
membrane permeability, affecting bacterial energy metabolism,
and inhibiting protein and nucleic acid synthesis (Chen and Fan,
2016). The volatile oil present in the outer cork layer and phloem of
P. ginseng roots has inhibitory effects on the growth of various
Gram-positive bacteria, including Staphylococcus, Streptococcus,
Diphtheria, Listeria, and Streptococcus.

Panaxynol exhibits good antibacterial activity against
Staphylococcus aureus, Mycobacterium tuberculosis, Bacillus
subtilis, Gram-negative bacteria, and Escherichia coli (Bae et al.,
2001). Gram-negative bacteria are known to cause inflammation in
the lungs, and lipopolysaccharide (LPS), the principal metabolite of
the outer membrane of gram-negative bacteria, is considered one of
the major causes of lung diseases (Kolomaznik et al., 2017).
Panaxydol can inhibit the activity of LPS, thereby effectively
inhibiting gram-negative bacteria. Helicobacter pylori (HP) is
recognized a risk factor for gastric cancer and plays a crucial part
in the development of gastritis and peptic ulcers (Warren and

TABLE 4 The targets and mechanisms of GVO in antibacterial.

Activities Disease Model Treatment Mechanism References

Panaxytriol Helicobacter
pylori (HP)

HP ATCC43504 strain panaxytriol: 50 μg/mL Inhibition Bae et al. (2001)

Hydrophobic fraction of red ginseng
ethanol extracts (Panaxynol and

panaxydol)

Acne Propionibacterium acnes female
volunteers. men and women age 19 to

40 years

12.5、6.25 and 3.12 mg/mL
3 mg/g of RGEF

Inhibition Contassot and
French (2014)

Panaxytriol Helicobacter
pylori

H.Pylori Hela cells H.Pylori (IC50: 0.05,
0.046 mg/mL) Hela cells:

6 mg/mL

Inhibition Kim et al. (2003)

FIGURE 9
Molecular mechanism of GVO for anti-cancer. The mechanism of panaxydol induced cell apoptosis involves a rapid increase in cytoplasmic
Ca2+concentration, with excess Ca2+ transferring from the endoplasmic reticulum (ER) tomitochondria. The release of E [Ca2+] and the resulting increase
in Ca2+ activate p38 and JNK, while p38/JNK further activates NADPH oxidase. NADPH oxidase activates and induces oxidative stress, triggering
mitochondria-dependent apoptosis.
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Marshall, 1983). Pathogenic HP produces urease, an enzyme that
breaks down urea into ammonia and carbamate. Research has
confirmed that panaxytriol can achieve anti-Helicobacter pylori
effects by inhibiting gastric urease and gastric H+/K + ATPase
(Bae et al., 2001) (Table 4).

Moreover, polyacetylene also has good antifungal (Xie et al.,
2022) and antibacterial effects (Kim et al., 2003). Acne is a chronic
inflammatory skin disease caused by excessive sebum secretion,
proliferation of Propionibacterium acnes, and inflammatory
response (Contassot and French, 2014). Panaxynol and

panaxydol have shown selective inhibitory effects on P. acnes,
making them effective in treating acne (Hou et al., 2019).

4.4 Anticancer effects

Among the pharmacological effects of GVO, its anticancer
activity has been extensively studied. The anticancer activity of P.
ginseng is primarily attributed to its lipophilic metabolites. Hexane
extraction maximizes the recovery of anticancer active metabolites,

TABLE 5 The targets and mechanisms of GVO in anticancer.

Activities Disease Model Treatment Mechanism References

Hexane extract of ginseng
marc (HEGM), hexane-
soluble fraction (denoted

as HEG)

Cancer Human hepatoma (HepG2) and
human breast cancer (MCF-7)

cell lines

HEG showed strong inhibition
of HepG2 (GI50: 21.1 μg/mL)
and MCF-7 (GI50: 41.2 μg/mL.
HEGM(GI50: 41.7 μg/mL in
HepG2 , GI50: 54.4 μg/mL in

MCF-7)

Inhibit proliferation Lee et al. (2009)

Panaxydol Human malignant
tumor cell

Human melanoma cell line
SK-MEL-1

5, 10, 20 μg/mL Inhibit cell cycle Moon et al.
(2000)

Petroleum ether extract
of panax ginseng roots

Cancer Human renal Cells carcinoma
(RCC) cell lines (Caki-1, A498,

and CURC II)

0, 40, 80 μg/mL Inhibit cell cycle Sohn et al.
(1998)

Panaxydol Cancer BEAS-2B (normal
immortalized), 1799 (non-

transformed), 1198
(transformed but non-
tumorigenic) and 1170-I
(tumorigenic) cell lines

comprising an in vivo lung
carci-nogenesis model. Human
leukemia T cell line, Jurkat, and
a human breast cancer cell line,

MCF-7

MCF-7 and Jurkat cells were
treated with 50 and 40 μg/mL of
panaxydol, BEAS-2B, 1799,
1198 and 1170-I cells were
treated with 50 μg/mL

panaxydol

Increase in [Ca2+]i, activation of
JNK and p38 MAPK, and ROS
generation through NADPH
oxidase and mitochondria

Kim et al.
(2011a)

Panaxydol Cancer MCF-7 human breast cancer,
Pathogen-free female BALB/c

or BALB/c nu/nu mice

MCF-7 cells were treated with
20 or 50 μg/mL Mouse:

panaxydol (50, 100 mg /kg)

EGFR activation and ER stress
mediate panaxydol-induced

apoptosis. CAMKII-TAK1-p38/
JNK signaling pathway

Kim et al. (2016)

GVO Gastric cancer MKN-45 cells, HGC-27 cells MKN-45 cells: 0 μg/mL、
50 μg/mL、100 μg/mL. HGC-27
cells: 150 μg/mL、200 μg/mL and

250 μg/mL

Regulation of EGFR, MAPK1,
MAPK3, and IL-6 related

signaling pathways

Cui (2022)

Lipid-soluble ginseng
extract

Lung cancer NCI-H460 human lung cancer
cell line

0、30、100 μg/mL Cell cycle arrest and apoptosis
induction.

Kang et al.
(2011)

Fat-soluble metabolites Lung cancer NCI-H1299 human lung cancer
cell line

0、50、100、150、200 and
250 μg/mL)

EGFR、KDR、MAPK3、
PTPN11 and CTNNB1 signaling

pathway

Gao et al. (2023)

Panaxynol Lung cancer Human NSCLC cell lines,
human lung Epithelium and
human retinal pigmental

epithelium (RPE)

Human NSCLC cell lines:
5 mmol/L. BEAS-2B: <1 μm,

HBE: 1 μm RPE: 1 μm

Inhibition of Hsp90 Le et al. (2018)

Panaxynol Pancreatic cancer Panc-1 80 μg/mL Inhibits the migration and
invasion of pancreatic cancer

stem cells Attack ability

Wang et al.
(2015)

P.ginseng seed oil (GSO) Breast cancer MCF-7 breast cancer cells 1 μL/mL Causes apoptosis of ER+ breast
cancer cells via PKC activation

Kim et al. (2020)

Panaxydol Hepatocarcinoma Human liver carcinoma cell line
HepG2

4, 6 and 9 μm Blocks the cell cycle progression
of HepG2 cells

Guo et al. (2009)
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demonstrating strong in vitro inhibitory effects on the proliferation
of human liver and breast cancer cells in a concentration-dependent
manner (Lee et al., 2009). Polyacetylenes such as panaxynol,
panaxydol, and panaxytriol are considered the main anticancer
metabolites, exhibiting antiproliferative effects on mouse sarcoma,
leukemia, human colon cancer, and human ileocecal adenocarcinoma
cell lines. Panaxydol accelerates cell cycle progression from G1 to S
phase by reducing Cdk1 activity and upregulating p27KIP1 protein
expression, inhibiting human renal cell carcinoma proliferation (Sohn
et al., 1998; Moon et al., 2000). Panaxydol induces cancer cell
apoptosis by inhibiting EGFR activation and endoplasmic
reticulum stress, suppressing tumor growth in mice (Figure 9)
(Kim et al., 2011; Kim et al., 2016). Panaxynol significantly reduces
MMP-2 mRNA and protein levels in melanoma cells (B16F10) at a
concentration of 3 μg/mL, inhibiting cancer cell invasion and
migration (Yun et al., 2015) (Table 5).

In addition, some rare metabolites in the volatile oil of P. ginseng
also have anticancer activity, such as β-elemene, (Peng et al., 2006),
d-limonene (Anandakumar et al., 2021), and α-humulene (Chen
et al., 2019). Among these metabolites, β-elemene, a sesquiterpene
effective active monomer found in P. ginseng essential oil,
demonstrates significant anticancer activity and is classified as
a class II non-cytotoxic antitumor drug in China. It is clinically
for the treatment of rectal cancer (Wang et al., 2022), breast
cancer (Xie and Wang, 2022). Its anticancer mechanism may
induce apoptosis in cancer cells through a variety of pathways,
such as the ROS-mediated mitochondrial pathway, cellular
oxidative dysfunction, the caspase-dependent mitochondrial

death pathway, and inhibition of the PI3K/Akt pathway
(Qureshi et al., 2019). Inducing autophagy in cancer cells by
targeting multiple molecular targets such as kinases,
transcription factors, growth factors, their receptors, and
proteins (Zhai et al., 2019).

4.4.1 Anti-gastric cancer
GVO has shown promising anti-cancer properties, particularly

against gastric cancer. Key metabolites such as linoleic acid, panaxynol,
methyl linoleate, palmitoleic acid, and oleic acid have been identified to
interact with critical targets in gastric cancer, including EGFR,
MAPK1, MAPK3, and IL-6, significantly inhibiting the proliferation
of gastric cancer cells (Cui, 2022). This inhibition is dose- and time-
dependent, as demonstrated in vitro experiments with SGC-823 gastric
cancer cells, where GVO treatment resulted in a marked reduction in
glycogen and succinate dehydrogenase content, and a significant
decrease in DNA content after 72 h of administration (Wang et al.,
1992). This suggests that the mechanism by which GVO inhibits
gastric cancer cell growth may involve disruptions in DNA,
carbohydrate, and energy metabolism. Additionally, panaxytriol has
been shown to exhibit cytotoxicity against human gastric cancer cell
line MK-1, enhancing the cytotoxic effects of MMC by decreasing
membrane fluidity and promoting MMC accumulation in MK-1 cells
(Matsunaga et al., 1994).

4.4.2 Anti-lung cancer
GVO, particularly its polyacetylenes, has demonstrated

significant anti-tumor activity against lung cancer and has a

FIGURE 10
Graphic summary of GVO against cancer.
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strong inhibitory effect on lung cancer cell lines at high
concentrations (100 μg/mL). This anticancer mechanism initiates
the activation of caspase-8 and caspase-9, which in turn activates
caspase-3 to induce cleavage of PARPs. This process results in cell
cycle arrest at the G0/G1 phase, thereby inhibiting lung cancer cell
proliferation (Kang et al., 2011). Furthermore, GVO metabolites
downregulate the levels of EGFR, KDR, MAPK3, PTPN11, and
CTNNB1 proteins in lung cancer cells, affecting the PI3K/Akt and
RAS/ERK pathways, which are crucial for cell proliferation and
survival proteins regulated by Hsp90 (Gao et al., 2023). Panaxynol
treatment also significantly inhibits the interaction between HIF-1α
and Hsp90, reducing HIF-1α protein levels and VEGF mRNA levels
in a dose-dependent manner, further supporting its anti-lung cancer
effects (Lee et al., 2018; Le et al., 2018).

Furthermore, panaxynol has been found to decreases
proliferation and self-renewal of pancreatic cancer PANC-1
stem cells. Its principle may inhibit the migratory ability of
SW1990 cells by down-regulating the expression of Ki67,
PCNA, Vimentin, and MMP-9 as well as up-regulating the
expression of E-cadherin, thus exerting its anti-tumor effect
(Wang et al., 2015). In addition, some studies also illustrated
the phenomenon of panaxynol inhibiting epithelial-
mesenchymal cell transformation at the molecular level. It
exerts its anti-tumor effects by down-regulating the expression
of Vimentin and MMP-9 and up-regulating the expression of
E-cadherin. P. ginseng seed oil (GSO) in combination with
tamoxifen inhibits the growth of ER + breast cancer cells. It
induces apoptosis in ER + breast cancer cells by activating PKC
(Li et al., 2012), which leads to the breakdown of caspase-9,
caspase-3, and PARP (Kim et al., 2020). α-Humulene (Legault
et al., 2003), β-sitosterol (Shin et al., 2016) and (Z)-β-farnesene
(Afoulous et al., 2013) have been shown to be associated with the
anticancer activity of several plant essential oils. The fat-soluble
metabolites panaxydol and panaxynol can inhibit liver cancer and

block the cell cycle progression from G1 phase to S phase at high
concentrations, thereby inhibiting the proliferation of human
kidney cancer cells (Guo et al., 2009).

In conclusion, the anti-cancer effects of GVO are primarily
attributed to its ability to interfere with key signaling pathways and
cellular processes involved in cancer cell proliferation and survival
(Figure 10). The active metabolites of GVO, such as linoleic acid,
panaxynol, and panaxytriol, exhibit potent inhibitory effects on
gastric and lung cancer cells through mechanisms involving
apoptosis induction, cell cycle arrest, and disruption of critical
protein interactions. These findings highlight the potential of
GVO as a valuable therapeutic agent in the treatment of gastric
and lung cancers.

4.5 Anti-aging, anti-oxidation

GVO has demonstrated significant anti-aging and antioxidant
properties, which are crucial for mitigating the effects of oxidative
stress and cellular aging (Alanko et al., 1994). Studies have shown
that panaxynol and panaxydol in GVO can prolong the lifespan
and health span of model organisms such as Caenorhabditis
elegans. The underlying mechanisms involve the upregulation of
autophagy-related genes such as atg-4.2, atg-7, lgg-2, and cyd-1, as
well as the increased expression of superoxide dismutase 1 (sod-1).
These genetic modifications enhance the organism’s ability to
manage oxidative stress, thereby promoting longevity and
health without compromising reproductive capacity.
Additionally, GVO has been found to activate SOD activity and
autophagy, which are indicative of hormesis—a process where low
doses of a stressor can stimulate beneficial effects on the
organism (Table 6).

Senescence is a state in which cell division permanently ceases
and cells die. Aging is closely associated with major factors such as

TABLE 6 The targets and mechanisms of GVO in antioxidant.

Activities Disease Model Treatment Mechanism References

GVO Extend life Caenorhabditis elegans strains 12.5、25 and
50 μg/mL

Antioxidant, upregulation of autophagy-
related genes atg-4.2, atg-7, lgg-2 and cyd-1

Wang et al.
(2022)

Panaxydol Antioxidant BEAS-2B (normal immortalized), 1799 (non-
transformed), 1198 (transformed but non-

tumorigenic) and 1170-I (tumorigenic) cell lines

50 μg/mL [Ca2+]i increase, JNK and p38 MAPK
activation, and ROS generation through
NADPH oxidase and mitochondria.

Nie et al. (2008)

TABLE 7 The targets and mechanisms of GVO in neuroprotection.

Activities Disease Model Treatment Mechanism References

Panaxydol and panaxynol Apoptosis in
cortical neurons

Pure cortical
neurons

5 μm Downregulation of the pro-apoptotic gene
Bax and downregulation of the anti-
apoptotic gene Bcl-2 were reduced

Guo et al. (2021)

Panaxynol and the acetylenic triol Memory
impairment

PC12h cells and
Neuro2a cells ddY

strain mice

>2 μm Affects the neuritogenesis of paraneurons
like PC12h and Neuro2a,

Yamazaki et al.
(2001)

Panax ginseng essential oil and
Acorus tatarinowii essential oil,

Albizia julibrissin flower essential oil

Depression PC12 cells Male SD
rats

PC12 cells: 20、40、
80 μg/mL Male SD rats:
0.1 mL/kg、 0.05 mL/kg

cAMP-PKA-CREB pathway Shuangli et al.
(2024)
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DNA damage and mitochondrial dysfunction. Figure 11 illustrates
that DNA damage triggers the activation of the ataxia
telangiectasia mutated gene (ATM), Rad3 related gene (ATR),
p53 pathways (Thompson, 2012), and cell cycle dependent protein
kinase inhibitor p21, thereby promoting cell cycle arrest and
inducing aging. Moreover, DNA damage activates P16INK4a
and inhibits the binding of CDK4 to cyclin D. This prevents
phosphorylation of retinoblastoma (RB), leading to inhibition of
E2F dependent gene expression and inhibition of G1/S cell cycle
progression. GVO can repair damaged pathways by increasing the
expression of autophagy substrate p62 protein to delay aging (Su
et al., 2023).

During oxidative stress, the increase in reactive oxygen species
(ROS) and the decrease in antioxidant defense mechanisms have a
broad impact on apoptotic and non-apoptotic cell death (Aruoma
et al., 2006; Bak et al., 2012b). The main sources of intracellular
ROS include NADPH oxidase and the mitochondrial electron
transport chain (ETC.) (Ryter et al., 2007). Oxidative stress
occurs when there is an excess production of ROS by
mitochondria or NADPH oxidase. Cancer cells are more
sensitive to oxidative stress, and scertain anticancer drugs work
by inducing ROS production (Pelicano et al., 2003; Valko et al.,
2006). Panaxydol induces apoptosis by increasing intracellular
calcium level, activation of JNK and p38 MAPK and generating
ROS dependent on NADPH oxidase (Kim et al., 2011). In addition,
panaxydol (PX), panaxynol from other plants also showed good
antioxidant activity by inhibiting oxidative stress through

activation of Keap1-Nrf2 signaling pathway, reduction of LPO
and its related markers, and activation of NO1 and HO - one genes,
which resulted in protection of kidneys from damage (Aruoma
et al., 2006; Nie et al., 2008). However, whether the antioxidant
capacity of panaxydol in P. ginseng is related to the Keap1-Nrf2
system has not yet been confirmed, and it is expected that scholars
will further study this.

In summary, the anti-aging and antioxidant effects of GVO are
mediated through a combination of genetic regulation, enhancement of
autophagy, and activation of key antioxidant pathways. These
mechanisms collectively contribute to the mitigation of oxidative
stress and the promotion of cellular longevity, making GVO a
promising candidate for further research and potential therapeutic
applications in age-related diseases.

4.6 Antiplatelet clotting

Research on the anti-platelet aggregation effects of GVO is
limited, but it has shown better anti-platelet activity than
ginsenosides (Kuo et al., 1990). Panaxynol, a metabolite of GVO,
exhibits good anti-platelet aggregation effects by inhibiting ATP
release and platelet aggregation (Teng et al., 1989). At a
concentration of 0.41 μmol/mL, panaxynol inhibits platelet
aggregation induced by arachidonic acid, collagen, ADP, and
ionophore A23187 in rabbits, significantly inhibiting
thromboxane B2 formation. Ginsenoside prevents secondary

FIGURE 11
DNA damage-induced senescence pathways.
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aggregation of ATP induced by adrenaline and ADP, completely
blocking ATP release. It also inhibits platelet aggregation induced by
collagen, ADP, and thrombin, as well as ATP release and
thromboxane formation in platelets (Kwon et al., 1997). The
addition of 25 mg (0.0025% of the total diet) of P. ginseng
lipophilic fraction to the diet can be antithrombotic (Park et al.,
1996). After feeding them to rats stimulated by thrombus and
collagen, cGMP levels were significantly higher than those of rats
given only 15% corn oil. In addition, by adding LF to thrombin- and
collagen-stimulated platelets, cGMP and CAMP levels are elevated.
This indicates that LF has a direct promoting effect on cGMP. It can
be seen that the addition of LF to the diet regulates cGMP and
CAMP levels, resulting in the inhibition of thrombin- or collagen-
induced platelet aggregation in rats.

4.7 Nutrition and protection of nerve cells

Panaxydol (PND) and panaxynol (PNN) protect cortical
neurons from toxicity-induced damage by reducing the
upregulation of pro-apoptotic gene Bax and the downregulation
of anti-apoptotic gene Bcl-2 at a concentration of 5 µM, suggesting
potential benefits in reducing neurodegeneration in Alzheimer’s
disease (Nie et al., 2006). In a mouse maze experiment,
panaxynol and acetylenic triol at a dose of 20 mg/kg/day for
three consecutive days improved scopolamine-induced memory
deficits. At concentrations greater than 2mM, they significantly
affect the neurodevelopment of secondary neurons such as
PC12 h and Neuro2a (Yamazaki et al., 2001) (Table 7).

Clinical and animal studies indicate that depression, a
common central nervous system disorder, is associated with
reduced or deficient serotonin (5-HT) (Yatham et al., 2000;
Ferrari and Villa, 2017) and dopamine (DA) (Sykora et al.,
2013). The combination of P. ginseng essential oil, Acorus
tatarinowii essential oil, and Albizia julibrissin flower essential
oil (CSHVO) from the classic Chinese herbal prescription Kai Xin
San (KXS) has shown efficacy in improving depression (Cao et al.,
2023). CSHVO significantly increases monoamine neurotransmitter
levels in the brain tissue of depressed rats and improves
hippocampal pathology. By regulating the cAMP-PKA-CREB
signaling pathway, CSHVO promotes neuronal development,
repairs nerves, and exerts antidepressant effects (Zhang et al.,
2024). Panaxynol from other plant species also exhibits
neuroprotective effects by inhibiting calcium influx and
promoting free radical production, counteracting amyloid-beta
25–35 fragment-induced early neuronal degeneration (Sun et al.,
2020). Panaxydol promotes neurite outgrowth in PC12 cells,
protecting neurons from neurodegenerative diseases such as
Alzheimer’s disease (Li et al., 2018). Panaxydol enhances the
expression and secretion of nerve growth factor (NGF) and
brain-derived neurotrophic factor (BDNF) in Schwann cells
(SCs), improving SC viability and biological characteristics,
effectively protecting neurons from degenerative disease
damage (He et al., 2009). While panaxydol and panaxynol in
GVO also exhibit neuroprotective effects, further research is
needed to explore the underlying mechanisms and potential
clinical applications as early treatment candidates for
Alzheimer’s disease (Zhu et al., 2008).

4.8 Other pharmacological effects

In addition to the main pharmacological effects such as anti-
inflammatory, antioxidant, and anti-cancer, GVO also has the
functions of weight loss (Kim et al., 2011), hair growth,
protection against ultraviolet radiation, and reproductive system
protection (Mhaibes et al., 2023). Linoleic acid (LA) or beta-
sitosterol (SITOS) in volatile oils can stimulate the transition of
hair follicles from the resting phase to the early/mid-growth phase.
This leads to an increase in follicle density and diameter, as well as
the emergence of the hair shaft from the epidermis. These
metabolites synergistically induce the expression of β-catenin,
phosphorylated glycogen synthase kinase 3β, cyclin D1, cyclin E,
and Bcl-2, all of which are associated with hair growth. Furthermore,
they activate the Wnt/β-catenin and Shh/Gli pathways, promoting
hair follicle development and regeneration.

GVO contains various metabolites with unsaturated double
bonds, among which n-hexadecanoic acid is particularly effective
as an “anti-mosquito agent” (Jiang et al., 2014). In addition, the
volatile oil derived from P. ginseng root possesses pharmacological
properties that benefit the skin. Through skin friction, it enhances
blood circulation and the development of skin cells, while providing
protection against cold and ultraviolet radiation.

Cholesterol acyltransferase (ACAT) plays a crucial role in
cholesterol uptake, storage, and production and has been
explored as a potential target for pharmacological intervention in
hyperlipidemia and atherosclerotic diseases (Giovannoni et al.,
2003). Polyacetylene metabolites derived from P. ginseng root
exhibit modest inhibition of ACAT enzymes in rat liver
microsomes (Rho et al., 2005). In the MAPK signaling pathway,
JNK and p38 are the main mediators of apoptosis in proximal tubule
cells (Guo et al., 2021). Panaxynol can inhibit PGDH activity in
gastric mucosa, inhibit apoptosis by down-regulating cisplatin and
promote the phosphorylation of JNK and p38 in cells and the
expression of cleaved caspase-3, thereby improving kidney injury
(Fujimoto et al., 1998; Lee et al., 2019). In addition, panaxydol
exhibits anti-fatigue properties, which can significantly reduce the
levels of oxidative stress markers such as serum LDH, superoxide
dismutase and malondialdehyde in forced swimming rats, and
inhibit oxidative stress (Shin et al., 2019).

5 Discussion

P. ginseng is a widely recognized medicinal plant that has a positive
effect on immune regulation and the circulatory system (Shergis et al.,
2013). It has been extensively utilized inmedicine, food and other fields,
and has shown promising application prospects (Qin et al., 2018).
Ginsenosides are known to have favorable therapeutic effects in
cardiovascular diseases (Fan et al., 2020), neurodegenerative diseases
(Zarneshan et al., 2022), cancer (Shah et al., 2023), and diabetes (Zhou
et al., 2019). P. ginseng polysaccharides exhibit anti-inflammatory (Qi
et al., 2023), anti-tumor (Li et al., 2014), antioxidant (Xiong et al., 2019),
anti-asthmatic, hepatoprotective, anti-depressant, anti-radiation and
blood lipid regulating properties (Zhao et al., 2019). Although P.
ginseng is widely consumed and utilized, there still exists potential
investment opportunities in the field of GVO. The current research
mainly focuses on the main metabolites of P. ginseng, ginsenosides and
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P. ginseng polysaccharides, but there are fewer studies on P. ginseng
volatile oils. Therefore, this paper summarizes the research results of
GVO in recent years and finds that the current research has limitations.
For example, in terms of pharmacological effects, in-depth research has
been conducted mainly in the direction of anti-cancer. Therefore, this
paper summarizes the results of the current study and serves as a
starting point for future in-depth studies on GVO.

The volatile oil of P. ginseng is a complex mixture composed of
hundreds of metabolites, mainly terpenes, including
monoterpenes and sesquiterpenes, as well as small aliphatic
metabolites and small aromatic metabolites. P. ginseng contains
two highly abundant polyacetylenes, namely, panaxynol and
panaxydol, which are the main metabolites of P. ginseng
essential oils. Polyacetylene extracted from P. ginseng exhibits
significant biological effects, including induction of cytotoxicity
(Yeo et al., 2017), inhibition of tumor cell proliferation (Kim et al.,
2002), inhibition of platelet coagulation function (Teng et al.,
1989) and inhibition of diacylglycerol acyltransferase (DGAT)
enzyme activity (Lee et al., 2004). The presence of a triple bond
in polyacetylene increases its reactivity towards biomolecules (He
et al., 2014). In addition, polyacetylene has also been shown to be
cytotoxic to many solid and leukemic cell lines (Kim et al., 2002), as
well as the ability to enhance the cytotoxicity of other anticancer
drugs (Matsunaga et al., 1990; Matsunaga et al., 1994). Moreover,
analogs and derivatives of polyacetylene have shown promising
anti-inflammatory activity, nutritive neurological effects (Wang
et al., 2006), immune enhancement (Chou et al., 2011), anticancer
properties (Cheung et al., 2019) and the ability to attenuate the
toxicity of a range of anticancer drugs. Thus GVO might be
developed as an immune-boosting product or an adjuvant anti-
cancer drug.

6 Conclusion and future perspectives

As a traditional Chinese medicine, P. ginseng has been highly
regarded for its therapeutic efficacy. This paper expands our
understanding of P. ginseng and reveals the complex and
diverse chemical compositions and pharmacological activities of
GVO. The compositions of the volatile oils from different parts of
the P. ginseng plant, their contents, extraction methods and
pharmacological activities, as well as the mechanisms of action
of their major molecules, were systematically summarized. Several
factors affect the composition of volatile oils: growth year,
collection season, geographical region, extraction method,
extraction site, etc. The composition of the volatile oil in turn
affects its biological activity. Modern techniques such as
supercritical fluid extraction, microwave-assisted extraction and
ultrasound-assisted extraction offer promising ways to improve
the yield and bioavailability of GVO. Therefore, standardization of
these extraction parameters is essential to ensure the consistency of
volatile oil quality and efficacy.

From an expert’s point of view, the development and utilization
of GVO is promising but faces significant challenges. For example,
there are many metabolites of P. ginseng volatile oil that are not
widely recognized, so there is no international standardized
nomenclature. As a result, the metabolite names do not
correspond to each other when the data are summarized, so the

composition summary of GVO is not complete. The
pharmacological activities of GVO, including cardiovascular, anti-
inflammatory, antimicrobial, anticancer, anti-aging, and
neuroprotective effects, highlight its potential as a multifaceted
therapeutic agent. However, the low content of volatile oil in P.
ginseng, coupled with its lipophilicity, degradability and volatility,
poses a significant barrier to its clinical application and efficacy.
Although, the pharmacological mechanisms of P. ginseng volatile oil
metabolites (especially panaxynol) highlight the potential for new
drug development, little is known about their pharmacokinetic
profile. Therefore, in-depth pharmacokinetic studies of GVO
should be performed to check for the presence of active
metabolites. The identification of these metabolites may provide
key information on the bioactive forms of GVO and its
pharmacological mechanisms. Therefore, this area may become a
new focus for future research. The current literature on GVO
remains limited and quality assessment studies are incomplete.
This gap highlights the need for more comprehensive and
rigorous studies to fully elucidate the therapeutic potential and
safety of GVO.

In conclusion, although GVO has a wide range of
pharmacological activities, it has been less studied in the areas of
immunization, antimicrobial and antiplatelet coagulation. This
necessitates further research to address the existing challenges
and optimize its clinical applications. Future studies should focus
on improving extraction techniques, standardizing quality
assessment, and exploring synergistic or antagonistic effects of
volatile oil metabolites. Only in this way can we fully utilize the
potential of GVO as a valuable resource in the fields of medicine and
healthcare.
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