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Background:Mitochondria, as the energy factories of cells, are involved in a wide
range of vital activities, including cell differentiation, signal transduction, the cell
cycle, and apoptosis, while also regulating cell growth. However, current
pharmacological treatments for stroke are challenged by issues such as drug
resistance and side effects, necessitating the exploration of new therapeutic
strategies.

Objective: This review aims to summarize the regulatory effects of natural
compounds targeting mitochondria on neuronal mitochondrial function and
metabolism, providing new perspectives for stroke treatment.

Main findings: Numerous in vitro and in vivo studies have shown that natural
products such as berberine, ginsenosides, and baicalein protect neuronal
mitochondrial function and reduce stroke-induced damage through multiple
mechanisms. These compounds reduce neuronal apoptosis by modulating the
expression of mitochondrial-associated apoptotic proteins. They inhibit the
activation of the mitochondrial permeability transition pore (mPTP), thereby
decreasing ROS production and cytochrome C release, which helps preserve
mitochondrial function. Additionally, they regulate ferroptosis, mitochondrial
fission, and promote mitochondrial autophagy and trafficking, further
enhancing neuronal protection.

Conclusion: Asmulti-target chemical agents, natural products offer high efficacy
with fewer side effects and present promising potential for innovative stroke
therapies. Future research should further investigate the effectiveness and safety
of these natural products in clinical applications, advancing their development as
a new therapeutic strategy for stroke.
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Introduction

Stroke, also known as cerebrovascular accident (CVA), is a sudden onset condition
caused by an interruption in the blood supply to the brain or by hemorrhage, leading to
localized ischemic or hemorrhagic injury and subsequent brain function impairment
(Campbell and Khatri, 2020; Campbell et al., 2019). Strokes are classified into ischemic
stroke and hemorrhagic stroke (Feske, 2021). Ischemic strokes are predominant, accounting
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for approximately 80%–85% of all stroke cases, while hemorrhagic
strokes constitute the remaining 15%–20% (Boursin et al., 2018).
Current treatment strategies for stroke include acute phase
interventions and rehabilitation therapies (Caprio and Sorond,
2019). However, these methods are limited by narrow therapeutic
windows and carry risks such as increased bleeding (Teasell et al.,
2020). Thus, there is a critical need in clinical practice for new, safer
therapeutic approaches.

Mitochondria are intracellular organelles commonly referred
to as the “powerhouses of the cell,” responsible for energy
production within cells (Nunnari and Suomalainen, 2012). They
consist of a double-membrane structure, with a relatively smooth
outer membrane and an inner membrane that forms numerous
folded invaginations known as cristae (Frey and Mannella, 2000).
These cristae increase the surface area of the inner membrane,
enhancing mitochondrial energy production efficiency.
Mitochondria generate ATP through oxidative phosphorylation,
a process involving the oxidation of organic molecules like glucose,
releasing energy, and storing this energy in ATPmolecules (Schatz,
1967). Beyond energy production, mitochondria have other crucial
functions, including maintaining intracellular calcium ion balance,
regulating apoptosis, participating in cellular signal transduction,
and modulating cellular metabolic pathways (Faas and de Vos,
2020; Du et al., 2016; Si et al., 2024). Currently, research on
targeting mitochondria for disease treatment spans multiple
fields, including neurological disorders, cardiovascular diseases,
and metabolic diseases (Geng et al., 2023; Chistiakov et al., 2018;
Bhatti et al., 2017). In the realm of neurological disorders, stroke is
a significant focus of research. Since mitochondria can enhance cell
tolerance and reduce cell death, thereby protecting against
neuronal damage, targeting mitochondria presents a promising
therapeutic approach for stroke.

Natural products refer to organic compounds derived from
nature, including compounds produced by plants, animals, and
microorganisms (Wilson et al., 2020). These compounds typically
have good biocompatibility and safety profiles, with fewer severe
side effects. They often exhibit various biological activities, such as
antibacterial, anti-inflammatory, antioxidant, and antitumor effects,
making them valuable for drug discovery and the development of
new therapeutic methods (Crane and Gademann, 2016; Grigalunas
et al., 2022). Natural products usually have multi-target
characteristics, affecting multiple biological processes
simultaneously, including mitochondrial functions (Mu et al.,
2020). Therefore, they can modulate multiple aspects of
mitochondrial activity, thereby more comprehensively influencing
the occurrence and progression of stroke. Currently, research on
natural products for stroke treatment is still in its early stages but has
shown some potential. Some natural products have been found to
possess antioxidant and anti-inflammatory properties, which can
mitigate neuroinflammatory responses and cellular damage
following a stroke. Examples include tea polyphenols, flavonoids,
and curcumin (Tressera-Rimbau et al., 2017; Li R. et al., 2023; Ran
et al., 2021). These compounds help protect neurons from stroke
damage by reducing oxidative stress and inflammatory responses.
Stroke is a complex disease involving damage to various cell types,
including neurons and glial cells (Blacker, 2003). Natural products
may offer protective effects for multiple cell types, helping to
maintain the integrity of brain tissue.

In the treatment of stroke, although existing therapies such as
thrombolytic therapy and antiplatelet drugs can alleviate acute-
phase symptoms to a certain extent, their limitations are still
significant, especially in terms of the time window of treatment,
the side effects of the drugs, and the individual differences in
outcomes (Teasell et al., 2020). In recent years, therapeutic
strategies in which natural compounds target mitochondria have
attracted much attention (Wilson et al., 2020). Mitochondria are the
energy factories of cells and are involved in cellular energy
metabolism, signalling, oxidative stress response and apoptotic
processes (Nunnari and Suomalainen, 2012). During the acute
phase of stroke, brain tissue suffers from ischaemia, oxidative
stress, inflammatory response and other injuries, and the damage
and dysregulation of mitochondrial function is an important cause
of brain cell death. Natural compounds are particularly suitable for
intervening in stroke therapy by protecting mitochondrial function
due to their multi-targeting, low toxicity and good biocompatibility.
Therefore, studying and summarising how natural products target
mitochondria for stroke treatment may become one of the
important strategies for the treatment of stroke.

Association of mitochondria
with stroke

Mitochondria play an important role in the pathogenesis of
stroke, including ischaemia-reperfusion injury, apoptosis, and
oxidative stress (Yang et al., 2018). Brain tissue has a very high
demand for oxygen and energy to maintain normal neuronal
function and signalling. When ischaemia occurs in stroke,
mitochondrial function is impaired due to hypoxia in brain
tissue, resulting in reduced ATP production and disturbed
cellular energy metabolism, which can exacerbate brain tissue
damage (Ames, 2000). In addition, impaired mitochondrial
function leads to increased intracellular Ca2+ levels, triggering
intracellular calcium overload (Jiang et al., 2023). This triggers a
variety of pathological processes, including activation of
proteases, disruption of mitochondrial membrane integrity,
and opening of the mitochondrial permeability transition pore
(mPTP) leading to apoptosis (Li et al., 2020a). Meanwhile, in
stroke, hypoxia and ischaemia lead to impaired mitochondrial
function, producing more oxygen free radicals and other reactive
oxidants (Li Y. et al., 2023). These oxidants attack the cell
membrane, proteins and DNA from the damaged
mitochondrial membrane as well as mPTP and spill over into
the cytoplasm, leading to cellular damage and apoptosis and
exacerbating brain tissue damage (Cadenas, 2018). In stroke,
damaged mitochondria release apoptosis-associated proteins,
such as cytochrome C, which activate the mitochondria-
associated apoptotic pathway, leading to apoptosis and
neuronal loss in brain cells (Tucker et al., 2018).

In the pathogenesis of stroke, mitochondria not only play a key
role in energy metabolism and cell death mechanisms, but also have
important functions in maintaining intracellular homeostasis and
responding to external stimuli. Stroke leads to an increase in
oxidative stress, which subsequently causes cellular damage and
inflammatory responses (Reiter et al., 2016). Mitochondria-targeted
therapies can mitigate oxidative stress while simultaneously
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inhibiting the onset and progression of inflammatory responses,
thereby reducing the release of inflammatory cytokines and lowering
the inflammation levels in brain tissue (Wang et al., 2018). Ferroptosis,
a novel cell death mechanism, is characterized primarily by cellular
damage and death due to abnormal accumulation of iron ions and
exacerbated oxidative stress (Stockwell et al., 2017). Stroke induces
oxidative stress and inflammatory responses in brain tissue, increasing
the levels of intracellular free iron ions, which in turn triggers ferroptosis
(Xu et al., 2023).

Mitochondrial fission refers to the process by which a single
mitochondrion divides into two or more smaller mitochondria
(Youle and van der Bliek, 2012). This process helps cells regulate
mitochondrial quantity, morphology, and function to adapt to the
cell’s energy demands and environmental changes (Quiles and
Gustafsson Å, 2022). During a stroke, brain tissue is affected by
adverse factors such as ischemia and hypoxia, leading to impaired
mitochondrial function. Under these conditions, mitochondrial
fission may be activated, causing the mitochondria to divide in
response to oxidative stress and energy metabolism disturbances
(Wu et al., 2022; An et al., 2021). However, these newly generated
mitochondria may be unable to adequately produce sufficient ATP,
thereby exacerbating the metabolic disturbances in brain tissue and
impairing normal neuronal function. Excessive mitochondrial
fission can result in neuronal damage and apoptosis, aggravating
the pathological progression of stroke (Xu et al., 2017).

Mitophagy is a crucial cellular self-degradation process that clears
damaged mitochondria and promotes the synthesis of new ones,
thereby maintaining mitochondrial quantity and function within
cells (Bravo-San Pedro et al., 2017). Maintaining stable

mitochondrial function and morphology is critical for mitigating
stroke damage. Stroke induces hypoxia and ischemia in brain tissue,
leading to disruptions in cellular energy metabolism. Under these
circumstances, mitophagy clears damaged mitochondria, reduces
oxidative stress levels, and restores cellular energy metabolism
(Guan et al., 2018). Mitophagy also reduces the release of oxidative
stress and apoptotic signals, thereby decreasing neuronal apoptosis and
brain tissue damage (Zhong et al., 2022). Additionally, when stroke
triggers neuronal damage by promoting the release of pathological
inflammatory mediators, mitophagy mitigates neuroinflammatory
responses by reducing the release of intracellular inflammatory
mediators, thus alleviating brain tissue damage (Liu et al., 2023).

In summary, targeting mitochondria can directly impact the
pathological processes of stroke, aiding in the prevention or
alleviation of brain tissue damage (Figure 1). Natural compounds
exert multifaceted effects through multi-target interactions to
effectively regulate mitochondrial function, thereby mitigating the
damage caused by stroke. These compounds protect mitochondria
and reduce oxidative stress and inflammation by diminishing ROS
production, inhibiting the opening of the mPTP, and modulating
ferroptosis pathways. As a result, they safeguard neurons and
alleviate stroke-induced injury. Furthermore, natural compounds
can regulate mitophagy, which effectively suppresses the damage
caused by excessive mitochondrial fission. Through these diverse
mechanisms, natural products provide neuroprotective effects,
reduce neuronal injury, and attenuate the pathological processes
associated with stroke. However, there has been limited
investigation into natural products that regulate mitochondrial
pathways in stroke. Therefore, the development of therapeutics

FIGURE 1
Mitochondrial physiopathological mechanisms in stroke.
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targeting mitochondria represents a promising avenue for
combating stroke. This review attempts to categorize recent
publications on the mechanisms by which natural products exert
anti-stroke effects, focusing particularly on the molecular
mechanisms involving mitochondria.

Natural compounds target
mitochondria to treat stroke

As we screen and summarize natural products that protect
neurons through mitochondrial pathways, we have found ample
evidence from in vitro and in vivo studies confirming their ability to
target mitochondria and protect neurons. We have classified the

pathways targeting mitochondria as follows: 1) targeting
mitochondrial apoptosis pathway regulation; 2) targeting
oxidative stress regulation of mitochondria; 3) targeting
Ferroptosis regulation of mitochondria; 4) targeting mitophagy
regulation of mitochondria; 5) other pathways. Please refer to
Figure 2 and Table 1 for details.

Natural products targeting the
mitochondrial apoptotic pathway for the
treatment of stroke

By intervening in the mitochondrial apoptosis pathway,
neuronal apoptosis following stroke can be effectively reduced,

FIGURE 2
Chemical structure of natural products.
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TABLE 1 Molecular mechanisms of natural compounds for stroke treatment by regulating mitochondrial function.

Natural
compounds

Species Animal/cell (dose) Target for drugs Reference

Natural product targets mitochondrial apoptosis pathway for stroke treatment

Astragaloside IV Astragalus membranaceus
Schischk.

MCAO/R mice (30 mg/kg, ip,
once/d, 7 d)
OGD/R cell (10 μM)

Improve mitochondrial dysfunction, p-AKT↑, AKT↓, HK-
II↓, AIF↓, ATP↑, NAD+↑, Bax↓, mPTP↑, caspase-3↓,
caspase-8↓, cleaved caspase-3↓, Bid↓, Cyto C↓

Li et al. (2019)
Yin et al. (2020)

Celastrol Tripterygium wilfordii
Hook. f.

ICH mice (2 mg/kg, ip, once/d,
3 d)
Primary cortical neuron (10 μM)

Improve mitochondrial dysfunction, mPTP↓, VDAC1↓,
EPAC-1↓, mmp↑, ATP↑, ROS↓, Ca2+↓

Xue et al. (2019)

Crocetin Crocus sativus L. MCAO/R rats (40 mg/kg, po,
once/d, 5 d)
OGD/R SH-SY5Y cell (25 μM)

Improve mitochondrial dysfunction, NOX-2↓, HK-I↓,
ROS↓, mmp↑, GSH↑, MDA↓, PARP-1↓, PAR↓, AIF↓,
p-p47↓

Li et al. (2024)

Oxyresveratrol Veratrum album L. MCAO/R rats (20 mg/kg, ip,
once/d, 2 d)

Improve mitochondrial dysfunction, Cytochrome C↓,
cleaved-caspase-3↓

Hong et al.
(2023)

Picroside II Neopicrorhiza
scrophulariiflora (Pennell)

MCAO/R rats (20 mg/kg, ip,
once, after MCAO/R 2h)

Improve mitochondrial dysfunction, mPTP↓, VDAC1↓,
ROS↓, EndoG↓

Wu et al. (2023)

Theaflavic acid Black tea OGD/R PC12 cell (50 μM) LDH↓, ROS↓, Ca2+↓, MDA↓, SOD↑, mmp↑, cleaved-
caspase-3↓, Bcl-2/Bax↑, Nrf2↑, HO-1↑

Yoshino et al.
(2011)

TSG Pleuropterus multiflorus
(Thunb.) Nakai

MCAO/R rats (40 mg/kg, ip,
prior to reperfusion)
OGD/R cell (25 μM)

ROS↓, Ca2+↓, mmp↑, Bcl-2/Bax↑, p-JNK↓, iNOS↓, SIRT1↑ Andrabi et al.
(2004)

Natural products target mitochondrial oxidative stress to treat stroke

Notoginsenoside R1 Panax notoginseng (Burk.)
F. H. Chen

Sprague-Dawley rats (40 mg/kg,
ip, once, after MCAO)
Neuro-2a cell (20 μM)

GLUT 1/3↑, MCT↑, ATP↑, mitochondria number↑, mmp↑,
mtDNA↑, Atp12a↑, Atp6v1g3↑

Zhang et al.
(2017)

Notoginseng leaf
triterpenes

Panax notoginseng (Burk.)
F. H. Chen

MCAO/R rats (292 mg/kg, ig,
once/d, 2 weeks)
OGD/R SH-SY5Y cell
(6.25 μg/mL)

Mitochondrial ridge protection, ATP↑, mmp↑, NAMPT↑,
SIRT1/2/3↑, MnSOD↑, PGC-1α↑, Foxo3a↑

Li et al. (2020b)
Mu et al. (2021)

Panax notoginseng
saponins

Panax notoginseng (Burk.)
F. H. Chen

Sprague-Dawley rats (60 mg/kg,
po, once/d, 6 months)

Improve mitochondrial dysfunction, Mitochondrial ridge
protection, Bcl-2/Bax↑, caspase-3↓, FoxO3a↑, Mn-SOD↑,
PGC-1α↓, LC3β↓, Beclin-1↓

Wang et al.
(2009)

Natural product targets ferroptosis to treat stroke

Artesunate Artemisia caruifolia
Buch.-Ham.

ICH rats (70 mg/kg, ip, once/d,
3 d before ICH)
BV2 cell (10 μM)

Ferroptosis↑, p-AMPK, ↑ mTORC1↓, p-Akt↓, GPX4↓,
ROS↑, lipid peroxidation↑

Brooks (2018)

Baicalein Scutellaria baicalensis
Georgi

MCAO/R mice (80 mg/kg, ip,
once/d, 7 d)
OGD/R HT22 cell (4 μM)

Ferroptosis↓, Improve mitochondrial dysfunction, GPX4↑,
ACSL3↑, ACSL4↓, GSH↑, SOD↑, MDA↓, LPO↓

Liu et al. (2022)

Cottonseed oil Gossypium hirsutum Linn. MCAO/R rats (1.3 mL/kg, sc,
once/2d, 3 weeks)

Ferroptosis↓, Improve mitochondrial dysfunction, GPX4↑,
xCT↑, HO1↑, FTH1↑, ACSL4↓, GSH↑, SOD↑, MDA↓, LPO↓

Meng et al.
(2014)

Natural product targets mitochondrial autophagy for stroke treatment

Kaempferol Brassica capitata var.
italica

MCAO/R rats (200 mg/kg, po,
once/d, 7 d)
OGD/R cell (10 μM)

Mitophagy↑, Improve mitochondrial dysfunction, p-Akt↓,
p-Drp1↑, HK-II↑, LC3↑, ROS↓

Yan et al. (2021)

Ligustilide Angelica sinensis (Oliv.)
Diels

MCAO/R rats (20 mg/kg, ip,
once/d, 3 d)
OGD/R HT-22 cell (20 μM)

Mitophagy↑, Improve mitochondrial dysfunction, PINK1↑,
Parkin↑, TOMM20↑, LC3↑, ROS↓

Bai et al. (2016)

Quercetin Glycyrrhiza uralensis
Fisch.

MCAO/R rats (5 mg/kg, iv, once,
2 h after surgery)
BMECs (200 μM)

Mitophagy↑, Improve mitochondrial dysfunction, p-Akt↓,
p-mTOR↓, HIF-1α↓, PINK1↑, Parkin↑, LC3↑, TFEB↓, ROS↓

Xie et al. (2020)

Rehmapicroside Rehmannia glutinosa
(Gaert.) Libosch

MCAO/R rats (10 mg/kg, ip,
once, at the onset of reperfusion)
OGD/R SH-SY5Y cell (50 μM)

Excessive mitophagy↓, Inhibition of mitochondrial
autophagy, Bcl-2↑, Bax↓, Caspase-3, cleaved-Caspase-3↓,

Zhou et al.
(2018)

(Continued on following page)

Frontiers in Pharmacology frontiersin.org05

Cheng et al. 10.3389/fphar.2024.1434948

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1434948


protecting neurons from further damage and promoting
the repair and regeneration of brain tissue (Xia et al., 2020).
This therapeutic strategy not only alleviates neurological deficits
in stroke patients but also improves their quality of life,

potentially reducing disability and mortality rates after stroke.
It holds significant importance for the rehabilitation and
prognosis of stroke. Please refer to Figure 3 and Table 1
for details.

TABLE 1 (Continued) Molecular mechanisms of natural compounds for stroke treatment by regulating mitochondrial function.

Natural
compounds

Species Animal/cell (dose) Target for drugs Reference

PINK1↓, Parkin↓, p62↓, LC3-II↓, LC3-I↓, NADPH
oxidase↓, iNOS↓, Drp1↓

Sodium tanshinone IIA
sulfonate

Salvia miltiorrhiza Bunge
(Danshen)

OGD/R cell (40 μmol/L) Improve mitochondrial dysfunction, PP2A↑, Beclin 1↑,
ATG5↑, p62↓, IL-10↑, TGF-β↑, BDNF↑, IL-1β↓, IL-2↓,
TNF-α↓

Guo et al. (2023)

Trehalose saccharomyces SHRSP rats (2% aqueous
solution, po, 3 months)

Mitophagy↑, Improve mitochondrial dysfunction, TNF-α↓,
ROS↓, mtDNA↓, LC3↑, p62↑, TFEB↑

Wu et al. (2024)

Natural products target other mechanisms to treat stroke

Baicalin Scutellaria baicalensis
Georgi

MCAO/R rats (100 mg/kg, once,
at the onset of reperfusion)
OGD/R PC12 cell (25 μM)

Mitochondrial division↓, Improve mitochondrial
dysfunction, p-AMPK↑, p-Drp1↑, Drp-1↓, mmp↑, ROS↓,
MFN2↑

Xie et al. (2023b)

Danhong injection Salvia miltiorrhiza Bunge
Carthamus tinctorius
Linn.

MCAO/R rats (3 mL/kg, ip,
twice/d, 14 d)
OGD/R cell (0.1 μL/mL)

Improve mitochondrial dysfunction, parkin↑ Xue et al. (2023)

Ginsenoside Rb1 Panax ginseng C. A. Mey MCAO/R mice (100 mg/kg, ip,
once/d, 5 d)
OGD/R cell (10 μM)

Mitochondrial transfer, Improve mitochondrial
dysfunction, CD38↑, cADPR↑, ROS↓, Complex I↓, NADH↓,
mmp↑, ATP↑

Li et al. (2022)

Ginkgolide K Ginkgo L. MCAO mice (8 mg/kg, ip, prior
to the onset of reperfusion)
OGD/R N2a cell (40 μM)

Mitochondrial division↓, mPTP↓, Improve mitochondrial
dysfunction, Drp1↓, p-Drp1↑, GSK-3β↓, p-GSK-3β↑,
ANT↑, CypD↓

He et al. (2023)

FIGURE 3
Mechanism of natural products targeting the mitochondrial apoptotic pathway for the treatment of stroke.
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Astragaloside IV
Astragaloside IV (AIV) is a natural saponin extracted from

Astragalus membranaceus Schischk., exhibiting broad biological
activities. In vitro studies have found that glutamate stimulation
induces the separation of HK-II from mitochondria, leading to
mitochondrial dysfunction. Mitochondrial membrane damage
leads to cell death through multiple mechanisms, including the
activation of mPTP, increased ROS production, disruption of
ATP synthesis, and induction of calcium overload, which
collectively trigger apoptosis, necrosis, and inflammatory
responses. After binding to the outer mitochondrial
membrane, HK-II forms a complex with specific receptors on
the membrane, thereby stabilizing the mitochondrial outer
membrane structure and reducing cell death induced by
membrane damage. AIV (purity ≥ 98%) at a concentration of
10 μM activates Akt by promoting its binding with HK-II, thereby
protecting mitochondrial HK-II and preserving hexokinase
activity by improving glycolysis. By retaining mitochondrial
HK-II, AIV reduces the release of pro-apoptotic proteins and
AIF, thus protecting neurons from apoptosis and Parthanatos. In
addition, in middle cerebral artery occlusion/reperfusion
(MCAO/R) mice, treatment with AIV at a dose of 30 mg/kg
intraperitoneally for 7 days also activated Akt, promoted HK-II
binding to mitochondria, and exerted a protective effect on
neurons. In summary, AIV promotes the binding of HK-II
with mitochondria via Akt, preserving the structural and
functional integrity of mitochondria, thereby protecting
neurons from apoptosis and DNA damage (Li et al., 2019).
Furthermore, AIV inhibits the upregulation of Fas, FasL,
Caspase-8, and Bax/Bcl-2 mRNA, as well as the protein levels
of apoptosis-related factors Caspase-8, Bid, cleaved Caspase-3,
and Cyto C after ischemia-reperfusion, suggesting that AIV may
alleviate ischemia-reperfusion-induced apoptosis by inhibiting
the activation of mitochondria-related apoptotic factors (Yin
et al., 2020; Xue et al., 2019).

Celastrol
Celastrol is a natural product extracted from Tripterygium

wilfordii Hook. f., known for its mitochondrial and neuronal
protective effects. In vivo studies have shown that Celastrol at a
dose of 2 mg/kg administered intraperitoneally once daily for 3 days
improves neurological behavior and cognitive abilities in mice with
intracerebral hemorrhage (ICH), reduces neuronal death, and
promotes the recovery of neuronal mitochondrial function. In
vitro research has revealed that Celastrol at a concentration of
10 μM binds with cyclic adenosine monophosphate (cAMP)/
cAMP-activated exchange protein-1 (EPAC-1), inhibiting its
interaction with voltage-dependent anion-selective channel
protein 1 (VDAC1), thereby blocking the opening of the mPTP
and reducing Primary Cortical Neuron death. Blocking the opening
of mPTP effectively protects the integrity of the mitochondrial
membrane, reduces ROS generation, and inhibits apoptosis and
calcium overload, thereby preserving the healthy function of the
mitochondria. In summary, Celastrol improves neuronal
mitochondrial dysfunction induced by cerebral hemorrhage by
targeting EPAC-1 (Li et al., 2024). In addition, Celastrol
ameliorates cerebral ischaemia-reperfusion injury through
antioxidant effects (Hong et al., 2023).

Crocetin
Crocetin is a natural compound derived from the herb Crocus

sativus L., known for its antioxidant activity. In vivo studies on the
permanent middle cerebral artery occlusion (MCAO) model in SD
rats have shown that oral treatment with crocetin at a dose of
40 mg/kg once daily for 5 days inhibits the activation of NADPH
oxidase 2 (NOX-2). This inhibition reduces the early production of
ROS, PARP-1, poly (ADP-ribose) polymer (PAR), and apoptosis-
inducing factor (AIF), thereby exerting neuroprotective effects in the
brain. Additionally, PARylated hexokinase-I (HK-I) serves as a
novel substrate of the E3 ubiquitin ligase RNF146. In vitro
studies on SH-SY5Y cells induced by oxygen-glucose deprivation
(OGD) have shown that Crocetin at a concentration of 25 μM
inhibits RNF146-mediated HK-I degradation and ROS production,
elevates mitochondrial membrane potential (mmp) and glutathione
(GSH) levels, and reduces malondialdehyde (MDA) levels, thus
preventing mitochondrial dysfunction and DNA damage.
Moreover, Crocetin reduces the expression of p-p47, NOX-2,
PARP-1, PAR, and AIF in cells, inhibiting neuronal parthanatos
and protecting neuronal growth. NOX-2 is one of the key enzymes
involved in oxidative stress, responsible for the generation of O₂⁻
and other ROS. During the occurrence of stroke, the excessive
activation of NOX-2 leads to a substantial production of ROS,
thereby exacerbating oxidative stress-induced mitochondrial
damage, which ultimately results in brain tissue injury. These
findings suggest that Crocetin exerts therapeutic effects against
ischemic stroke by inhibiting NOX-2 and preventing HK-I
degradation, thereby protecting mitochondrial function (Wu
et al., 2023). In addition, Crocetin also prevents stroke by
reducing ROS levels in the brain (Yoshino et al., 2011).

Oxyresveratrol
Oxyresveratrol is a natural compound extracted from various

plants, such as Veratrum album L., known for its antioxidant and
cardiovascular protective effects. In vivo studies have shown that
Oxyresveratrol at a dose of 20 mg/kg injected intraperitoneally once
a day for 2 days significantly reduces the infarct volume in MCAO
rats and improves neurological deficits. Mechanistically,
Oxyresveratrol reduces the release of cytochrome c and decreases
caspase-3 activation in MCAO rats, thereby protecting
mitochondrial function and reducing the number of apoptotic
brain cells. Cytochrome c release and caspase-3 activation are
central events in mitochondria-mediated apoptosis, and these
processes result in rupture of the mitochondrial membrane, loss
of function. Therefore, Oxyresveratrol exerts its anti-stroke effects
by inhibiting the mitochondrial apoptotic pathway (Andrabi
et al., 2004).

Picroside II
Picroside II is a natural compound extracted fromNeopicrorhiza

scrophulariiflora (Pennell), known for its anti-inflammatory and
anti-apoptotic effects. In vivo studies have demonstrated that
Picroside II (purity ≥ 98%) at a dose of 20 mg/kg administered
by intraperitoneal injection 2 h after MCAO/R in rats reduces
neuronal damage injury and improves the morphology of brain
tissues. Mechanistically, Picroside II downregulates the expression
of VDAC1, thereby reducing the permeability of the mitochondrial
permeability transition pore (mPTP), decreasing ROS levels, and
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reducing the number of apoptotic cells. This inhibition suppresses
the release of EndoG from mitochondria to the cytoplasm, thereby
alleviating brain damage. Therefore, Picroside II mitigates ischemic
brain injury by downregulating mitochondrial mPTP (Li et al., 2018;
Zhang et al., 2017).

Theaflavic acid
Theaflavic acid (TFA) is a type of theaflavins found in black tea,

exhibiting various biological activities. In vitro studies have revealed
that 50 μM of TFA (purity ≥ 98%), targeting PC12 cells subjected to
oxygen-glucose deprivation and reperfusion (OGD/R) injury,
inhibits the excessive generation of intracellular ROS, reduces
malondialdehyde levels, enhances superoxide dismutase activity,
and improves cell viability while reducing lactate dehydrogenase
(LDH) release to protect PC12 cells. Mechanistically, TFA inhibits
intracellular calcium overload and mmp depolarization, decreases
the expression of caspase-3 and Bax, and increases the protein
expression of Bcl-2. Additionally, TFA promotes Nrf2 nuclear
translocation, enhances ARE transcriptional activity, and
upregulates HO-1 expression. These findings suggest that TFA
mitigates OGD/R-induced neuronal cell damage by inhibiting the
mitochondrial apoptotic pathway via the Nrf2/ARE signaling
pathway (Li et al., 2020b; Mu et al., 2021).

TSG
2,3,5,4′-tetrahydroxystilbene-2-O-beta-D-glucoside (TSG) is a

natural active component extracted from the root tuber of
Pleuropterus multiflorus (Thunb.) Nakai, exhibiting antioxidant
and anti-inflammatory effects. In vivo studies have shown that
40 mg/kg of TSG injected intraperitoneally prior to reperfusion
significantly reduces cerebral infarction volume and neuronal
apoptosis in rats subjected to MCAO. In vitro studies have
demonstrated that 25 μM of TSG (purity ≥9 8%), targeting

neuronal cells induced by OGD/R, reduces intracellular ROS and
Ca2+ generation, decreases mmp, increases the ratio of Bcl-2/Bax,
decreases the expression of p-JNK and iNOS, increases
SIRT1 expression, and reduces neuronal damage. Therefore, TSG
exerts neuroprotective effects by inhibiting mitochondria-related
apoptosis (Wang et al., 2009).

Natural products targeting mitochondrial
oxidative stress for stroke treatment

Stroke can lead to increased intracellular oxidative stress,
resulting in mitochondrial dysfunction, mitochondrial DNA
damage, and increased mitochondrial membrane permeability,
thereby triggering apoptosis and inflammatory responses,
exacerbating brain damage (Su et al., 2020). Targeting
mitochondrial oxidative stress can alleviate oxidative stress
damage to mitochondria, protect mitochondrial function, reduce
apoptosis and inflammatory responses, help slow the progression of
brain damage, and improve patient recovery and survival rates.
Therefore, targeting mitochondrial oxidative stress is a promising
therapeutic strategy that may bring new breakthroughs in the
treatment of stroke. Please refer to Figure 4 and Table 1 for details.

Notoginsenoside R1
Notoginsenoside R1 is derived from the dried roots and

rhizomes of Panax notoginseng (Burk.) F.H.Chen, exhibiting
antioxidative, anti-inflammatory, anti-angiogenic, and anti-
apoptotic activities. During ischemia, oxygen supply to the brain
tissue is insufficient, and cells rely on anaerobic metabolism to
produce lactate. Lactate is subsequently metabolized within the
mitochondria and enters the TCA cycle, where it is further
converted to ATP (Brooks, 2018). Simultaneously, brain cells

FIGURE 4
Mechanism of natural product targeting of mitochondrial oxidative stress for the treatment of stroke.

Frontiers in Pharmacology frontiersin.org08

Cheng et al. 10.3389/fphar.2024.1434948

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1434948


depend on glucose as the primary substrate for ATP synthesis. In
vivo studies have shown that treatment with 40 mg/kg of
Notoginsenoside R1 injected intraperitoneally after MCAO
reduces the infarct volume and neurological deficits in rats,
increase ATP levels, and upregulate the expression of glucose
transporter 1/3, monocarboxylate transporter 1, and citrate
synthase in the peri-infarct tissue of the brain. In vitro studies have
demonstrated that 20 μM of Notoginsenoside R1 (purity ≥ 98%)
increases the number of mitochondria, mmp, and mitochondrial
DNA copy number, thereby improving mitochondrial morphology
and inhibiting Neuro-2a cell death induced by OGD. Additionally, the
expression of mitochondrial energy metabolism-related mRNAs
Atp12a and Atp6v1g3 is significantly upregulated. Therefore,
Notoginsenoside R1 may improve neuronal mitochondrial function
post-ischemic stroke and protect neurons from stroke-induced
damage by enhancing brain glucose and lactate transport and ATP
levels (Liu et al., 2022; Meng et al., 2014).

Notoginseng leaf triterpenes
Notoginseng leaf triterpenes (PNGL) are saponin compounds

extracted from the roots and rhizomes of the plant P. notoginseng
(Burk.) F. H. Chen, known for their therapeutic activity in
cardiovascular diseases. In vivo studies have shown that
treatment with PNGL at a dose of 292 mg/kg by gavage once
daily for 2 weeks significantly alleviates oxidative stress, inhibits
mitochondrial damage, mitigates energy metabolism dysfunction,
reduces neuronal loss and apoptosis, thereby markedly improving
the survival rate of neurons under ischemic and hypoxic
conditions in the MCAO/R model. Additionally, PNGL
significantly increases the expression of nicotinamide
phosphoribosyltransferase (NAMPT) in the ischemic area,
thereby regulating its downstream pathways involving SIRT1/2/
3-MnSOD/PGC-1α (Xie W. et al., 2023). In vitro studies have
revealed that PNGL at a concentration of 6.25 μg/mL markedly
alleviates ischemic damage, maintains redox balance and alleviates
oxidative stress, inhibits mitochondrial damage, mitigates energy
metabolism dysfunction, improves neuronal mitochondrial
function, and significantly reduces neuronal loss and apoptosis
in SH-SY5Y cells subjected to OGD/R. Moreover, PNGL
significantly increases NAMPT expression in OGD/R cells and
activates downstream pathways involving SIRT1/2-Foxo3a and
SIRT1/3-MnSOD/PGC-1α. Ischemic events are typically
accompanied by oxidative stress and dysregulated cellular
energy metabolism. NAMPT promotes an increase in
intracellular NAD⁺ levels, which activates SIRT1.
SIRT1 primarily exerts its effects through deacetylation,
regulating various transcription factors such as NF-κB and p53,
thereby inhibiting the expression of oxidative stress-related genes
(Yan et al., 2021). Additionally, SIRT1 enhances the activity of
antioxidant enzymes, such as MnSOD, CAT, and GPX, reducing
the generation of free radicals and ROS, ultimately alleviating
oxidative damage (Bai et al., 2016). In summary, PNGL exerts
mitochondrial protective effects and holds promise as a treatment
for stroke by acting through NAMPT (Xie et al., 2020).

Panax notoginseng saponins
Panax notoginseng saponins (PNS) are natural compounds

extracted from the roots and rhizomes of the plant P. notoginseng

(Burk.) F. H. Chen, known for their therapeutic activity in
cardiovascular diseases. In vivo studies have shown that oral
treatment with PNS (purity > 95%) at a dose of 60 mg/kg once
daily for 6 months significantly improves the morphological
changes in the myocardium of aging rats, increases the ratio of
Bcl-2/Bax and decreases the protein expression of caspase-3,
thereby preventing an increase in myocardial cell apoptosis,
reducing fractured mitochondrial cristae, and ameliorating age-
related mitochondrial dysfunction. PNS also significantly reverses
the downregulation of FoxO3a and Mn-SOD and the upregulation
of PGC-1α, LC3β, and Beclin-1 levels. FoxO3a is involved in
cellular antioxidant responses and stress reactions. Mn-SOD, a
key antioxidant enzyme in mitochondria, functions to eliminate
O₂⁻, thereby reducing the accumulation of ROS. LC3β and Beclin-1
are critical marker proteins in the autophagy process, playing
essential roles in the formation of autophagosomes. During the
aging process, mitochondrial dysfunction leads to increased
oxidative damage, which plays a crucial role in myocardial cell
apoptosis. In summary, PNS alleviates oxidative damage through
oxidative stress and mitochondria-related signaling pathways,
exerting an anti-myocardial cell apoptosis effect and potentially
reducing the occurrence of stroke (Zhou et al., 2018).

Natural product targeting of mitochondrial
iron death for the treatment of stroke

During the process of stroke, impaired blood perfusion leads to
cerebral hypoxia-ischemia, triggering the release of iron ions and
intracellular iron overload, consequently activating oxidative stress
responses and the iron death pathway. Iron death accelerates
apoptosis of brain cells and inflammatory reactions, exacerbating
the extent of brain damage (Guo et al., 2023). Therefore,
intervention in the iron death pathway may help alleviate the
damage caused by stroke and play a crucial role in the treatment
and prevention of strokes. Please refer to Figure 5 and Table 1
for details.

Artesunate
Artesunate is a water-soluble semi-synthetic derivative of

artemisinin, derived from Artemisia caruifolia Buch.-Ham.,
exhibiting significant anti-neuroinflammatory pharmacological
effects. In some cases, iron death may help remove damaged or
abnormal cells, preventing them from further damaging
surrounding healthy neurons (Wu et al., 2024). In
neuroinflammatory responses, removal of damaged cells may
reduce the release of inflammatory factors, thereby mitigating
further nerve damage. In vivo studies have revealed that in rats
with intracerebral hemorrhage (ICH) injury, intraperitoneal
injection of 70 mg/kg of artesunate once daily for 3 days
improves neurological deficits, reduces hematoma volume, and
alleviates brain edema. Additionally, artesunate inhibits pro-
inflammatory factors associated with M1-type microglia and
upregulates iron death. In vitro, treatment with 10 μM of
artesunate upregulates ROS and lipid peroxidation levels,
activates p-AMPK, inhibits the expression of mTORC1, p-Akt,
and GPX4, and reduces the viability of BV2 cells stimulated by
LPS. Therefore, artesunate induces iron death in M1-polarized
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microglia, inhibits inflammation, and alleviates secondary damage
caused by cerebral hemorrhage (Xie G. et al., 2023).

Baicalein
Baicalein is the primary bioactive component isolated from

the roots of Scutellaria baicalensis Georgi. In vivo studies have
shown that intraperitoneal administration of 80 mg/kg baicalein
(purity > 98%) once daily for 3 days to MCAO mice ameliorated
cerebral I/R injury by decreasing brain tissue Fe2+ levels, lipid
peroxidation, and the characteristic morphological features of
iron death in mitochondria. In vitro studies on HT22 cells
subjected to OGD/R reveal that 4 μM of baicalein inhibits
cellular iron death by promoting the levels of GPX4 and
ACSL3 while suppressing the expression of ACSL4.
GPX4 converts lipid peroxides into their corresponding
alcohols, preventing the further accumulation of peroxides,
thereby reducing oxidative stress and protecting cells from
ferroptosis (Xue et al., 2023). ACSL4 is closely involved in
the regulation of lipid metabolism, and increased expression
of ACSL4 promotes the synthesis of polyunsaturated fatty acids,
making cell membrane lipids more prone to oxidation, thereby
enhancing sensitivity to ferroptosis (Xue et al., 2023).
Consequently, baicalein inhibits iron death and alleviates
damage caused by stroke (Li et al., 2022).

Cottonseed oil
Cottonseed oil (CSO) is a vegetable oil extracted from

Gossypium hirsutum Linn., containing a high concentration of
essential fatty acids for human consumption. In MCAO-R-
induced rats, subcutaneous injections using 1.3 mL/kg CSO
(purity > 99%) every 2 days for 3 weeks resulted in reductions
in infarct area and neuronal damage, significantly improving rat

neurological dysfunction. Mechanistically, CSO upregulates the
expression of anti-iron death proteins (GPX4, xCT, HO1, FTH1)
while downregulating the expression of iron death-related
protein ACSL4. This leads to increased activity of GSH and
SOD, and decreased levels of MDA and LPO, thereby
alleviating mitochondrial damage caused by ischemic stroke.
xCT, HO1, and FTH1 regulate ferroptosis through distinct
mechanisms. Upregulation of xCT increases GSH levels,
alleviating oxidative stress and thereby delaying the onset
of ferroptosis (He et al., 2023). The product of HO1, bilirubin,
possesses potent antioxidant properties, scavenging free radicals
and mitigating oxidative damage, thus inhibiting iron overload-
induced cellular damage and ferroptosis (Tang et al., 2021).
FTH1, on the other hand, functions by binding and storing
free iron, preventing oxidative damage caused by free
iron (Kong et al., 2021). Consequently, CSO treatment can
mitigate ischemic stroke injury by inhibiting iron death (Sun
et al., 2023).

Natural product-targeted mitochondrial
autophagy for stroke treatment

Mitochondrial autophagy contributes to the clearance of
dysfunctional mitochondria and damaged organelles,
alleviating cell damage and inflammatory responses induced
by oxidative stress, thereby protecting neurons from further
harm (Li J. et al., 2023). Additionally, mitochondrial
autophagy helps maintain cellular energy metabolism balance,
promoting cell survival and repair, thus offering potentially
robust support for stroke recovery. Please refer to Figure 6
and Table 1 for details.

FIGURE 5
Mechanism of natural product targeting of mitochondrial iron death for the treatment of stroke.
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Kaempferol
Kaempferol is a natural flavonoid compound found in most

plants, such as Brassica capitata var. italica. It exhibits various
biological activities, including anticancer and anti-inflammatory
effects. In vitro studies have shown that oral administration of
10 μM of kaempferol (purity ≥ 98%) once daily for 7 days
targets OGD neuron cells, activating Akt in OGD-treated
neuronal cells, maintaining mitochondrial HK-II levels and
activating dynamin-related protein 1 (Drp1), which regulates
mitochondrial dynamics. This process inhibits excessive
mitochondrial fission, reducing mitochondrial damage and thus
protecting neurons (Schmitt et al., 2018). Kaempferol also activates
LC3, promoting mitophagy. Mitophagy helps clear damaged and
dysfunctional mitochondria, preventing them from inducing
oxidative damage and cell death (Towers et al., 2021). In vivo
studies targeting MCAO rats have demonstrated that 200 mg/kg
of kaempferol can reduce the infarct volume in rats and activate HK-
II and Drp1 in the infarct area, reproducing similar mitochondrial
protective effects. Therefore, kaempferol exerts its therapeutic effects
on stroke by promoting mitochondrial autophagy (Wu et al., 2017).

Ligustilide
Ligustilide is a natural compound extracted from Angelica

sinensis (Oliv.) Diels, known for its neuroprotective properties. In
vivo studies on MCAO/R rats showed disordered arrangement of
hippocampal neurons, disappearance of nucleoli, and shrinkage of
nuclear plasm. Intraperitoneal injection of 20 mg/kg of ligustilide
(purity: 99.17%) once a day for 3 days increased the expression of
PINK1, Parkin, TOMM20, and LC3, enhancing mitochondrial
autophagy, improving mitochondrial function, and alleviating
ischemia-reperfusion injury in rat brains. In vitro studies
targeting OGD/R-induced HT-22 cells demonstrated that 20 μM

of ligustilide promoted mitochondrial autophagy by upregulating
PINK1/Parkin, reducing ROS levels, protecting mitochondrial
function, and ameliorating neuronal damage caused by ischemic
stroke. Overall, ligustilide exerts its protective effects against stroke
by promoting mitochondrial autophagy (Wu et al., 2022; Mao
et al., 2022).

Quercetin
Quercetin is a natural flavonoid compound widely distributed in

various plants, such as Glycyrrhiza uralensis Fisch., known for its
antioxidant, anticancer, hypoglycemic, and hypolipidemic
properties. In vitro studies targeting primary rat brain
microvascular endothelial cells (BMECs) showed that the
combination of 200 μM quercetin and hyaluronic acid activated
LC3, PINK1, and TFEB, promoting mitochondrial autophagy,
reducing ROS levels, and decreasing endothelial cell apoptosis. In
vivo experiments on MCAO rats demonstrated that tail vein
injection of 5 mg/kg quercetin and hyaluronic acid 2 h after
surgery inhibited the protein expression of p-Akt, p-mTOR, HIF-
1α, and LC3, increased the protein levels of PINK1 and Parkin,
activated mitochondrial autophagy, exerted neuroprotective effects,
and reduced the infarct area. In summary, quercetin treats ischemic
brain injury by activating mitochondrial autophagy (Cen
et al., 2022).

Rehmapicroside
Rehmapicroside is a rosmarinic acid glycoside isolated from

the rhizomes of Rehmannia glutinosa (Gaert.) Libosch, known
for its cardiocerebrovascular protective effects. ONOO⁻ is a
highly oxidative molecule typically generated during ischemia
and reperfusion through the reaction between NO and O₂⁻

(Zhang et al., 2023). During ischemia-reperfusion injury, the

FIGURE 6
Mechanism of natural products targeting mitochondrial autophagy for the treatment of stroke.
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oxygen supply is insufficient due to ischemia, leading to the
generation of a large amount of ROS inside the cells. These ROS
react with NO, resulting in the production of abundant ONOO⁻.
In vitro studies have shown that during ischemia-reperfusion,
ONOO⁻ exerts its effects by recruiting Drp1 to the mitochondria,
causing excessive mitochondrial fission and generating more
damaged mitochondria. In PC12 cells induced by OGD/R,
50 μM rehmapicroside (purity ≥ 98%) reduced O2

− and
ONOO−, upregulated Bcl-2, downregulated Bax, Caspase-3,
and cleaved Caspase-3 expression, and decreased the ratio of
LC3-II to LC3-I along with downregulation of PINK1, Parkin,
p62, and LC3-II levels, thereby inhibiting mitochondrial-related
apoptotic pathways and autophagy, ultimately protecting
neuronal viability. In vivo studies on MCAO/R rats have
shown that intraperitoneal injection of 10 mg/kg
rehmapicroside at the onset of reperfusion improved infarct
area and neurofunctional deficits. Mechanistically,
rehmapicroside inhibited 3-nitrotyrosine formation, NADPH
oxidase, and iNOS expression, while preventing PINK1,
Parkin, and Drp1 translocation into mitochondria to activate
mitochondrial autophagy. Therefore, rehmapicroside treats
cerebral ischemia by inhibiting excessive mitochondrial
autophagy (Zhang et al., 2020).

Sodium tanshinone IIA sulfonate
Sodium tanshinone IIA sulfonate (STS) is a water-soluble

derivative of tanshinone IIA, the main bioactive component
extracted from the root of Salvia miltiorrhiza Bunge (Danshen),
known for its anti-inflammatory and cardiocerebrovascular
protective effects. In vitro studies have shown that in small glial
cells and neurons induced by OGD/R, 40 μmol/L of STS significantly
upregulates the expression of PP2A in small glial cells, leading to
increased levels of Beclin 1 and ATG5 and decreased levels of the
p62 protein, inducing cell autophagy. STS-induced autophagy in
small glial cells reduces the production of anti-inflammatory factors
(IL-10, TGF-β, and BDNF) and induces the release of pro-
inflammatory factors (IL-1β, IL-2, and TNF-α), thereby inhibiting
neuronal mitochondrial dysfunction and apoptosis and exerting a
protective effect on neurons. In summary, STS regulates autophagy
and inflammation in small glial cells through the PP2A gene,
improving mitochondrial function, and inhibiting neuronal
apoptosis (Ma et al., 2023).

Trehalose
Trehalose is a naturally occurring non-reducing disaccharide

synthesized by lower organisms such as yeast and slow-moving
animals. It exhibits antioxidant properties, reduces protein
aggregation, and enhances autophagy. In vivo studies have found
that feeding spontaneously hypertensive stroke-prone (SHRSP) rats
with a high-salt stroke-prone diet (JD) supplemented with a 2%
concentration of trehalose orally for 3 months reduces the incidence
of stroke. At the molecular level, trehalose upregulates the
expression of LC3 and p62, inhibits TNF-α activation and ROS
production, reduces mtDNA content, upregulates TFEB expression,
promotes its nuclear translocation, and enhances mitochondrial
autophagy, improving mitochondrial function. These results
indicate that trehalose exerts its anti-stroke effects by promoting
mitochondrial autophagy (Forte et al., 2021).

Other mechanisms of natural product
targeting of mitochondria for the treatment
of stroke

Baicalin
Baicalin is a flavonoid natural compound extracted from S.

baicalensis Georgi, known for its neuroprotective activity.
High blood sugar is a risk factor for exacerbating brain
defects. In vivo studies have found that 100 mg/kg of baicalin
in MCAO rats can reduce blood sugar, alleviate neurological
deficits, and decrease infarct volume. In vitro studies have
shown that 10 μM of baicalin (purity ≥ 98%) in PC12 cells
induced by OGD/R inhibits Drp-1 expression, reduces
mitochondrial fission, promotes the generation of mitofusin-
2 (MFN2), increases Drp-1 Ser637 phosphorylation, and
enhances mmp by inhibiting ROS production. Knockdown
of AMPKα1 abolishes the protective effect of baicalin.
Baicalin also inhibits cell apoptosis and enhances autophagy.
These results suggest that baicalin protects against exacerbated
brain ischemic damage induced by high blood
sugar by regulating mitochondrial function via AMPK (Li
et al., 2017).

Danhong injection
Danhong Injection (DHI) is a natural medicine extracted from

S. miltiorrhiza Bunge and Carthamus tinctorius Linn., known for its
blood-activating and stasis-removing effects. In vitro studies have
shown that 0.1 μL/mL of DHI on OGD/R neurons upregulates the
expression of the Parkin protein, regulates mitochondrial dynamics,
suppresses mitochondrial damage, and enhances neuronal activity.
In vivo studies on MCAO/R rat models have demonstrated that
intraperitoneal injection of 3 mL/kg of DHI twice a day for 14 days
increases Parkin protein levels, repairs nerve defects caused by
cerebral ischemia and sensory-motor impairment, and improves
rat survival rates. In summary, DHI exerts its anti-stroke effects by
protecting mitochondrial function through Parkin (Orgah
et al., 2019).

Ginsenoside Rb1
Ginsenoside Rb1, extracted from Panax ginseng C. A. Mey, is

a natural saponin compound with neuroprotective potential. In
murine MCAO/R models, intraperitoneal injection of rb1 at a
dosage of 100 mg/kg once daily for 5 days inhibits ROS
production in a CD38-dependent manner. It catalyzes the
synthesis of cyclic ADP-ribose (cADPR), a calcium messenger,
on the mitochondrial membrane to promote the transfer of
astrocytic mitochondria to neurons, thereby protecting
neuronal survival and alleviating ischemic brain injury. In
OGD/R models, 10 μM of Rb1 inhibits the activation of
NADH dehydrogenase in mitochondrial complex I, blocking
the generation of ROS from reverse electron transport in
complex I. This action deactivates astrocytes to protect
mitochondria. When neurons are damaged by OGD/R,
Rb1 protects astrocytic mitochondria and promotes their
transfer, thereby increasing mmp and ATP production to
protect neurons. Thus, the transfer of astrocytic mitochondria
appears to be a mechanism by which Rb1 promotes neuronal
survival and function (Ni et al., 2022).
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Ginkgolide K
Ginkgolide K is a natural compound extracted from the leaves of

Ginkgo L., possessing multiple pharmacological activities. In vivo
studies have found that in mice induced with MCAO,
intraperitoneal injection of ginkgolide K at a dose of 8 mg/kg
prior to the onset of reperfusion inhibits the translocation of
GSK-3β and Drp1 to mitochondria, alleviating mitochondrial
dysfunction. In vitro studies targeting N2a cells induced with
OGD/R revealed that 40 μM of ginkgolide K increases
phosphorylation at the Ser637 site of Drp1, suppressing the
recruitment of Drp1 to mitochondria and thereby reducing
mitochondrial fission. Moreover, ginkgolide K induces
phosphorylation at the Ser9 site of GSK-3β, enhancing the
interaction between adenosine nucleotide transporter (ANT) and
p-GSK-3β. This interaction inhibits the binding of ANT with
cyclophilin D (CypD), thereby suppressing the opening of
mitochondrial permeability transition pores (mPTP). Thus,
ginkgolide K protects mitochondrial function and exerts anti-
stroke effects by inhibiting mitochondrial fission and mPTP
(Zhou et al., 2017).

In summary, current research indicates that natural products
demonstrate tremendous potential in targeting mitochondrial
protection against neuronal damage, further advancing the
possibilities for stroke treatment. These studies have revealed
that most natural products play a crucial role in protecting
neuronal mitochondria by modulating the expression of
various mitochondrial-related proteins, such as Bax, Bcl-2,
caspases-3/-8, Drp-1, PINK1, and Parkin. Additionally, natural
products can directly enhance mmp, inhibit the opening of
mPTP, reduce ROS generation, promote mitochondrial
autophagy and transfer, and suppress mitochondrial fission,
thereby safeguarding neurons from injury. These research
findings provide important theoretical and experimental
foundations for developing novel stroke treatment strategies,
paving the way for further exploration of the potential of
natural products in stroke therapy.

In addition, compared to synthetic drugs, natural products offer
significant advantages, including higher safety, favorable
bioavailability, and multi-target effects (Katz and Baltz, 2016).
Natural products, which are typically derived from plants,
animals, or microorganisms, have been proven through long-
term traditional use to possess lower toxicity and fewer side
effects, making them safer for clinical application. They generally
exhibit better absorption and metabolic characteristics in the body,
leading to higher bioavailability. Furthermore, because natural
compounds contain multiple bioactive components, they can
exert effects on various biological targets through different
mechanisms, thereby enhancing therapeutic efficacy through
synergistic actions (Kalkreuter et al., 2020). These properties
make natural products particularly promising for the treatment
of complex diseases, especially in the management of
neurodegenerative conditions such as stroke.

Although these natural compounds have shown potential
efficacy in the treatment of stroke, particularly in alleviating
oxidative stress, inhibiting inflammation, protecting neurons,
and promoting mitochondrial function recovery, their clinical
application still faces several challenges and limitations. First,
most existing studies are focused on in vitro and animal models,

and there is a lack of sufficient large-scale, randomized controlled
clinical trials to verify their efficacy and safety. Second, the
mechanisms of action and optimal administration routes for
different natural compounds remain unclear, and their
pharmacokinetic properties and bioavailability need further
investigation. Additionally, the long-term efficacy, safety,
potential drug interactions, and side effects of these natural
compounds have not been thoroughly evaluated. Therefore,
while natural compounds show promise in stroke treatment,
future research should focus on clinical validation, dosage
optimization, personalized treatment strategies, and the safety
of long-term use to ensure their effectiveness and feasibility in
stroke therapy.

Clinical application and research
progress of natural products in
stroke treatment

The clinical application and research progress of natural
products in stroke have garnered significant attention (Tao
et al., 2020). Currently, numerous natural products are being
used in clinical therapy for stroke. For instance, Neuroaid has
been shown to significantly reduce vascular risks and early
vascular events in stroke patients, with a longer-lasting
therapeutic effect (Chen et al., 2013; Suwanwela et al., 2018).
Tongxinluo, a traditional Chinese medicine compound, can
decrease adverse cardiovascular and cerebrovascular events
within 30 days in patients (Yang et al., 2023). The omega-3
fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic
acid (DHA) can notably reduce the risk of stroke in patients
(Nicholls et al., 2020). Saffron significantly reduces the severity of
ischemic stroke, while elevating levels of glutathione (GSH) and
total antioxidant capacity (TAC), and decreasing levels of
malondialdehyde (MDA) (Gudarzi et al., 2022).

Some monomeric compounds found in natural products have
garnered significant attention in the field of stroke treatment and
are widely researched. Apart from their demonstrated efficacy in
clinical trials, these compounds also exhibit remarkable
properties at the molecular biology level. For instance,
resveratrol, curcumin, ginsenosides, among others, play crucial
roles by modulating inflammatory signaling pathways, alleviating
oxidative stress, and inhibiting cell apoptosis (Hou et al., 2018;
Wu et al., 2021; Chu et al., 2019). Molecular-level studies have
indicated that these compounds can intervene in multiple cellular
signaling pathways, including the JAK2/STAT3 and Nrf2/ARE
signaling pathways, to repair the blood-brain barrier, promote
neuronal survival and repair, thereby offering new directions and
strategies for stroke treatment. Thus, combining clinical trials
with molecular biology research, the monomeric compounds in
these natural products hold potential therapeutic effects,
bringing new hope for stroke patients.

Compared to synthetic drugs, natural products have a
broader range of sources and a more diverse chemical
structure, thus possessing greater potential pharmacological
activity and biological effects (Fan et al., 2022; Karageorgis
et al., 2021; Chen et al., 2020). These natural products include,
but are not limited to, plant extracts, marine biota components,
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and microbial metabolites, which have gradually developed
unique biological activities through long-term evolution in
natural environments (Sflakidou et al., 2022; Xu et al., 2020).
These preclinical studies not only confirm the neuroprotective
effects of natural products in stroke treatment but also provide a
more solid scientific foundation for their clinical application.
Therefore, natural products, due to their natural, safe, and
effective characteristics, have become an important resource
attracting considerable attention in the field of stroke treatment.

Conclusions and future research
directions and perspectives

Based on recent research findings, this paper focuses on
summarizing a series of naturally occurring compounds with
anti-stroke activity, along with their sources, structural
classifications, and mechanisms of action. These natural
compounds are derived primarily from plants and microbial
metabolites, with terpenoids, alkaloids, glycosides, and flavonoids
being the main classes. Through comparative analysis of the
mechanisms of action of these compounds, it is found that they
exhibit various mechanisms, including regulating the expression of
mitochondrial-related apoptotic proteins (such as Bcl-2, Bax,
caspase-3, etc.), inhibiting ROS generation, regulating ferroptosis,
promoting mitochondrial autophagy and transfer, among others.

The comprehensive review suggests that these natural products
can exert neuroprotective effects by modulating mitochondrial
function, although the conclusions are still preliminary. Nano-
delivery systems and synthetic biology can also provide effective
solutions for the clinical application of natural products. The former
solves the problem of delivery efficiency by improving
bioavailability, stability and targeting, while the latter improves
the efficacy and safety of natural products by optimising
production processes and structural modifications (Parodi et al.,
2017). Therefore, it is recommended to select natural products that
have beneficial effects on mitochondria and their metabolism,
further conduct structural modification and derivative
development based on their natural structures, and determine the
optimal effective dose for stroke through in vitro and in vivo
experiments. In addition, further optimization of formulations

and administration methods is needed to minimize potential
toxic side effects on healthy cells, develop safer formulations. In
the future, this natural product treatment model may become a
promising and safer approach for stroke therapy.
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