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Background: Colorectal cancer (CRC) is an aggressive primary intestinal
malignancy with the third-highest incidence and second-highest mortality
among all cancer types worldwide. Transcription factors (TFs) regulate cell
development and differentiation owing to their ability to recognize specific
DNA sequences upstream of genes. Numerous studies have demonstrated a
strong correlation between TFs, the etiology of tumors, and therapeutic
approaches. Here, we aimed to explore prognosis-related TFs and
comprehend their carcinogenic mechanisms, thereby offering novel insights
into the diagnosis and management of CRC.

Materials and Methods: Differentially expressed TFs between CRC and normal
tissues were identified leveraging The Cancer Genome Atlas database,
Weighted correlation network analysis and Cox regression analysis were
performed to identify prognosis-related TFs. The cellular functions of hub
TF zinc finger E-box binding homeobox 1 (ZEB1) were determined using by 5-
ethynyl-2′-deoxyuridine and cell invasion assays in CRC cells. RNA-
sequencing, Kyoto Encyclopedia of Genes and Genomes enrichment, and
gene set enrichment analyses were used to identify the cellular processes in
which ZEB1 participates. Immunoaffinity purification, silver staining mass
spectrometry, and a chromatin immunoprecipitation assay were conducted
to search for proteins that might interact with ZEB1 and the target genes they
jointly regulate.

Results: Thirteen central TFs related to prognosis were identified through
bioinformatics analysis techniques. Among these TFs, ZEB1 emerged as the TF
most closely associated with CRC, as determined through a combination of
regulatory network diagrams, survival curves, and phenotype analyses.
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ZEB1 promotes CRC cell growth by recruiting the NuRD(MTA1) complex, and the
ZEB1/NuRD(MTA1) complex transcriptionally represses glycolysis-associated
tumor suppressor genes.

Conclusion: Our study not only identified a hub biomarker related to CRC
prognosis but also revealed the specific molecular mechanisms through which
ZEB1 affects cancer progression. These insights provide crucial evidence for the
diagnosis of CRC and potential treatment opportunities.
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1 Introduction

Colorectal cancer (CRC) is a malignant neoplasm originating in
the colon or rectum and constitutes roughly 10% of all reported
cancer cases and associated deaths worldwide, with an estimated
annual incidence of around 900,000 cases (Dekker et al., 2019; Guo
et al., 2023). Most CRC cases occur sporadically and are primarily
linked to modifiable environmental risk factors associated with
modern lifestyles, such as obesity, poor diet, alcohol drinking,
and smoking (Keum and Giovannucci, 2019; Bai et al., 2022;
Yang et al., 2022). The pathological diagnosis of CRC is
predominantly reliant on colonoscopy for pathological diagnosis
(Brenner et al., 2014; Biller and Schrag, 2021). Treatment for CRC
typically involves extensive surgical procedures. However, rectal
cancer poses challenges due to its complex anatomy, often
leading to a high postoperative recurrence rate (Qin et al., 2023).
In contrast, colon cancer tends to have a poor survival prognosis due
to its rapid occurrence and metastasis (Compton, 2003; Mao
et al., 2024).

Over recent decades, the rapid development of new technologies
has enabled us to rapidly obtain extensive physiological and
pathological insights into CRC. Weighted gene co-expression
network analysis (WGCNA) has emerged as a robust
methodology for investigating the intricate associations between
genes and phenotypes across various contexts (Esposti et al., 2016;
Guo et al., 2017; Liu et al., 2017). A notable advantage of WGCNA
lies in its ability to transform gene expression data into coherent co-
expression modules, thereby unraveling underlying signaling
networks that potentially underpin the observed phenotypic
traits. This approach not only facilitates comparative analysis of
differentially expressed genes but also elucidates gene interactions
within distinct co-expression modules (Wan et al., 2018).

Transcription factors (TFs) are regulatory proteins that govern
gene transcription by selectively binding to DNA sequences located
upstream of target genes. Therefore, TFs play key roles in
developmental processes and differentiation (Lambert et al., 2018;
Ulz et al., 2019) and often act as master regulators affecting cell-type
decisions (Hainer et al., 2019), ontogeny patterns, and the pathway
regulation of many pathways, including the immune response.
Numerous studies have linked TFs to tumor development and
treatment responses (Krebs et al., 2017; Harley et al., 2018).
Consequently, the direct use of CRC-related TFs to construct a
prognostic model for cancer holds promise for innovative CRC
diagnosis and treatment strategies. Zinc finger E-box binding
homeobox 1 (ZEB1), a critical determinant of cellular destiny,
tumor initiation, cancer cell adaptability, and metastatic spread

across various malignancies (Mohammadi Ghahhari et al., 2022),
is considered a transcriptional repressor. It inhibits the transcription
of downstream targets, including E-cadherin and miR-200 family
members (Burk et al., 2008), by interacting with the promoter
regions of these genes. Previous studies have indicated that
elevated ZEB1 expression in CRC promotes invasion and disease
progression (Colangelo et al., 2022; Mohammadpour et al., 2022).
However, further investigations are needed to ascertain the link
between ZEB1 expression and CRC prognosis.

In this study, we employed a WGCNA approach to compare the
expression patterns of TFs between patients with and without CRC
using data from The Cancer Genome Atlas (TCGA). We developed
a prognostic risk model associated with CRC, identifying crucial TFs
linked to disease prognosis. Our comprehensive analyses revealed
ZEB1 as a central TF that accelerates tumor progression by
promoting cancer cell glycolysis. This finding highlights the
significance of investigating the interplay between CRC and
glucose metabolism, providing an experimental foundation for
future drug development in this field.

2 Materials and methods

2.1 Data acquisition

The CRC-associated unprocessed RNA-seq and corresponding
clinical data were obtained from the UCSC TGCA database (https://
portal.gdc.cancer.gov/). Human TFs were obtained from the
TRRUST (https://www.grnpedia.org/trust/downloadnetwo-rk.php)
and JASPAR (http://jaspar.genereg.net/) database.

2.2 WGCNA analysis of differential
transcription factors

WGCNA was performed as described previously (Yin et al.,
2020). Briefly, network construction and module identification
involved four steps: the calculation of topological overlap to
determine gene similarity, the generation of a gene clustering
tree, the grouping of genes with similar expression into modules,
the merging of comparable modules, and the assessment of
correlations between different modules and phenotypes. The
“WGCNA” R package (https://cran.r-project.org/web/packages/
WGCNA/index.html) (Zhang and Horvath, 2005; Langfelder and
Horvath, 2008) was utilized to conduct the co-expression network
analysis of differentially expressed TFs. The subsequent analysis
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focused on genes within the module exhibiting the strongest
correlation with prognostic traits.

2.3 Cox regression model construction

The hub TFs in cancer samples were integrated with survival
data, excluding samples without survival data, for batch Cox single-
factor regression analysis, using R packages “Survival” (https://cran.
r-project.org/web/packages/survival/index.html) and “Survminer”
(https://cran.r-project.org/web/packages/survminer/index.html).
After regression analysis, the relevant TFs associated with survival
were detected by applying a threshold of p-value < 0.05 and
selected for subsequent least absolute shrinkage and selection
operator (LASSO) regression analysis.

Further dimensionality reduction of hub TFs was performed
using LASSO regression, and the construction of a risk-scoring
model heavily relied on the utilization of the R package “Glmnet”
(https://cran.r-project.org/web/packages/glmnet/index.html)
(Simon et al., 2011). To enhance the accuracy of our regression
model, we initially conducted cross-validation for lambda
screening. Subsequently, we selected the model corresponding
to lamdba.min and further extracted the expression matrix of
genes associated with this model. By utilizing risk score
calculations for each sample, the median value was employed
as a decisive threshold to categorize samples into high-risk and
low-risk groups for subsequent validation procedures. The
optimized model was:

risk score � 1.140 × ZEB1 − 0.301 × MITF − 0.146 × APBB1
− 0.142 × CBX7 − 0.052 × HAND2 + 0.013 × LMO3
+0.164 × KCNIP3 + 0.189 × WWTR1
+0.213 × MEIS2 + 0.213 × PGR + 0.215 × NKX3 − 2
+0.311 × MEIS1 + 0.895 × TCF7L1.

2.4 Cell culture

Human colorectal cancer cell lines (SW480 and HCT116)
were obtained from the American Type Culture Collection
(ATCC, United States). SW480 cells were cultivated in
Dulbecco’s modified Eagle’s medium (DMEM, Biological
Industries, Israel) containing 10% fetal bovine serum (FBS)
at 5% CO2 and 37°C. HCT116 cells were cultivated in Roswell
Park Memorial Institute-1640 (RPMI-1640, Biological
Industries, Israel) medium containing 10% FBS at 5% CO2

and 37°C.

2.5 The 5-ethynyl-2′-deoxyuridine (EdU) cell
proliferation assay

CRC cells were cultured in 12-well plates and subjected to
incubation with an EdU Cell Proliferation Kit (C10310, RiboBio,
China) as per the manufacturer’s instructions. The subsequent
EdU cell proliferation assay was conducted utilizing a
fluorescence microscope, adhering strictly to the provided
guidelines.

2.6 Cell invasion assays

Matrigel was utilized to coat the Transwell chamber filters. CRC
cells transfected with specific siRNAs were seeded into the upper
chamber of the Transwell plate and suspended in serum-free
DMEM. The lower chamber was filled with a medium containing
10% FBS. The cells in the upper well were eliminated by gently
swabbing the top surface of the membrane. The membranes were
subsequently subjected to staining and the residual cells were
quantified, with a total of four high-power fields evaluated for
each individual membrane.

2.7 Antibodies and reagents

Anti-HDAC1 (34589), anti-HDAC2 (57156), anti-MTA1
(5646), anti-MTA2 (15793), and anti-MBD3 (99169) antibodies
were purchased from Cell Signaling Technology. Anti-RbAp48
(11G10) antibody was purchased from Invitrogen. Anti-MTA3
(A2328), anti-CLDN7 (A2305), anti-ANXA7 (A21109) antibodies
were purchased from ABclonal. The siRNAs used in this study were
purchased from JTSBIO Co., Ltd.

2.8 RNA-seq analysis and real-time
quantitative reverse transcription-
polymerase chain reaction (qRT-PCR)

Total RNA was isolated from the samples using TRIzol reagent
(Invitrogen) in accordance with established protocols. For RNA-seq
analysis, three biological replicate samples were prepared and
sequenced using an Illumina NextSeq 500. Differentially
expressed genes (DEGs) were identified based on a fold change
of 1.5 and p-value < 0.001, followed by cDNA preparation using the
Transcriptor First Strand cDNA Synthesis Kit (Roche, Basel,
Switzerland) after total RNA extraction for qRT-PCR analysis.
The qRT-PCR was conducted using an ABI PRISM 7500 System
(Applied Biosystems), with β-actin (ACTB) expression serving as an
internal control for quantitation via the comparative Ct method
(2−ΔΔCT). Supplementary Table S1 lists the primers utilized in
this study.

2.9 The extracellular acidification rate
(ECAR) assay

ECAR was measured using a Seahorse XF96 Extracellular Flux
Analyzer, according to the manufacturer’s instructions. Cells were
plated into the wells of an XF96 cell culture microplate and
incubated at 37°C in a CO2 incubator for 24 h to ensure
attachment. The assay was initiated after cells were equilibrated
for 1 h in XF assay medium supplemented with 10 mM glucose,
5 mM sodium pyruvate, and 2 mM glutamine in a non-CO2

incubator. Substrate-based metabolic assays were performed by
injecting 10 mM glucose after starvation in XF DMEM assay
medium (pH 7.4; Seahorse Bioscience). For starvation, the
culture medium was removed at hourly intervals for a total of
5 h and washed once with phosphate-buffered saline, and then
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starvation was induced by adding XF DMEM assay media (without
glucose, pyruvate, or glutamine). During the starvation process, cells
were maintained at 37°C in a CO2 incubator. The ATP rate assay
involved the sequential injection of 2 μM oligomycin and 0.5 μM
rotenone/antimycin A.

2.10 Immunopurification and mass
spectrometry

HEK293T cells were transfected with a plasmid encoding FLAG-
tagged ZEB1 and subsequently collected 48 h post-transfection. Cell
lysates obtained from approximately 5 × 108 cells were incubated
with an anti-FLAGM2 affinity gel (Sigma) for at least 4 h to facilitate
the adsorption of the protein complex onto the column resin.
Subsequently, elution of the FLAG protein complex was
performed using the FLAG peptide (0.2 mg/mL; Sigma-Aldrich),
following the manufacturer’s protocol. The collected proteins were
then resolved on a sodium dodecyl sulfate-polyacrylamide gel,
subjected to silver staining, and finally analyzed through liquid
chromatography-tandem mass spectrometry.

2.11 Western blotting

Cells were washed with ice-cold PBS before being added to radio
immunoprecipitation assay (RIPA) lysate and were then lysed at 4°C
for 10 min. The BCA protein level was quantified, and protein lysate
was added to the loading buffer for 10 min at 95°C. Electrophoresis
was carried out at 100 V. Polyvinylidene fluoride was used to
transfer the proteins from the gel to the membrane. The primary
antibody (diluted in primary antibody diluent) was added and
incubated overnight at 4°C. The secondary antibody prepared in
5% skimmed milk was added the next day, and the membranes were
incubated for 1 h at 25°C with gentle mixing. Chemiluminescence
images were obtained using a darkroom development technique.

2.12 The glutathione S-transferase (GST)
pull-down assay

GST-fused nucleosome remodeling and deacetylase (NuRD)
subunit constructs were expressed in BL21 Escherichia coli, while
ZEB1 was subjected to in vitro transcription and translation using a
rabbit reticulocyte lysate kit (TNT Systems, Promega). About 5 g of
the GST fusion proteins were incubated with 5–8 μL of the in vitro-
transcribed/translated products in binding buffer at 37°C for 30 min
and supplemented with a protease inhibitor mixture. Following five
washes with binding buffer, the resulting mixture was subjected to
Western blot analysis.

2.13 Chromatin immunoprecipitation (ChIP)
and quantitative ChIP (qChIP) assays

ChIP experiments were performed on SW480 cells as previously
described (Wang et al., 2009). In brief, a total of 1 × 107 cells were
subjected to cross-linking with 1% formaldehyde, followed by

sonication and pre-clearance. The cell lysates were incubated
with 2 µg of specific antibody. The resulting complexes
underwent five rounds of washing using low- and high-salt
buffers, after which DNA was purified utilizing a QIAquick PCR
Purification Kit. For qRT-PCR analysis, the TransStart Top Green
qPCR Supermix (TransGen Biotech, Shanghai, China) was
employed. The primer sequences utilized in this study can be
found in Supplementary Table S2.

2.14 Statistical analysis

All statistical analyses and corresponding visualization were
performed using the R Studio software version 3.6.3 (RStudio,
United States) and SPSS Statistics software (SPSS, Inc.,
United States). Statistical data were analyzed by Student’s t-test.
All experimental data were analyzed and visualized with R Studio or
GraphPad Prism 8 (GraphPad Software, Inc, United States). Kaplan-
Meier curve analyses were performed using the “survminer” R
package. For all statistical tests, a two-tailed
p-value <0.05 denoted statistical significance, which is indicated
by *p-value < 0.05 and **p-value < 0.01.

3 Results

3.1 Identification of differentially expressed
TFs and WGCNA analysis in CRC

We analyzed the expression matrix of 981 non-redundant
human-reported TFs sourced from the JASPAR and TRRUST
databases to explore the clinical significance of their
dysregulation in CRC development. A total of 430 tissue samples
from the TCGA database (379 cancer and 51 adjacent tissues;
Table 1) were used to perform differential expression analysis,
with the criteria of abs (log2 fold change) > 1 and false discovery
rate (FDR) < 0.05. From this analysis, we identified 250 differentially
expressed genes (DEGs) as CRC-related TFs (Figures 1A, B).

TABLE 1 Sample prognostic traits statistics.

Tumor Normal

Gender

Male 208 23

Female 171 28

Age (years)

Mean 64 69

Median 66 73

Pathologic_stage

Stage I 57 8

Stage II 137 24

Stage III 114 9

Stage IV 52 9

Frontiers in Pharmacology frontiersin.org04

Gao et al. 10.3389/fphar.2024.1435269

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1435269


By employing WGCNA, we constructed a co-expression
network using 250 candidate TFs for CRC. We built the
network using a one-step method with 3 as the power (R2 >

0.85), further merging similar modules with height < 0.25
(Figure 1C), yielding only two module groups: 113 genes in
the turquoise module, 62 in blue, and 75 unclassified (gray)

FIGURE 1
Differentially expressed TF statistics and WGCNA results in CRC. (A) Volcano plot displaying differentially expressed TFs. (B) Heatmap of differently
expressed TFs. (C) Analysis of the network topology at various soft-threshold powers. Check scale-free topology; the adjacencymatrix was defined using
soft thresholds with β = 3. (D) Clustering dendrograms of TFs with dissimilarity based on topological overlap, together with assigned module colors. (E)
Calculation of the correlation between themodule and the phenotype. OS, overall survival. (F) Bar plot indicatingmean significance acrossmodules.
Gene significance represents the correlation between modules and CRC.
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(Figure 1D). We evaluated the correlation of TFs from these
modules with the prognostic phenotype overall survival status
(OS_status). The TFs in the turquoise modules exhibited the
highest correlation (correlation coefficient of 0.11; p-value =
0.02) with OS_status (Figure 1E). Calculating the correlation
matrix between TFs and OS_status in each module generated the
gene significance (GS) index (Figure 1F). The TFs in the
turquoise module demonstrated the highest average GS index.
Therefore, we employed Cytoscape to screen TFs in the turquoise
module based on their degree. At a degree of up to 112, 62 TFs
were selected with a higher node count. Subsequently, there were
none hub TFs when the degree was increased again. Finally, we
identified 62 hub TFs (Supplementary Table S3) using a degree
threshold of 112 for subsequent analysis.

3.2 Construction of prognostic TFs for CRC

To identify key TFs associated with CRC prognosis, 62 hub TFs
were analyzed in 378 cancer samples with prognostic data. Through
single-variable Cox regression analysis using the “clusterProfiler” R
package (http://www.bioconductor.org/packages/release/bioc/html/
clusterProfiler.html) (Wu T. et al., 2021), we identified a total of
14 TFs exhibiting a high correlation [hazard ratio < 1, 95%
confidence interval (CI) < 1] (Figure 2A). The enrichment
analysis results of Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways for these 14 TFs are

presented in Supplementary Figure S1. By employing LASSO
regression analysis on these 14 TFs (Figure 2A), we cross-
validated 13 TFs based on the minimum lambda value, namely,
lambda.min, and constructed a cancer-related prognostic risk-
scoring model. This model effectively stratified 378 cancer
samples into high- and low-risk groups, determined by their
respective median scores (189 samples in each group). The
Kaplan-Meier curve demonstrated a significant correlation
between the high-risk group and unfavorable prognosis in CRC
(p-value < 0.0001, Figures 2B, C). Moreover, the receiver operating
characteristic (ROC) curve demonstrated an impressive area under
the curve (AUC) value of 0.706, indicating excellent model
performance and enhanced predictive capability.

To validate our model, we also downloaded CRC-related
data from the GEO database (GSE14333, Supplementary Figure
S2). In the Kaplan-Meier curve of the external dataset, we
observed a highly significant association between the high-
and low-risk groups and survival time (p-value = 0.00082),
providing strong evidence for the suitability of our model in
prognostic prediction.

3.3 Multivariate cox regression analysis and
TF-target gene network construction

To explore other additional factors affecting CRC, a total of
317 samples, including phenotypic data, were subjected to Cox

FIGURE 2
Construction of a prognostic TF model of CRC. (A) LASSO regression of 13 differential TFs constructed using Cox single-factor regression. (B)
Kaplan-Meier curve verification for overall survival and receiver operator characteristics curve. (C) Verification of the prognostic model.
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single-factor regression analysis for age, sex, pathological stage,
lymphatic invasion, and risk score. The analysis revealed that
pathological stage emerged as the most influential factor,

supported by the hazard ratio, 95% CI, and p-value. The
multivariate Cox regression analysis showed similar results
(Figure 3A). A nomogram was constructed according to the

FIGURE 3
Prediction of the prognosis probability and TF target gene network construction. (A) Single-variable Cox regression analysis in the CRC cohort. (B)
The nomogram for CRC is based on amultivariate Cox regression. (C)Calibration curves for 1-, 2-, 3-, and 5-year overall survival. (D) Target gene network
for 11 TFs.
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FIGURE 4
Validation of the hub TF and functional tests in CRC. (A) Kaplan-Meier analysis of the hub TF ZEB1 with overall survival using the online database
(https://www.proteinatlas.org/) for CRC. (B) Immunohistochemistry of ZEB1 in colorectal cancer and normal samples from the Human Protein Atlas
database. (C) EdU cell proliferation assay of SW480 and HCT116 cells transfected with siControl or siRNAs targeting ZEB1. Error bars indicatemeans ± SD.
The data was analyzed by two-tailed unpaired t-test, *p-value < 0.05 and **p-value < 0.01. (D) Transwell assays of SW480 and HCT116 cells
transfectedwith siControl or siZEB1. The images represent onemicroscopic field in each group. Error bars indicatemeans ± SD. The data was analyzed by
two-tailed unpaired t-test, *p-value < 0.05 and **p-value < 0.01. (E) Heatmap representation of DEGs (fold change > 1.5; p-value < 0.001) in control and
ZEB1-knockdown SW480 cells. (F) Volcano plot representation of DEGs. (G)GSEA of angiogenesis and epithelial-mesenchymal transition pathways. NES,
normalized enrichment score; FDR, false discovery rate.
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multivariate Cox regression model, which indicated that risk score,
pathologic stage, and age contributed significantly to the prognostic
analysis, whereas lymphatic invasion and sex exhibited almost no
effect (Figure 3B). The calibration curve indicated a higher level of
concordance between projected and observed overall survival (OS)
rates at 1-year, 2-year, and 3-year intervals compared to the
prognostic accuracy for 5-year OS predictions. (Figure 3C).

Typically, TFs modulate downstream genes by binding to
their promoters (Yang and Wang, 2021). Therefore, the protein
interaction network (details shown in Supplementary Table S4)
of the 11 TFs’ targets from the TRRUST database (none of the
reported corresponding targets for NKX3-2 and TCF7L1) was
analyzed (Figure 3D). This analysis revealed MITF with the
highest node degree (Yang and Wang, 2021), followed by
PGR (Langfelder and Horvath, 2008) and ZEB1 (Lambert
et al., 2018). These 3 TFs had high correlation coefficients in
the prognostic model. Based on the three most significant TFs
identified through LASSO regression analysis, ZEB1, MEIS1,
MITF, and PGR were identified as the TFs most relevant to
CRC prognosis.

3.4 Survival analysis and validation of the hub
TF functions in CRC

To identify TFs more strongly associated with CRC prognosis,
Kaplan-Meier analysis of ZEB1, MITF, PGR, TCF7L1, and
MEIS1 was performed. Elevated ZEB1, PGR, and
MEIS1 expression were observed to be linked with inferior
overall survival outcomes in individuals diagnosed with CRC
(https://www.proteinatlas.org/) (Figure 4A; Supplementary Figure
S3A). Nevertheless, immunohistochemical results from the Human
Protein Atlas database indicated that only ZEB1 protein expression
was notably higher in CRC than in the corresponding adjacent
tissues (Figure 4B; Supplementary Figure S3B). Based on the
outcomes of the TF target gene network analysis, ZEB1 emerged
as the most relevant TF for CRC prognosis.

Subsequent results from EdU assay revealed that
ZEB1 knockdown suppressed cell proliferation (Figure 4C). The
validation of siRNA efficiency in the two CRC cell lines is shown in
Supplementary Figures S3C, D. In addition, the Transwell assays
showed a marked reduction in cell invasion post-ZEB1 knockdown
in CRC cells (Figure 4D).

Further analysis involved RNA-seq analysis on in vitro
cultured cells. We employed siRNAs to silence the expression of
ZEB1 in SW480 cells. Three independent controls and three
experimental groups targeting ZEB1 knockdown were
employed. Whole-transcriptome clustering analysis identified
789 upregulated and 1139 downregulated genes in the siZEB1
group [|fold change| > 1.5, p-value < 0.05]. Figures 4E, F depict a
heatmap and volcano plot illustrating the DEGs. The DEGs were
subjected to gene set enrichment analysis (GSEA), revealing
significant enrichment in various cancer-related cellular
processes, including angiogenesis and epithelial-mesenchymal
transition pathways (Figure 4G). These compelling findings
strongly support the notion that ZEB1 plays a pivotal role in
promoting the proliferation and invasion of CRC, thereby
contributing to cancer progression.

3.5 Biological functional analysis of ZEB1

To further validate the involvement of ZEB1 in the modulation
of CRC with malignant characteristics, our investigation was
centered on analyzing RNA-seq outcomes. The KEGG pathway
analysis revealed enrichment in metabolic, MAPK signaling, and
PI3K-Akt signaling pathways (Figure 5A). Pathways such as cell
migration, regulation of glucose metabolic processes, and response
to hypoxia were examined using GO analysis (Figure 5B).
Interestingly, GSEA analysis revealed significant enrichment in
glycolysis and hypoxia pathways in the siControl group but not
in the siZEB1 group (Figure 5C). These RNA-seq data suggested that
contribution of ZEB1 to colorectal tumor growth occurred by
coordinating cell metabolism under hypoxic conditions (Figure 5D).

In line with the RNA-seq findings, upregulation of putative
tumor suppressor genes (TSGs), such as ANXA7, ARRDC3,
CAB39L, CASP7, CLDN7, ETV7, IGFBPL1, LATS2, OVOL2, and
ZHX2, was observed, underscoring the pivotal role played by
epigenetic TSG silencing in driving tumorigenesis (Lee and
Muller, 2010; Guo et al., 2023). In contrast, the expression of
potential oncogenes, which also belong to glycolysis-related genes
(GRGs), including EGFR, ENO2, G6PD, LDHA, PAM, PKM, SDC3,
SLC16A3, and SOX9, was diminished in ZEB1-depleted cells
(Figures 5E, F). Hypoxia-inducible factor 1α (HIF1α) was a key
factor regulating glycolysis. The abnormal expression of HIF1A
promotes the glycolysis process, including in cancer cells
(Semenza, 2003). In light of this information, the enrichment of
GRGs indicates a potential significant role for ZEB1 in glucose
metabolism. To validate this assumption, we quantified the mRNA
levels of GRGs after ZEB1 knockdown. Figure 5G illustrates the key
enzymes involved in glycolysis. These findings indicate that
ZEB1 promoted the expression of GRGs (Figure 5H) and had a
positive impact on glycolysis. Additionally, SW480 cells were
transfected with siRNAs, and glycolytic activity was assessed
using a Seahorse XFe24 system, revealing that diminished
ZEB1 protein levels significantly reduced the ECAR of cells
(Figure 5I). This result reflects diminished overall glycolysis
levels. Based on these results, it can be speculated that
ZEB1 modulates the progression of CRC by regulating certain
TSGs and glycolytic processes.

3.6 ZEB1 transcriptionally represses TSGs
through its interaction with the
NuRD complex

Affinity purification and mass spectrometry were employed to
enhance the mechanistic comprehension of ZEB1’s role in CRC.
Mass spectrometry analysis demonstrated that ZEB1 was co-purified
with subunits of the NuRD transcription repression complex,
including HDAC1, MTA1, and MBD3 (Figure 6A).
Supplementary Table S5 provides detailed information on the
mass spectrometry results. The interaction between ZEB1 and
components of the NuRD complex was validated through
Western blotting using antibodies against these specific
components in two CRC cell lines (Figure 6B). In addition, GST
pull-down assays demonstrated a direct interaction between
ZEB1 and HDAC1 as well as HDAC2 (Figure 6C; Supplementary
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FIGURE 5
RNA-seq analysis and biological functional analysis of ZEB1 in SW480 cells. (A) Results of the KEGG pathway analysis of DEGs in control cells and
ZEB1-knockdown cells. Data were analyzed using KOBAS 3.0 software. (B) GO enrichment analysis of DEGs in control cells and ZEB1-knockdown cells.
(C)GSEA analysis plot of the glycolysis pathway and hypoxia pathway. NES, normalized enrichment score; FDR, false discovery rate. (D) Venn diagrams of
overlapping pathways fromGO, KEGG, andGSEA. Comparison of TSG andGRGexpression in SW480 cells by column (E) and linear fit (F) of qRT-PCR
vs. RNA-seq. (G) Schematic diagram of the glycolysis process. (H) qRT-PCR analysis of key enzyme mRNA in the glycolysis pathway in the ZEB1-
knockdown SW480 cells. (I) Results of ECAR experiments in control cells and ZEB1-knockdown SW480 cells. (E, H, I) Error bars indicate means ± SD. The
data was analyzed by two-tailed unpaired t-test, *p-value < 0.05 and **p-value < 0.01.
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FIGURE 6
Identification of genome-wide transcription targets for ZEB1. (A) Immunoaffinity purification and mass spectrometry analysis of ZEB1-associated
proteins in HEK-293T cells. ZEB1 protein bands were retrieved and analyzed using mass spectrometry. (B) Association of ZEB1 and the NuRD complex in
SW480 and HCT116 cells. Whole-cell lysates were prepared, and coimmunoprecipitation was performed. (C) GST pull-down assays with GST-fused NuRD
proteins and in vitro transcribed/translatedZEB1. (D) qChIP analysis of potential ZEB1 target genes in SW480 cells. Results are represented as fold change
over control, with GAPDH as the negative control. (E) ChIP-PCR analysis in SW480 cells with indicated antibodies. (F), (G) Transwell invasion assays of
SW480 cells following transfection with corresponding siRNAs. Invading cells were stained and counted. Images represent one field under microscopy in
eachgroup. (H)Results of ECARexperiments in SW480cells transfectedwith control or specific siRNAs. (I)Aproposedmodel for the role of ZEB1 in regulating
CRC progression. (D, F–H) Error bars indicate means ± SD. The data was analyzed by two-tailed unpaired t-test, *p-value < 0.05 and **p-value < 0.01.
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Figure S4A). Notably, although MTA3 is a member of the NuRD
complex, it did not interact with the ZEB1/NuRD complex.

Because of the preferential binding of ZEB1 with HDAC1 over
HDAC2, we next performed ChIP experiments with specific antibodies
against ZEB1 and HDAC1. This analysis was aimed at exploring the
mechanism by which the ZEB1/NuRD(MTA1) complex co-regulates
the CRC process. qChIP analysis was employed for ANXA7, ARRDC3,
CAB39L,CASP7,CLDN7, ETV7, IGFBPL1, LATS2,OVOL2, andZHX2.
The ZEB1/NuRD complex was significantly enriched in the CLDN7,
ANXA7, CAB39L, and ETV7 promoter regions (Figure 6D;
Supplementary Figure S4B). Due to the absence of substantial
disparities in the protein levels of CAB39L, ETV7, OVOL2, and
ZHX2 between neoplastic and neighboring tissues (Supplementary
Figure S4C) and the lack of known immunohistochemical results for
ARRDC3 in CRC, ChIP-PCR analyses were employed for ANXA7 and
CLDN7 (Figure 6E). The results demonstrated a robust enrichment of
ZEB1 and HDAC1 on the promoters of CLDN7 and ANXA7, all of
which are implicated in tumor suppression. The mRNA and protein
levels of CLDN7 and ANXA7 in ZEB1- or HDAC1-knockdown
SW480 cells were significantly increased (Supplementary Figure
S4D). To gain further insights into the precise molecular
mechanisms underlying ZEB1’s regulation of CRC, we conducted an
extensive analysis using publicly available clinical datasets from the
TCGA and GEO databases (GSE100179). This analysis demonstrated a
negative correlation between CLDN7 expression and ZEB1, while
ANXA7 showed the opposite trend (Supplementary Figure S4E).
Moreover, Kaplan-Meier survival analysis demonstrated a significant
correlation between increased CLDN7 expression and improved overall
survival rates among patients with CRC (Supplementary Figure S4F).

The co-knockdown of ZEB1 and HDAC1 enhanced the effect of
the knockdown of ZEB1 or HDAC1 alone (Figure 6F), whereas the
knockdown of CLDN7 significantly restored the cell invasion ability,
which was diminished by the knockdown of ZEB1 or HDAC1 alone
(Figure 6G). Notably, the decrease in cellular glycolysis induced by
ZEB1 deficiency was reversed by CLDN7 knockdown (Figure 6H).
The expression of indicated proteins was measured by Western
blotting (Supplementary Figures S4G, H). In summary, our findings
demonstrate that the ZEB1/NuRD complex collaboratively
suppressed the transcription of the tumor suppressor gene
CLDN7, promoted glycolysis, and exerted an impact on tumor
development (Figure 6I), potentially signifying the discovery of
novel CRC biomarkers.

4 Discussion

TFs account for approximately 8% of the total human gene pool
and exhibit associations with a diverse range of diseases and
phenotype variations (Shi et al., 2016; Lambert et al., 2018),
spanning from diabetes (Gonzalez et al., 2018), inflammatory
disorders (Ross and Cantrell, 2018), and cardiovascular disease
(Papanicolaou et al., 2008) to many cancers (Yu et al., 2009;
Stine et al., 2015; Zou et al., 2020; Wu M. J. et al., 2021).
Dysregulated TFs play a pivotal role in the pathogenesis of these
diseases, underscoring their potential as valuable prognostic markers
and therapeutic targets, particularly in cancer. To our knowledge,
this study represents the first identification of prognosis-related TFs
in CRC using advanced methodologies such as WGCNA and Cox

regression analyses. Using WGCNA, we extracted core gene
networks and identified biologically relevant modules involving
functionally related TFs and attentional phenotypes in CRC.
Considering that TFs in the turquoise model were highly
correlated with OS_status, further scrutiny using LASSO
regression analysis led to the identification of 13 prognostic TFs
(ZEB1, TCF7L1, MEIS1, MITF, NKX3-2, PGR, MEIS2, WWTR1,
KCNIP3, APBBB1, CBX7, HAND2, and LMO3). To isolate the most
representative prognostic TFs, we then constructed a regulatory
network diagram based on the interactions among these 13 TFs and
performed survival analyses and phenotypic experiments using the
top five hub TFs (ZEB1, TCF7L1, MEIS1, MITF, and PGR). This
analysis finally pointed to ZEB1 as the most closely associated TF
with CRC. Subsequently, we conducted a comparative between the
results of the WGCNA and COX regression analyses with the actual
expression of tumor cells, validating the prognostic model and
establishing the hub gene ZEB1 as a CRC prognostic factor.

Although previous research applied WGCNA and Cox
regression analysis to assessing tumors, none exclusively focused
on identifying prognosis-related TFs in CRC. For example, Zhai
et al. (2017) revealed five recurrence-associated molecular and
prognostic indicators in colon cancer using WGCNA in colon
cancer but did not construct a prognostic model using Cox
regression analysis. Another study examined the correlations
between stemness genes and prognosis in CRC (Wei et al., 2021)
using WGCNA and LASSO-penalized Cox regression analyses;
however, it did not specifically identify prognosis-related TFs.
Because our study focused only on prognosis-related TFs, it is
likely to be more precise. Moreover, the establishment of an
independent prognostic factor and an effective prognostic model
contributes to the credibility of our findings.

ZEB1 is predominantly recognized for its role in driving the
epithelial-to-mesenchymal transition (EMT) in cancer cells, a process
that promotes tumor progression (Larsen et al., 2016a). The
upregulation of ZEB1 expression has been observed to exhibit a
positive correlation with elevated tumor grade and metastasis
across various types of cancers (Zheng et al., 2015; Larsen et al.,
2016b). Further, ZEB1 plays a pivotal part in shaping the tumor
microenvironment and maintaining functions that support
macrophages associated with tumors (Cortes et al., 2017; Jiang
et al., 2020). Although previous research, such as that by Sun et al.
hinted at ZEB1 regulation by TCF4 contributing to drug resistance
and stemness in CRC (Sun et al., 2020), the specific mechanism by
which ZEB1 influences CRC prognosis remains unclear.

The NuRD complex exhibits histone deacetylation activity and
primarily functions in transcriptional repression programs to
regulate cancer metastasis (Liu et al., 2023). ZEB1 recruits the
NuRD complex to form a transcriptional inhibitory unit, which
was confirmed for the first time by using mass spectrometry analysis
in CRC. The expression ofANXA7, CLDN7, ETV7, and CAB39Lwas
inhibited by the newly formed complex. Furthermore, the ZEB1/
NuRD(MTA1) complex was confirmed to regulate glycolysis and
promote invasiveness of cancer cells, suggesting that the NuRD
complex plays a role in glycolysis and cancer progression in CRC.

The Warburg effect refers to the aberrant metabolism of cancer
cells, wherein they undergo high glycolysis even in oxygen-rich
environments (Zhang et al., 2019; Hou et al., 2020). This modified
metabolic process results in epigenetic and genetic modifications,
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leading to the emergence of numerous novel cellular phenotypes that
augment the proliferation and aggressiveness of cancer cells (Li et al.,
2018; Nie et al., 2020; Park et al., 2021). While reprogrammed cellular
metabolism is a widely accepted hallmark of cancer (Hanahan and
Weinberg, 2011), our study adds to this by reporting for the first time
that ZEB1 significantly enhances glycolysis in CRC cells. We
investigated the specific molecular mechanism underlying this
physiological process by using immunoaffinity purification and ChIP
techniques. Our results pinpointed a direct interaction between
ZEB1 and the NuRD(MTA1) complex that collaboratively
suppresses the expression of the TSG CLDN7. Previous studies have
suggested that a loss of function in TSGs contributes to cancer cell
malignancy (Lee and Muller, 2010). Further, Bhat et al. demonstrated
that CLDN7 overexpression induces epithelial characteristics and
inhibits CRC cells growth (Bhat et al., 2015). Moreover,
CLDN7 also plays a crucial role cancer cell carbohydrate
metabolism (Ding et al., 2022). However, in recent years, research
on CLDN7’s role in regulating cancer glycogen metabolism has been
limited. Thus, our findings, along with previous research, establish that
the hub TF ZEB1 promotes glycolysis in CRC cells by inhibiting
metabolism-related TSG CLDN7, which is not conducive to
prognosis (Figure 7). Consequently, ZEB1 could potentially serve as
both a diagnostic and prognostic marker due to its
multifunctionality in CRC.

In conclusion, our study utilized a comprehensive CRC dataset
obtained from the TCGA database to identify TFs exhibiting
differential expression patterns between normal and cancerous
samples. By employing the WGCNA approach, we categorized
functionally related TFs into biologically meaningful modules
that were strongly linked to cancer progression and an
attentional phenotype in CRC. Using a prognosis-related risk
model, we successfully identified 13 prognosis-related TFs.
Finally, ZEB1 emerged as a hub TF by combining the regulatory
network diagram with the actual expression profiles within tumor
cells. Crucially, we identified a clear molecular mechanism through
which ZEB1 affects CRC progression and prognosis. Our study
provides a direct reference for exploring prognosis-related TFs and

is significant for understanding the roles of TFs in CRC. Despite
these useful insights, our study has limitations. For example, the
screened TFs are not the only factors affecting prognosis, indicating
that the prognostic effect of related TFs may be slightly less than that
of comprehensive factors at the pathological stage. Further
investigations are imperative to elucidate the intricate molecular
mechanisms and substantiate the pivotal role of ZEB1 in both
diagnosis and therapeutic interventions for CRC.

5 Conclusion

In summary, our study has identified ZEB1 as a pivotal
biomarker associated with cancer prognosis and elucidated the
intricate molecular mechanism by which ZEB1 promotes CRC.
The collaborative action of the ZEB1/NuRD complex
transcriptionally represses the tumor suppressor gene CLDN7,
stimulates glycolysis, and facilitates tumor progression. These
findings present compelling evidence supporting the
consideration of ZEB1 as a robust diagnostic biomarker and a
potential therapeutic target for CRC.
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