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Therapeutic antibodies (Abs) have been anticipated as promising alternatives to
conventional treatments such as topical minoxidil and oral finasteride for
androgenetic alopecia (AGA). Due to the high molecular weight of typical Abs,
the half-life of subcutaneous Abs exceeds 2 weeks, allowing an administration
intervals of once a month or longer. Direct injection into the areas of hair loss is
also feasible, potentially enhancing treatment efficacy while minimizing systemic
side effects. However, therapeutic Abs are rarely developed for AGA therapy due
to the requirement to be responsiveness to androgens and to exist in the
extracellular fluid or cell surface surrounding the hair follicle. In this review,
we introduce recent progress of antibody therapeutics in AGA targeting the
prolactin receptor, Interleukin-6 receptor, C-X-Cmotif chemokine ligand 12, and
dickkopf 1. As therapeutic Abs for AGA are still in the early stages, targets need
further validation and optimization for clinical application.
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1 Introduction

Androgenetic alopecia (AGA), also referred to as male pattern hair loss (MPHL), is the
most common phenotype in hair loss caused by excessive androgen responsiveness mainly
based on hormone imbalance, genetic familial history, and unknown etiology (Price, 1999;
Phillips et al., 2017; Miguel Dominguez-Santas et al., 2022). In MPHL, hair miniaturization
and shedding occur progressively in the frontal and vertex scalp regions by androgens such
as dihydrotestosterone (DHT), leading to bitemporal hair thinning. Compared withMPHL,
female pattern hair loss (FPHL) is more diffused in the vertex scalp region, irrespective of
frontal hair line (Supsrisunjai and Thuangtong, 2016; Nicholas Sadgrove et al., 2023).

Therapeutic Abs have been developed over 150 years, and was awarded the first Nobel
prize in 1901 for serum therapy of diphtheria (Ebrahimi and Samanta, 2023). Muromonab-
CD3 (Orthoclone, OKT3, for acute transplant rejection) is the first monoclonal Ab (mAb)
approved by the Food and Drug Administration (Todd and Brogden, 1989). Other
therapeutic Abs have been also approved for severe human disorders including
infection, autoimmunity, and cancer, as first-line mono therapeutics or combinations
(Sharma et al., 2023). These therapeutic Abs are beneficial for their high specificity, low
inherent variability, high lot-to-lot consistency, and predictable duration of action, though
they have disadvantages including high complexity for Ab creation, and complicated
technology integration (Chames et al., 2009; Nagarajan et al., 2014).

Diverse strategies for therapeutic Abs have been developed for alopecia areata (AA) therapy
(Renert-Yuval and Guttman-Yassky, 2017). For example, dupilumab which was first developed
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for skin allergy improved type 2 T-cell immune response in AA
(Guttman-Yassky et al., 2022). Secukinumab also showed efficacy
and safety in patients with extensive AA (Guttman-Yassky et al.,
2018). In general, Abs targeting cytokines resulted in promising
treatment options for AA (Maciej Stępień and Anczyk, 2023).
However, there are only few therapeutic Abs for AGA (Table 1).
For example, prolactin receptor (PRLR) is on-going in phase 2, a
proof-of-concept study (NCT06118866) (Heilmann-Heimbach et al.,
2020) and interleukin-6 receptor (IL-6R) (Vidon et al., 2014) has been
clinically reported with two patients. C-X-Cmotif chemokine ligand 12
(CXCL12) (Zheng et al., 2024) and dickkopf-1 (DKK1) (Fawzi et al.,
2016) are also approached as targets for AGA in nonclinical trials.
Target molecules for AGA should be validated to ensure the therapeutic
efficacy from an integrated perspective. In this review, we introduce
therapeutic Abs for AGA therapy in clinical trial and non-clinical
research stages as mentioned above, together with the underlying
molecular mechanism. Although Ab development still remains
challengeable in the early process, therapeutic Abs can be promising
as a safe and efficient medications for AGA.

2 Advantage of Ab therapy in AGA

2.1 Current treatment options

Although topical minoxidil and oral finasteride have been
approved as medications for AGA therapy, the inconsistent
efficacy and adverse effects are still an issue among patients
(Nestor et al., 2021; Kaiser et al., 2023). Consequently, topical
application of finasteride had been approved and marked for
AGA patients, followed by dutasteride. Finjuve Spray is
considered a safer and more convenient way to get the same
benefits minimizing these issues. In clinical trials, the Finjuve-
group showed blood concentration levels of only one-hundredth
of the oral form after 24 weeks of treatment (Caserini et al., 2014;
Todeschini et al., 2022). Furthermore, developing a long-lasting
medicine is crucial to improve the effectiveness and convenience of

hair loss treatments. For instance, a long-acting injectable
formulation of finasteride, using lipid nanoparticle, showed
pharmacological effects and achievability with monthly
administration (Wook Kang et al., 2023). However, long-acting
formulation still exhibited systemic side effects and is currently
in the early stage, phase 1 or two clinical trial (Ahmed et al., 2023).

2.2 Therapeutic advantages of Abs in
AGA treatment

mAb therapy was first administrated via intravenous (i.v.) route,
has shifted towards to subcutaneous (s.c.) injections in order to be a
more patient-friendly approach (Jiskoot et al., 2022). Therefore,
pharmacokinetic and distribution of Ab drugs after s.c. injection has
been reported, which showed delayed tmax and longer half-life
compared with i.v. (Sanchez-Felix et al., 2020). Moreover, s.c.
delivery is safe, effective, and valued by patients.

The structure of the skin affects the movement of s.c.-
administered mAbs. The hypodermis consists of adipose and
connective tissues interspersed with blood and lymphatic vessels
(Figure 1). The connective tissues of the hypodermis are made up
of highly polymerized macromolecular networks, and move
through the hypodermis via fluid flow-driven convection or
non-convective diffusion (Davis et al., 2024). Given that the
vascular capillaries in the hypodermis are impermeable to large
molecules (>50 kDa), it is generally assumed that reaching from
the hypodermis to systemic circulation results from lymphatic
drainage for most mAbs (Porter and Charman, 2000). While mAb
transcytosis through the blood capillary endothelial cell into
circulation is possible, drainage via lymphatic capillaries
represents the primary mechanism for mAb transport out of
the interstitial space at the injection site (Zhou and Theil,
2015). However, lymph flow is significantly slower than blood
flow (0.2% of blood flow), which contributes to the prolonged peak
time (Tmax = 2–14 days) observed in mAb absorption following s.c.
administration (Charman and Stella, 1992).

TABLE 1 Antibody therapy for AGA.

Target
gene

Ligand or
receptor

Localization in
hair/skin

Current
development status

Outcome/mechanism Reference

PRLR PRL DP, ORS Phase II PRLR Abs showed increased hair
density to 14 hairs/cm2 in 12 male
patients
Hair cycle regulation

(Langan et al., 2010), (Chime
Biologics, 2023)

IL-6R IL-6 DP, ORS Case report Tocilizumab resulted in hair
regrowth in the male patients
suffering from AGA
AR in DPCs increased
IL6 secretion to inhibit ORS cells

(Vidon et al., 2014), (Kwack
et al., 2012)

CXCL12 CXCR4 DF Nonclinical CXCL12 Ab increased hair growth
in testosterone-induced AGAmice
Inhibited AR activation in DP and
reduced inflammation
surrounding hair follicle

(Zheng et al., 2024), (Zheng
et al., 2022)

Dkk1 LRP5, LRP6 DF, DP, ASC Nonclinical DKK1 Ab protected the survival of
ORS cells inhibited by androgens

(Choi et al., 2024), (Kwack
et al., 2008)
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Since the molecular weight of a typical Ab is very high
(~150 kD), many s.c. Ab medications are administered at regular
intervals, often monthly to bimonthly (Ovacik and Lin, 2018). In
addition, direct injection of Ab medications into the hair loss areas
leads to superior treatment efficacy while minimizing the systemic
side effects (Liu, 2018). Therefore, therapeutic Abs administered via
s.c. injection are promising for AGA therapy.

3 Current therapeutic Abs for
AGA therapy

Therapeutic Abs are rarely developed for AGA therapy due to
the requirement to be responsiveness to androgens and to primarily
exist in the extracellular fluid or cell surface surrounding the hair
follicle. However, therapeutic Abs targeting the PRLR (Foitzik et al.,
2006; May et al., 2019), IL-6R (Sheppard et al., 2017; Walker et al.,
2021), CXCL12 (Zheng et al., 2022; Zheng et al., 2024), and DKK1
(Fawzi et al., 2016; Choi et al., 2024) have been reported to improve
AGA both in clinical and non-clinical settings.

3.1 PRLR antibody

PRL has been considered as a hormonal hair growth regulator,
also functioning in angiogenesis, adipogenesis, and immune
response beyond lactation (Grymowicz et al., 2020; Heilmann-
Heimbach et al., 2020). It is a central neurohormone in

hypothalamic-pituitary axis, released from the pituitary gland
stimulated by prolactin releasing hormone. The pilosebaceous
unit, another epidermal derivative, has emerged as a prominent,
PRLR expressing, nonclassical PRL target organ. PRL mediates
psoriasis, AGA, and stress-related dermatoses in the skin.

Human scalp hair follicles expressed PRL and PRLR, which
served as an autocrine and/or paracrine mediators of apoptosis-
driven hair follicle regression. PRL and PRLR were upregulated
during the hair regression period, and high-dose PRL (400 ng/mL)
resulted in a significant inhibition of hair shaft elongation and
premature catagen development, along with reduced proliferation
and increased apoptosis of hair bulb keratinocytes (Foitzik et al.,
2006). However, there is a controversial report suggesting that
moderately elevated PRL levels may not significantly contribute
to diffuse hair loss (Lutz, 2012). Additionally, PRL has been shown
to exert gender- and/or site-specific effects on the human hair follicle
(Langan et al., 2010). Of note, HMI-115 is an mAb targeting PRLR
(May et al., 2019; Castro et al., 2023) currently in an on-going
clinical trial at phase 2 for AGA (NCT06118866) (Barrie, 2024). At
phase 1b, HMI-115 showed increased hair density to 14 hairs/cm2 of
non-vellus hair count in 12 male patients (Chime Biologics, 2023).

PRL and its receptor are also expressed in themurine hair follicle
epithelium, showing hair cycle-dependent expression (Foitzik et al.,
2003). PRL has shown to delay hair regrowth in mice and is involved
in hair cycle regulation, rather than other hormonal factor
regulation (Craven et al., 2006). A neutralizing PRLR Ab
treatment in vivo stimulated hair regrowth in female mice (Otto
et al., 2015). Compared with peptide-derived PRLR antagonists, the

FIGURE 1
The structure of the skin and the movement of subcutaneously administered mAbs. The hypodermis consists of adipose and connective tissues
interspersed with blood and lymphatic vessels. The connective tissues of the hypodermis are made up of highly polymerized macromolecular networks,
and the vascular capillaries in the hypodermis are impermeable to large molecules (>50 kDa). Therefore, it is generally assumed that reaching from the
hypodermis to systemic circulation results from lymphatic drainage for most mAbs. However, lymph flow is slower than 0.2% of blood flow, the
systemic absorption of mAbs from injection site is limited.
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PRLR Ab exhibits several advantages such as higher potency,
noncompetitive inhibition of PRLR signaling, and a longer half-
life, which enhances its suitability in long-term animal studies.

3.2 IL-6R antibody

IL-6 is a key cytokine of immune modulation, affecting
autoimmune diseases, chronic inflammatory bowel disease,
vasculitis, and cancer (Calabrese and Rose-John, 2014). Of
interest, IL-6 is involved in androgen-driven alteration to the
autocrine and paracrine factors, and is induced by DHT in
dermal papilla (DP) of balding scalps (Kwack et al., 2012). IL-6R
and glycoprotein 130 were also expressed in follicular keratinocytes,
and IL-6 has shown to reduce the hair shaft elongation and the
matrix cell proliferation in cultured human hair follicles. Moreover,
IL-6 injection into the hypodermis of mice resulted in premature
onset of catagen, ultimately inhibiting the hair growth as a paracrine
factor from the DP.

Tocilizumab is an anti-human IL-6R mAb to treat rheumatoid
arthritis and cytokine release syndrome (Sheppard et al., 2017). It
inhibits the binding of IL-6 to the receptor, reducing pro-
inflammatory activity by competing with soluble and membrane-
bound forms of IL-6R (Jones and Hunter, 2021; Rose-John et al.,
2023). As IL-6 is involved in inflammation and immune stimulation,
it was primarily investigated for AA patients by disrupting the IL-6
signaling, leading to hair regrowth (Walker et al., 2021).
Interestingly, repeated treatment of tocilizumab resulted in hair
regrowth after several months in the male patient suffering from
AGA (Vidon et al., 2014).

3.3 CXCL12 antibody

CXCL12 and its receptor CXCR4, which are highly expressed in
the skin, are associated with various cutaneous diseases.
CXCL12 plays multifaceted roles in cellular migration, tissue
homeostasis, and wound healing. We first investigated the
involvement of CXCL12 in the hair cycle regulation, and found
that CXCL12 is highly expressed in dermal fibroblasts (DFs) and its
level was elevated throughout the catagen and telogen phases of the
hair cycle (Zheng et al., 2022). Hair loss was induced by recombinant
CXCL12 therapy in hair organ culture, which also delayed the
telogen-to-anagen transition and decreased the hair length in the
animal model. On the contrary, the suppression of CXCL12 using a
neutralizing Ab triggered the telogen-to-anagen transition in the
animal model. Similarly, pharmacological inhibition of
CXCR4 increased hair growth, which indicates that CXCL12/
CXCR4 pathway inhibitors are promising treatment options for
promoting hair growth.

In addition to androgen hormones, inflammatory mediators like
CXCL12 were significantly increased in the scalps of AGA patients
(Michel et al., 2017). It is of interest that CXCL12 expression
appeared to interact with the androgen signaling pathway. For
instance, testosterone and DHT upregulated CXCL12/
CXCR4 expression through the androgen receptor (AR) (Chodari
et al., 2016; Asbelaoui et al., 2024). Therefore, we further investigated
whether a CXCL12 neutralizing Ab is effective for AGA treatment.

The mRNA and protein expressions of CXCL12 were high in the
DFs of mouse skin after testosterone and DHT treatment (Zheng
et al., 2024). Testosterone and DHT significantly delayed the hair
growth, whereas s.c. injection of CXCL12 Ab significantly increased
hair growth in the AGA model (Figure 2).

We further examined the underlying molecular mechanism of
CXCL12 in the process of improving AGA models. Of note, AR is
primarily expressed in both DFs and DP in the skin, and co-localized
with CXCL12 in DFs (Michel et al., 2017). Therefore, DFs were
incubated with various concentrations of DHT or testosterone
(1–100 nM), resulting in a significant increase in both
CXCL12 mRNA and protein levels compared to control.
Androgens translocated AR to the nucleus in DFs, while AR-KO
significantly decreased the CXCL12 secretion after androgen
treatment. These results indicate that androgens induce
CXCL12 expression in DFs and AR is involved in the
CXCL12 expression.

In addition to androgens, the activation of an inflammatory
response towards the pilosebaceous unit may play a role in the
development and progression of AGA, with perifollicular
inflammation and fibrosis reported in histologic sections (Trüeb
et al., 2010; Valdebran et al., 2020). Recent research has proved that
the CXCL12/CXCR4 axis plays a critical role in the inflammatory
pathway due to its chemotaxis to inflammatory cells (Lu et al., 2024).
Blocking the chemotaxis of inflammatory cells by CXCL12 in the
scalp may inhibit and alleviate the inflammatory response to cure
AGA. Furthermore, the CXCL12/CXCR4 axis is also involved in
fibrosis in various organs, and CXCL12/CXCR4 inhibition showed a
promising approach in the fight against fibrosis (Wu et al., 2023).
Therefore, it is reasonable to assume that CXCL12 Ab cures AGA
through AR inactivation, anti-inflammation, and prevention of
fibrosis (Figure 2).

3.4 DKK 1 antibody

DKK1 expression has been highly determined in AGA patients
as well as AA patients (Fawzi et al., 2016; Choi et al., 2024). DKK1,
primarily expressed in adipose-derived stem cells (ASCs), tends to
decrease following adipogenic differentiation (Christodoulides et al.,
2006). We first examined the involvement of DKK1 in AA, and
found that DKK1 is secreted from the ASCs of AA patients. Also,
discovered that neutralizing Abs for DKK1 is effective in AA
treatment. Specifically, subcutaneous injection of DKK1 Abs
reduced the area of hair loss in AA, and CD8+ cells in the skin
(Choi et al., 2024).

Circulating androgens enter the follicle, and bind to the AR
within the DP cells to activate or repress target genes. Kwack et al.,
screened DHT-inducible genes in balding DP cells by cDNA
microarray and found that DKK1 is one of the most upregulated
genes (Kwack et al., 2008). They also showed that neutralizing
antibody against DKK1 was protective in the survival of ORS
cells inhibited by androgens. The protective effect of anti-DKK1
antibody on DHT-induced cell death was examined in hair
organ culture.

DKK1 is an endogenous pathogenic inhibitor of Wnt/β-catenin
signaling in AGA (Premanand and Reena Rajkumari, 2018), which
induced the anagen-to-catagen transition in the hair growth cycle
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(Mahmoud et al., 2019). Elevated androgen and AR in AGA also
modulatedWnt/β-catenin signaling pathway in theDPCs of the balding
scalp (Premanand and Reena Rajkumari, 2018). DKK1 signaling was
mediated by the interaction of low-density lipoprotein receptor-related
protein 6, and activated proapoptotic protein Bax to induce apoptosis in
the ORS cells (Kwack et al., 2008). For this reason, DKK1 neutralizing
Ab can be developed for AGA treatment.

4 Further consideration for therapeutic
Ab development

The advantages of Abs and four therapeutic targets for in AGA
have been described. However, developing a novel Ab therapy for
AGA faces several challenges, including cell penetration,
immunogenicity, and formulation.

4.1 Penetration into the cell and intracellular
AR localization

Large number of diseases involve cytosolic targets, and designing
Abs able to efficiently reach intracellular compartments would expand
the antibody-tractable conditions. However, Abs are primarily effective
as a therapeutic modality for interfering with targets in the extracellular
space or at the cell membrane. Unlike small-molecule drugs that are
capable of inhibiting some intracellular targets, Abs have highmolecular
weight and can target the extracellular molecules and have low volumes
of distribution in humans (Salgado and Cao, 2020). It is therefore highly
desirable to efficiently deliver antibodies intracellularly. Several studies,

primarily in cultured cells, have shown the feasibility of facilitating
antibodies’ cellular internalization (Herrmann et al., 2019).

As AR is primarily involved in AGA progression, there are many
evidence supporting that the inhibition of AR activation cures AGA
using siRNA, miRNA, and small molecules (Bielska et al., 2022;
Moon et al., 2023). However, AR is an intracellular nuclear receptor,
there is no Abs to target AR in AGA therapy to date. Of interest,
bispecific Abs targeting the N-terminal domain of AR have been
developed for prostate cancer (Goicochea et al., 2017). Bispecific Abs
entered human LNCaP prostate cells, accumulated in the nucleus,
and inhibited the growth of prostate cancer cells under androgen-
stimulated conditions. Therefore, these bispecific Abs can be used
for AGA treatment.

4.2 Functional role of AR in DPCs, hair follicle
stem cells, and DFs

Hair follicle consists of diverse type of cells such as DPCs, ORS
cells, and hair follicle stem cells (HFSCs). Among these, DPCs and
ORS cells interact with each other to generate new hair follicles and
to influence hair type. AR activation in DPCs regulates ORS cells by
modifying the paracrine factors produced by DPCs (Hamada and
Randall, 2006). Reduction in both DP volume and cell number in
AGA suggest that AR expression within the DP plays a key role in
altering the hair size in response to androgens (Elliott et al., 1999).
Therefore, targeting interaction between DPC and ORS cells is
important for AGA therapy, and Abs for PRLR and IL-6R
primarily mediate hair growth by directly targeting DPCs and
ORS cells.

FIGURE 2
Multi-functional role of CXCL12 for AGA therapy. Androgen hormones secrete CXCL12 from dermal fibroblasts (DF) via androgen receptor (AR).
Secreted CXCL12 activates AR in DF and dermal papilla cells (DPCs), and miniaturized hair follicle. On the contrary, CXCL12 Ab inactivates AR in DF and
DPCs, and inhibits inflammation and fibrosis surrounding hair follicle.
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Recently, the functional role of AR in HFSCs has been reported.
For instance, androgens deregulate DPC-secreted factors through
AR, which inhibits normal HFSC differentiation by suppressing the
canonical Wnt signaling pathway in AGA (Leiros et al., 2012).
Additionally, it has been reported that AR directly affects HFSCs by
antagonizing theWnt/β-catenin signaling pathway. Inhibition of AR
enhances the effects of β-catenin activation, thereby promoting HF
proliferation and differentiation (Kretzschmar et al., 2015).

Interestingly, AR is highly expressed in DFs in addition to DPCs
in human (Jacobson et al., 1995; Clocchiatti et al., 2018). However,
functional role of AR in DFs has not been fully reported in the AGA
progression. We first investigated the functional expression of AR
and CXCL12 in DFs, and found that they form positive feed-back
loop to regulate hair cycle. Androgens increased CXCL12 expression
and CXCL12 induced AR to inhibit hair growth in AGA (Asbelaoui
et al., 2024; Zheng et al., 2024). Therefore, inhibition of AR in DFs
through Ab therapy is a promising novel therapeutic target for AGA.

4.3 Immunogenicity

Early studies on protein vaccine development provided evidence
that the s.c. route of administration typically elicits a more robust
immunogenic response compared with the i.v. route (De Groot and
Moise, 2007; Pollard and Bijker, 2021). It is hypothesized that, mAb
is trafficked first through local lymphatic capillary beds and then
into larger lymphatic vessels, which may potentially result in
increased antigen presentation by dendritic cells. However, to our
knowledge, publicly available clinical datasets where
immunogenicity is reported for both i.v. and s.c. routes of
administration are generally not supportive of this hypothesis.
Two review articles have summarized immunogenicity for
11 therapeutic proteins (Hamuro et al., 2017; Xu et al., 2023). Of
these, the incidence of anti-drug antibodies was comparable between
the s.c. and i.v. products for 10 of the 11 therapeutic proteins.

5 Discussion

The efficacy and pharmacokinetic profiles of conventional
approved AGA therapy such as the topical minoxidil and oral
finasteride remain limited, emphasizing the need of alternative
therapeutic medications. Therapeutic Abs can be promising
candidates in company with a long-lasting characteristic and

enhanced safety via s.c. administration route. Inhibiting
overexpression of AR and 5α-reductase by Abs can be a primary
strategic option to manage AGA reducing off-target effects, however,
they are intracellular target which poses difficulty in neutralization.
Therefore, cell surface and secreted proteins surrounding hair follicle
are the targets for AGA, and Abs for PRLR, IL-6R, CXCL12, and
DKK1 have been developed and characterized. Strategic development
of therapeutic Abs is necessary and, new targets should be validated
and optimized for AGA treatment.
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