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Heart failure (HF) has a severe impact on public health development due to high
morbidity and mortality and is associated with imbalances in cardiac
immunoregulation. Macrophages, a major cell population involved in cardiac
immune response and inflammation, are highly heterogeneous and polarized
into M1 and M2 types depending on the microenvironment. M1 macrophage
releases inflammatory factors and chemokines to activate the immune response
and remove harmful substances, while M2 macrophage releases anti-
inflammatory factors to inhibit the overactive immune response and promote
tissue repair. M1 and M2 restrict each other to maintain cardiac homeostasis. The
dynamic balance of M1 and M2 is closely related to the Traditional Chinese
Medicine (TCM) yin-yang theory, and the imbalance of yin and yang will result in a
pathological state of the organism. Studies have confirmed that TCM produces
positive effects on HF by regulating macrophage polarization. This review
describes the critical role of macrophage polarization in inflammation, fibrosis,
angiogenesis and electrophysiology in the course of HF, as well as the potential
mechanism of TCM regulation of macrophage polarization in preventing and
treating HF, thereby providing new ideas for clinical treatment and scientific
research design of HF.
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1 Introduction

Heart failure (HF) is the end stage of various heart diseases in which functional and/or
structural abnormalities of the heart result in impaired ventricular filling and/or ejection
capacity. The main clinical signs and symptoms are caused by stasis in the pulmonary and
physical circulation and reduced cardiac output (Bozkurt et al., 2021; Heidenreich et al.,
2022; McDonagh et al., 2024). The development of the disease is associated with a
synergistic interplay of multiple mechanisms, including dysregulation of the
neurohumoral system, oxygen-free radical burst, mitochondrial dysfunction, autophagy,
apoptosis, and inflammatory response (Kleinbongard et al., 2010; Dick and Epelman, 2016;
Antoine et al., 2017; van der Pol et al., 2019; Yamaguchi, 2019). With high morbidity and
mortality rates, HF affects more than 64 million people worldwide and has become a
significant public health problem worldwide (Savarese et al., 2023). Drug therapy is the
primary treatment for HF, and more and more national HF guidelines recommend
quadruple therapy as the primary drug therapy for HF, which can significantly improve
the prognosis of patients with HF and open up a “new era” of HF treatment (Vaduganathan
et al., 2020; Tromp et al., 2022). However, these medications still have many challenges and
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limitations, with many adverse effects and recurrent episodes of the
disease when taken for an extended period. Traditional Chinese
medicine (TCM), with its multi-target and multi-pathway
characteristics, has good clinical efficacy in treating HF, especially
in regulating the body balance and reducing side effects (Li et al.,
2013; Liu et al., 2014).

HF activates the immune system regardless of the factor causing
it (Torre-Amione, 2005; Bacmeister et al., 2019). Macrophages are
an essential component of the immune system, and activated
macrophages produce a variety of cytokines, chemokines, and
enzymes that modulate the inflammatory response and promote
tissue injury or repair (Murray and Wynn, 2011). After myocardial
damage, the local release of chemokines in the tissue promotes the
increase of the number of macrophages and differentiation into
different phenotypes, thus playing various functions. The
characteristics of M1 and M2 macrophage subsets have been well
defined. M1 macrophages are pro-inflammatory cells, and
M2 macrophages have anti-inflammatory effects (Shapouri-
Moghaddam et al., 2018; Zhang H. et al., 2021). Studies have
shown that M1 and M2 macrophages can be transformed into
each other under different conditions during the course of HF,
and the dynamic balance between the two is closely related to tissue
damage and repair (Halade et al., 2018; Lv et al., 2020). Therefore,
regulating the balance between the two types of macrophages may
become essential for treating HF. This article will review the
mechanism of macrophage polarization in HF and the research
progress of TCM in regulating macrophage polarization for treating
HF to provide a new therapeutic strategy.

2 Macrophage polarization and
mechanisms

2.1 Origin and function of macrophages

Macrophages are widely distributed in various body tissues and
include monocyte-derived macrophages and tissue-resident
macrophages (TRMs) (Moreira Lopes et al., 2020). TRMs are
derived from erythroid myeloid progenitors of the yolk sac and
fetal monocyte progenitors and are replaced by renewal through in
situ proliferation when the organism is in a stable state (Epelman
et al., 2014; Gentek et al., 2014). When tissue inflammation or injury
occurs, TRMs are consumed in large numbers, and monocytes
migrate from the periphery to the tissue, acquire the ability to
synthesize and secrete inflammatory mediators, and transform into
macrophages that play a role in tissue injury (Jakubzick et al., 2017).
The main functions of macrophages are pathogen clearance and
antigen presentation. TRMs in different tissues have some
functional heterogeneity. For example, osteoclasts in bone tissues
have bone remodeling effects, and TRMs in the heart play a crucial
role in the formation and development of cardiac tissue and blood
vessels (Suzuki et al., 2020; Zaman et al., 2021).

2.2 Macrophage polarization

Macrophages are highly plastic and differentiate into different
subtypes of macrophages with diverse functions under various

microenvironments, a process known as macrophage polarization
(Yunna et al., 2020). The current paradigm describes two
macrophage subpopulations: classically activated
M1 macrophages and alternatively activated M2 macrophages
(Ruytinx et al., 2018).

2.2.1 Phenotype and function of M1 macrophages
M1 macrophages highly express surface protein markers

such as CD16, CD32, CD40, CD68, CD80, CD86, F4/80 h
and TRL-4 (Yao et al., 2019; Binatti et al., 2022). Pathogen-
associated molecular patterns (PAMPs) such as
lipopolysaccharide (LPS), interferon-gamma (INF-γ), tumor
necrosis factor-α (TNF-α), and granulocyte-macrophage
colony-stimulating factor activate intracellular downstream
signaling pathways by binding to different receptors, which
promotes M1 macrophage polarization, secretion, and
proliferation (Brown et al., 2012). M1 macrophages secrete a
large number of pro-inflammatory factors, such as IL-1β, TNF-
α, and INF-γ, and chemokines (like chemokine CXC-motif
ligand9 (CXCL9), CXCL10, CXCL11, and CXCL16).
Simultaneously, immune stress increases reactive oxygen
species (ROS) and inducible nitric oxide synthase (iNOS)
levels, and the immune response of Th1 and Th17 cells is
markedly increased. These responses have pro-inflammatory,
anti-tumor, and antigen-presenting effects (Yunna et al., 2020;
Tsai et al., 2021; Zhou et al., 2021).

2.2.2 Phenotype and function of M2 macrophages
M2macrophages are anti-inflammatory and can be polarized

into four subtypes: M2a, M2b, M2c and M2d. M2a macrophages
are stimulated by IL-4 and IL-13, which express high levels of the
CD206 and IL-1Ⅱreceptors. M2a secrete anti-inflammatory
substances (such as IL-10, chemokine CC-motif ligand17
(CCL17), CCL18, CCL22, CCL24) and pro-fibrotic factors
(TGF-β, insulin-like growth factor (IGF), and fibronectin)
reduces chronic inflammation and promotes tissue
regeneration and wound healing (Wang et al., 2019). M2b
macrophages are mainly induced by immune complexes (ICs)
and IL-1β, with high expression of protein markers such as
CD86, IL-10R, IL-12R, and tumor necrosis factor superfamily
member 14 (TNFSF14). M2b secretes pro-inflammatory factors,
including IL-1β, IL-6, and TNF-α, and anti-inflammatory
factors like IL-10. Because they have both pro-inflammatory
and anti-inflammatory effects, M2b is also called a regulatory
macrophage (Mosser and Edwards, 2008). M2c is induced by IL-
10, TGF-β and glucocorticoids and is characterized by a high
expression of CD163 and CD206 on the cell surface. M2c
secretes IL-10 and TGF-β to inhibit inflammation and
promote tissue repair, and at the same time, regulates T cells
through the secretion of chemokines, such as CCL16 and CCL18,
which exert a phagocytic effect on apoptotic cells (Tian L. et al.,
2022). M2d, also known as tumor-associated macrophages, can
be induced by a combination of TLRs and adenosine receptor
agonists or by IL-6 alone and marked by proteins such as IL-10R
and IL-12R. M2d secretes IL-10, vascular endothelial growth
factor (VEGF), a major inflammatory factor in the tumor
environment, promoting angiogenesis and contributing to
tumor growth (Wang et al., 2019).
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2.3 Molecular mechanisms of macrophage
polarization

2.3.1 TLRs signaling pathway
Toll-like receptors (TLRs) play a crucial role in regulating

macrophage polarization, with TLR4 being the most closely
related to M1 macrophages. CD14, a membrane glycoprotein
with glycosylated inositol (GPI), enhances the TLR4 signaling
pathway, in addition, medullary differentiation protein 2 (MD-2)
promotes TLR4 translocation (Park and Lee, 2013). LPS binds to
LPS-binding protein (LBP) and recognizes a heterotrimer of CD14/
TLR4/MD-2, which activates different downstream signaling
pathways such as the myeloid differentiation primary response
protein 88 (MyD88) pathway and the TIR structural domain-
containing articulators inducing interferon-β (TRIF) signaling
pathway (Ciesielska et al., 2021).

MyD88 binds to IL-1 receptor-associated kinase (IRAK) to form
a complex (Ciesielska et al., 2021). Subsequently, the complex
further interacts with tumor necrosis factor receptor-associated
factor 6 (TRAF6), triggering a signaling cascade reaction with
TAK1 kinase, which activates inhibitor kappa B kinase α/β (IKK
α/β), leading to nuclear translocation of NF-κB transcription factors
(Hawiger et al., 1999; Takaesu et al., 2000). The TRIF pathway
activated by TLR4 first induces the activation of the ubiquitin ligase
TRAF3, followed by the activation of tank-binding kinase 1 (TBK1)
and IKKε. After TBK1 phosphorylates the pLxlS consensus motif of
TRIF, interferon regulatory factor 3 (IRF3) is recruited. Nuclear
translocation occurs after TBK1 phosphorylates IRF3 (Liu et al.,
2015). After entering the nucleus, NF-κB and IRF3 bind to target
gene binding sites, initiate and regulate the expression of
inflammatory factors such as IL-1β and TNF-α, and promote
M1 macrophage polarization (Ryu et al., 2022; Mussbacher
et al., 2023).

2.3.2 JAK/STAT signaling pathway
Activation of the JAK/STAT signaling pathway regulates

macrophage polarization. Ligands bind to corresponding
macrophage receptors to form dimers, which recruit and
phosphorylate JAK. Activated JAK causes tyrosine
phosphorylation of bound receptors to form docking sites for
STATs. Subsequently, STATs detach from the receptor and form
homologous dimers through SH2 domain-phosphotyrosine
interactions. The STATs dimer then undergoes nuclear
translocation and binds to relevant target genes to induce
macrophage polarization (Ge et al., 2021; Hu et al., 2021). The
STAT family consists of seven members, of which STAT1 promotes
macrophage polarization to theM1, and STAT3 and STAT6mediate
macrophage conversion to the M2.

The JAK/STAT1 pathway activation by IFN-γ is crucial for
M1 macrophage polarization. Unlike IFN-γ, IFN-α/β activated the
suppressor of cytokine signaling factor 3 (SOCS3), which prevented
STAT1 phosphorylation andM1 polarization (Lawrence and Natoli,
2011). IL-4 activates the JAK/STAT6 pathway, and phosphorylated
STAT6 can directly bind to KLF4 and PPAR-γ to mediate
M2 polarization by initiating gene transcription (Gong et al.,
2017; Chen et al., 2022). In addition, STAT6 increases the
expression of the histone demethylase Jmjd3, which demethylates
the lysine at position 27 of histone H3 and then acts on the

transcription factor interferon regulatory factor 4 (IRF4) to
mediate M2 polarization (Ming-Chin Lee et al., 2022). IL-10 is
an essential immunosuppressive factor that promotes
M2 polarization by activating the JAK/STAT3 pathway (Duncan
et al., 2020).

2.3.3 PI3K/Akt signaling pathway
The PI3K/Akt signaling pathway is crucial for macrophage

survival, proliferation, migration, and polarization. Signaling
factors such as TLR4 and other pathogen recognition receptors,
cytokines and chemokines, and Fc receptors activate class I PI3K to
convert the second messenger phosphatidylinositol 4,5-diphosphate
(PIP2) to phosphatidylinositol 4,5-triphosphate (PIP3) at the
plasma membrane. PIP3 attracts Akt and rapamycin complex 2
(mTORC2) and facilitates the activation of Akt by mTORC2
(Vergadi et al., 2017). Activated Akt then activates mTORC1 by
inhibiting tuberous sclerosis complex 1/2 (TSC1/2) (Covarrubias
et al., 2015).

Macrophages have three distinct Akt subtypes: Akt1, Akt2, and
Akt3. It has been observed that Akt1 and Akt2 have opposing effects
on regulating macrophage polarization (Arranz et al., 2012). The
activation of the PI3K/Akt1 pathway is considered a negative
regulator of TLR and NF-kB signaling (Fukao and Koyasu,
2003). On the one hand, the PI3K/Akt1 pathway can upregulate
the TLR4 signaling repressor IRAK-M by mediating the inactivation
of TRAF6, thereby inhibiting TLR4 target genes and encouraging
macrophage polarization toward M2. On the other hand, Akt1 can
prevent NF-κB from nuclear transcription, which leads to
M2 polarization (Kobayashi et al., 2002; Fan et al., 2010; Tian Y.
et al., 2022). Oppositely, Akt2 can facilitate the polarization of
macrophages to the M1 by promoting the nuclear translocation
of NF-κB, while Akt2 deletion enhances the M2 macrophage
phenotype (Babaev et al., 2014; Yin et al., 2023). As a
downstream target of PI3K/Akt, mTORC also contributes to
macrophage polarization. Studies on how mTORC1 regulates
macrophage polarization show contradictory results, possibly due
to different environmental activation conditions (Byles et al., 2013;
Kimura et al., 2016). In contrast, the mechanism of mTORC2 is
relatively straightforward, as it promotes M2 polarization by
inducing the transcription factor IRF4 (Huang et al., 2016).

2.3.4 JNK signaling pathway
The JNK signaling pathway is crucial for the polarization and

activation of macrophages (Zha et al., 2021). The JNK family
contains three isoforms: JNK1, JNK2, and JNK3. Activated JNK
controls target gene transcription and expression using downstream
substrates such as AP-1 (Koga et al., 2019).

Activation of the JNK signaling pathway is a crucial step in
initiating chronic low-grade inflammation (Park and Han, 2024).
LPS activates JNK through TLR4/MyD88 signaling and promotes
the activation of its downstream substrates, thereby mediating the
polarization of M1 macrophages and producing inflammatory
factors to promote an inflammatory response (Liu et al., 2018).
Furthermore, JNK phosphorylates serine 707 to inactivate STAT6,
which causes M1 polarization (Shirakawa et al., 2011). JNK is
inhibited by IL-4 and IL-13, leading to macrophage polarization
toward M2 and facilitating tumor development, angiogenesis, and
metastasis (Cheng et al., 2023).
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2.3.5 Notch signaling pathway
Notch receptors are highly conserved throughout evolution,

participate in cell growth and development and maintain tissue
homeostasis. The mammalian Notch signaling pathway is mainly
activated by interactions between three delta-like ligands (DLL1, DLL3,
and DLL4), two Jagged family ligands (JAG1 and JAG2), and four
transmembrane receptors (Notch1-4) (Eun and Jeong, 2016). Recent
studies have shown that the Notch signaling pathway is associated with
macrophage activation and polarization (Vieceli Dalla Sega et al., 2019).
The precise mechanism is that the intracellular portion (NICD) of Notch
is released from the medial membrane into the nucleus following its
binding to the ligand, owing to the actions of disintegrinmetalloproteinase
(ADAM) and gamma-secretase. NICD binds to recombinant signal
binding protein-J (RBP-J) to promote M1 polarization. The Notch
and TLRs pathways are integrated at the level of IRF8 protein
synthesis. Xu et al. showed that the Notch pathway activates TLR4,
which induces IRF8 expression and promotes M1 macrophage
polarization through the IRAK2-MNK1-elF4E pathway (Xu et al., 2012).

The regulatory mechanisms of M1 and M2 macrophage
polarization are detailed in Figures 1, 2.

3 Role of macrophage polarization
in HF

Multiple complex physiopathologic processes accompany HF.
Macrophages are the most numerous immune cells in the heart and

are crucial for both preserving cardiac homeostasis and organizing
tissue damage healing. After cardiac tissue is damaged, monocytes
are recruited from the bone marrow and spleen to the injury site and
differentiate into macrophages, which are involved in the various
phases of inflammation, repair and remodeling of myocardial injury
(Nahrendorf et al., 2007; Swirski et al., 2009). This article will discuss
the role of macrophage polarization in HF from the following
aspects. The detailed regulatory mechanisms are shown in Figure 3.

3.1 Macrophage polarization and
inflammation in HF

Acute myocardial infarction (AMI) is the primary cause of
HFrEF. Ischemia and subsequent reperfusion injury trigger acute
inflammatory responses, which permanently damage
cardiomyocytes. Obesity, hypertension, and metabolic syndromes
are frequent causes of HFpEF. These diseases can all result in
persistent systemic inflammation, which damages cardiomyocytes
by producing pro-inflammatory cytokines. Circulating levels of
inflammatory mediators have been connected with HF mortality
(Mouton et al., 2020). Inflammation also is the primary cause of HF
in patients with inflammatory cardiomyopathy or myocarditis
(Hanna and Frangogiannis, 2020). This implies that HF is
triggered by whatever pathological changes are associated with
local and systemic activation of inflammatory signaling cascade
responses (Adamo et al., 2020). An initial inflammatory response in

FIGURE 1
Regulatory mechanisms of M1 macrophage polarization.
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HF is triggered by the innate immune response when ischemia and
hypoxia cause cardiomyocyte necrosis. This reaction involves the
release of danger-associated molecular patterns (DAMPs) such as
mitochondrial DNA, activation of complement, and synthesis of
inflammatory vesicles (Yang et al., 2015; Rhee and Lavine, 2020).
The inflammatory pathway is continuously activated and produces
large amounts of inflammatory factors and chemokines, like IL-1,
IL-6, TNF-α, and CCL2 (Swirski and Nahrendorf, 2018). Elevated
levels of inflammatory factors and chemokines attract neutrophils
and monocytes generated in the bone marrow and spleen to travel
with the blood to the ischemic myocardium to coordinate the initial
inflammatory response and to clear dead cardiomyocytes (Tsou
et al., 2007; Zuurbier et al., 2019). When AMI occurs, Ly6Chigh
monocytes are the first monocyte population, which differentiate
into M1 macrophages, produce protein hydrolases, and secrete
matrix metalloproteinases (MMPs) that degrade dead or dying
cardiomyocytes and extracellular matrix (ECM) (Nahrendorf
et al., 2007; Nahrendorf and Swirski, 2013). The continuous
infiltration of immune cells further aggravated oxygen depletion
in the infarct area (Van den Bossche et al., 2017). Hypoxia-inducible
factors (HIFs) rapidly accumulate in the nucleus of macrophages in
response to a hypoxic microenvironment (Zeng et al., 2015). HIFs
promotes transcription of the M1 macrophage gene profile and
shifts glycolysis to become the primary mode of metabolic energy
production in M1 macrophages by driving the expression of the
glycolytic gene Slc2al (Fujisaka et al., 2013). Hypoxia stimulates

M1 macrophages in the epicardial adipose tissue (EAT) in response
to myocardial injury. These macrophages then further penetrate the
myocardium and contribute to the exacerbation of cardiac
inflammation (Hirata et al., 2011). Researches have indicated that
patients with AMI and HFpEF have thicker EAT (Gruzdeva et al.,
2018; Horckmans et al., 2018; Gorter et al., 2020). The
M2 macrophages predominate in late AMI. In order to support
the healing response to AMI, Ly6Clow monocytes are drawn to the
myocardium to transform into M2 macrophages (Nahrendorf and
Swirski, 2013). Reparative M2c macrophage is also induced by
neutrophil gelatinase-associated lipid transport protein (NGAL)
(Horckmans et al., 2017). M2c macrophages have a high
cytosolic burying capacity and express the Mertk receptor
specifically, facilitating tissue healing and inflammation (Wan
et al., 2013). Necrotic cardiomyocytes are phagocytosed by
macrophages, which provide fatty acids for macrophage
mitochondrial respiration and generate NAD + to encourage
M2 polarization (Zhang S. et al., 2019). M2 macrophages secrete
anti-inflammatory factors such as IL-10, IL-4, and arginase 1 (Arg1),
contributing to inflammation regression (Lv et al., 2020). Excessive
inflammatory response aggravates a myocardial injury, inhibits
tissue repair, promotes adverse LV remodeling, and thus
promotes the progression of HF. Therefore, reducing
inflammation has become a potent strategy for treating HF
(Glezeva et al., 2015). It has been demonstrated that sodium-
glucose cotransporter-2 inhibitors (SGLT2i) decrease HF events,

FIGURE 2
Regulatory mechanisms of M2 macrophage polarization.
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particularly HFrEF, perhaps because of their anti-inflammatory
properties by lowering plasma glucose and increasing plasma β-
hydroxybutyric acid (Bonnet and Scheen, 2018). The β-
hydroxybutyric acid promotes the M2 polarization through the
STAT6 signaling pathway (Huang et al., 2022).

3.2 Macrophage polarization and
myocardial fibrosis

Myocardial fibrosis, a common clinical state in many
cardiovascular disorders leading to HF, is characterized by the
activation of cardiac fibroblasts into myofibroblasts (Lee et al.,
2017). Myofibroblasts generate ECM, a crucial factor in
developing myocardial fibrosis (Nielsen et al., 2019; Liu Y. et al.,
2020). Macrophages may be a key target for slowing the course of HF
because of their bidirectional regulatory effect on ECM.
M1 macrophages and Ly6Chigh monocytes secrete a variety of
proteases, such as MMP2 and MMP9, to clear cell debris and
degrade ECM during the acute phase of AMI. Phagocytosis of
these cells is a prerequisite for the subsequent replacement of
damaged tissue by granulation tissue (Zaidi et al., 2021). As the
Warburg effect proceeds, the accumulated lactic acid in the cell
causes histone lactation, which raises the M2 gene in macrophages
and completes the transition of M1 to M2 macrophages (Zhang D.
et al., 2019). Maintaining a balance between reparative and
proinflammatory macrophages is crucial since the delayed
conversion of M1 to M2 has been identified as one of the
primary causes of adverse ventricular remodeling. Macrophages

mainly exhibit the M2 phenotype in the repair stage of AMI,
which stimulates fibroblasts, enhances ECM protein synthesis,
and promotes collagen deposition by producing a multitude of
cytokines, such as TGF-β, IL-10, galectin-3, and Arg1 (Hulsmans
et al., 2018; Suthahar et al., 2018; Tengbom et al., 2021;
Frangogiannis, 2024). TGF-β1 binds to the type II receptor
(TGF-βRⅡ) on the surface of fibroblasts, activates the
Smad3 signaling pathway, upregulates the expression of smooth
muscle actin (α-SMA), and promotes the transformation of
fibroblasts into myofibroblasts in the presence of the fibronectin
domain EDA (Serini et al., 1998; Kong et al., 2014). In addition to
directly activating fibroblasts, galectin-3 modulates immune-
inflammatory responses, angiogenesis, and TGF-β amplification
of pro-fibrotic signaling by forming lectin-sugar lattices on the
cell surface (Chen et al., 2017; Xu GR. et al., 2020; Wang et al.,
2023). Arg1 drives L-arginine metabolism to generate ornithine,
polyamines, and proline, consequently contributing to fibroblast
proliferation and collagen formation (Bhatta et al., 2017). IL-10
mediates the release of osteopontin (OPN) from macrophages
through the STAT3-galectin3 pathway, and OPN activates
fibroblasts (Shirakawa et al., 2018). Additionally, it has been
demonstrated that IL-10 enhances heart function and myocardial
wall compliance after myocardial infarction by lowering the collagen
I/III ratio (Shirakawa et al., 2018). M2 macrophages produce IL-10
instantaneously in AMI. However, prolonged activation of
M2 macrophages under pressure overload ultimately results in
increased left ventricular wall thickness, excessive collagen
deposition, and progression of diastolic dysfunction (Hulsmans
et al., 2018; Zhang S. et al., 2019). M2 macrophages have the

FIGURE 3
The regulatory mechanisms of macrophage polarization in inflammation, fibrosis, angiogenesis and cardiac electrophysiology of HF.
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ability to differentiate directly into myofibroblasts or fibroblasts,
which will accelerate the course of fibrosis. HAIDER et al. evaluated
this macrophage-to-fibroblast transformation by examining typical
fibroblast markers in MI mice, including type I collagen (COL1A1),
prolyl 4-hydroxylase (P4H), fibroblast activating protein (FAP), and
α-SMA (Haider et al., 2019). In addition, macrophages participate in
angiotensin Ⅱ (AngⅡ) production by synthesizing renin and
angiotensin-converting enzymes in stressed myocardium
(Ovchinnikov et al., 2020). AngⅡ is an effective stimulant of
myocardial fibroblasts. It has been discovered that the
salocorticoid receptor inhibits AngⅡ-induced ventricular fibrosis
by regulating the polarization of M2 macrophages (Usher et al.,
2010). Therefore, the regulation of macrophage polarization will be
significant in treating and preventing cardiac fibrosis.

3.3 Macrophage polarization and cardiac
angiogenesis

When the heart is exposed to stressful stimuli such as
pressure overload, ischemia, and hypoxia, compensatory
responses are induced to maintain cardiac function, including
cardiac hypertrophy and increased angiogenesis. Instead,
continuous stimulation can result in maladaptive heart
growth, such as fibrosis and thinning of blood vessels, which
ultimately leads to the development of HF. Angiogenesis refers
to the process of vascular endothelial cells forming new blood
vessels after activation, proliferation, and migration under the
influence of tissue microenvironment. Macrophages are
essential regulators of cardiac angiogenesis. M1 macrophages
mainly play an inhibitory role in angiogenesis. In the MI model,
M1 macrophages eliminate plenty of exosomes, which highly
express pro-inflammatory miRNA, such as miR-155. By
suppressing Sirt1/AMPKα2-eNO and RAC1-PAK1/2 signaling
pathways, M1 macrophages impair the angiogenesis capacity of
endothelial cells, aggravate myocardial injury, and delay cardiac
repair (Liu S. et al., 2020). Aging is an independent risk factor for
HF. Overexpression of MMP9 derived from M1 macrophages
decreases angiogenesis-related factors, such as the expression of
intercellular adhesion factor (ICAM-1), platelet/endothelial cell
molecule-1 (PECAM-1/CD31), and thrombospondin-1 (TSP1)
in the left ventricle. This leads to the exacerbation of cardiac
hypertrophy in the case of sparse blood vessels and promotes the
progression of cardiac aging (Toba et al., 2017).
M2 macrophages, as opposed to M1 macrophages, primarily
support the development of new blood vessels. Vascular
endothelial growth factor (VEGF), responsible for the rapid
growth of collateral blood vessels, is released to compensate
for ischemia and induce angiogenesis (Toba et al., 2017).
M2 macrophages detect changes in the extracellular matrix
environment through integrin α5 (Itga5) during the MI repair
phase and activate the cascade of adhesion spot kinase and PI3K
to upregulate VEGF-A to promote angiogenesis (Li et al., 2023).
VEGF is also activated by HIF-1α, which helps restore blood flow
to ischemic tissue (Dai et al., 2007). The proliferation of
cardioresident macrophages (M2-like macrophages) in the
first week of stress overload is essential for cardiac adaptation
and function, and this may be linked to KLF4 by upregulating

VEGF-A expression and downregulating anti-angiogenic factors
like THBS1. In addition, the infiltration of exogenous
macrophages (M1-like macrophages) is detrimental to disease
development during the cardiac decompensation period
(>4 weeks) in this model, and preventing their infiltration
improves myocardial angiogenesis (Liao et al., 2018).
Angiogenesis is critical to alleviate myocardial ischemia and
hypoxia in HF patients and is an essential issue to be solved
urgently in clinical.

3.4 Macrophage polarization and cardiac
electrophysiology

Arrhythmia is one of the important clinical manifestations of
HF, with high morbidity and mortality. The cardiac electrical
conduction system is essential for maintaining normal heart rate
and function and is a major factor in arrhythmia. Recent studies
have demonstrated that macrophages are significant participants in
cardiac electrophysiology, acting through various mechanisms,
including direct or indirect interactions with other heart cells.
Electrical impulses are generated from the SA node and
transmitted to the ventricle through the atrioventricular node
and conduction pathways. Connexin (Cx) is a significant
medium for transmitting electrical signals between cells. Cx in
the heart is mainly composed of Cx43, Cx40, Cx45 and Cx30.2,
among which Cx43 has the highest content. Cx connects
macrophages and cardiac conduction cells to form electrical
coupling to regulate the electrophysiological activity of
cardiomyocytes (Sugita and Fujiu, 2019). In the MI model,
macrophages congregate at the edge of infarct tissue and are
polarized into M1 macrophages. Upregulation of potassium
channel KCa3.1 in M1 macrophages promotes Ca2+ influx to
cardiomyocytes via Cx43, resulting in prolonged action potential
duration APD (Fei et al., 2019). Macrophages can also exert
paracrine effects on cardiac electrical activity through various
cytokines. M1 macrophages secrete pro-inflammatory factors
(TNF-α, IL-1β, and IL-6) to induce cardiac electrical remodeling,
in which IL-1β has been shown to reduce the expression of atrial
tremor protein (QKI) and further attenuate L-type Ca2+ current in
cardiocytes to inhibit atrial fibrillation (Tili et al., 2015; Fei et al.,
2019). Both the sympathetic and parasympathetic nerves innervate
the heart. Arrhythmia is caused by abnormalities in autonomic
innervation, and macrophages may be involved in this process
(Stavrakis et al., 2020). A study in HF rats demonstrated that
depletion of anti-inflammatory macrophages in the stellate
ganglion reduces N-type Ca2+ currents and excitability of cardiac
sympathetic postganglionic (CSP) neurons, thereby reducing
cardiac sympathetic overactivation and ventricular arrhythmias in
HF (Zhang D. et al., 2021). Nerve growth factor (NGF) is necessary
to promote sympathetic nerve germination. M2 macrophages
suppress ventricular arrhythmia caused by sympathetic nerve
remodeling after myocardial infarction by reducing the
expression of NGF (Liu et al., 2023; Yang et al., 2024) found that
Sinapic acid (SA) stimulated the PPARγ pathway with
concentration-dependent to promote M2 polarization and reduce
NGF (Yang et al., 2022). In summary, macrophage polarization is a
crucial regulatory factor of cardiac electrical conduction and is
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expected to be a primary target in the clinical treatment of
arrhythmia.

4 Clinical dilemmas and treatment
strategies for HF

HF can be classified into HFrEF and HFpEF based on the level of
left ventricular ejection fraction (LVEF) measured by
echocardiography at the time of the patient’s initial evaluation.
Angiotensin-converting enzyme inhibitors (ACEI) or angiotensin
receptor blockers (ARB)/angiotensin receptor-enkephalin inhibitors
(ARNI), beta-blockers, salocorticoid receptor antagonists (MRAs),
and SGLT2i constitute guidelines for guided drug therapy (GDMT)
for patients with HFrEF. Quadruple therapy has been shown in
numerous studies to dramatically lower the risk of death or
hospitalization in people with HFrEF (Felker, 2020).
Simultaneous initiation of the quadruple therapy and early reach
of the target dose are central to the execution of GDMT
(Heidenreich et al., 2022). However, a global survey shows that
only 25% of patients are likely to start all drugs in GDMT at the same
time (Savarese et al., 2024). Drug side effects such as hypotension,
creatinine elevation, hyperkalemia, and bradycardia are the main
clinical obstacles to the implementation of GDMT. Thus, based on
the early intervention concept, it is advised to give preference to
small-dose combinations, titrate the dosage, and create a customized
regimen in stages based on the patient’s actual situation (Ge et al.,
2022). It is important to note that mild hypotension and a slight rise
in creatinine do not necessarily require a change in the HF treatment
plan (Cautela et al., 2020; Savarese et al., 2024). Hyperkalemia is
related to highmortality in HF patients, and part of the reason is that
hyperkalemia prompts doctors to discontinue MRAs prematurely
(Trevisan et al., 2021). According to researches, patients at risk for
hyperkalemia can take advantage of novel potassium binders and the
nephroprotective effects of SGLT2i to maintain treatment for MRAs
(Pitt et al., 2011; Anker et al., 2015; Ferreira et al., 2021; Butler et al.,
2022). Poor patient adherence to multidrug therapy is a non-clinical
barrier to GDMT implementation, and outpatient follow-up is
currently the most favored approach for this issue (Malmborg
et al., 2023). In addition to chronic hypertension, HFpEF has
been connected with multiple syndromes and microvascular
dysfunction secondary to an enhanced systemic inflammatory
state. In terms of the management of HFpEF patients, diuretics
are first-line drugs to reduce volume load and blood stasis, and
attention is paid to identifying and treating specific causes and the
management of complications (McDonagh et al., 2021). Renin-
angiotensin-aldosterone system (RAAS) inhibitors and SGLT2i
have also demonstrated potential therapeutic advantages in
HFpEF in recent years (Solomon et al., 2020; Vaduganathan
et al., 2022). Unfortunately, there is no reliable evidence for
treatments that improve adverse outcomes in HFpEF patients,
which will be a huge challenge to address in future clinical
practice. In terms of other treatments, combined with ivabradine,
guanylate cyclase agonists, anticoagulants, positive inotropic drugs
or TCM, and even cardiac resynchronization (CRT), implantable
cardioverter defibrillator (ICD), and other devices are selected
according to the individual conditions of patients to reduce the
hospitalization rate and mortality of patients with HF.

5 The regulatory effect of TCM on
macrophages in HF

According to TCM theory, deficiency of qi, blood, yin and yang
of the heart, stagnation of qi, blood, and fluid are the
pathomechanisms of HF. TCM offers specific benefits in treating
HF and has unique advantages in reducing cardiac inflammation,
delaying ventricular remodeling, promoting neovascularization, and
suppressing arrhythmias (Cao et al., 2021; Dong et al., 2022a; Lu X.
et al., 2022; Li et al., 2022). The dynamics of macrophage
polarization into M1 and M2 according to the microenvironment
can be elaborated by the yin-yang theory of TCM. Yin and yang
oppose and restrain one another, just like M1 macrophages
exacerbate cardiac inflammation and injury, while
M2 macrophages reduce inflammation and repair damaged
tissues. The two constrain each other and maintain the balance
of yin and yang in the organism to ensure normal physiological
functions. Under certain conditions, M1 and M2 transform into
each other, called yin-yang transformation in TCM theory. The goal
of controlling macrophage polarization is to bring M1 and M2 into
balance, consistent with the concept of regulating the balance of yin
and yang in TCM. Therefore, TCM regulating macrophage
polarization is expected to be one of the most effective ways of
treating HF.

5.1 TCM compounds alleviate HF by
regulating macrophage polarization

According to the pathogenesis of HF in TCM theory, most of the
TCM compounds used to treat HF have the effect of warming yang
and benefiting qi, promoting blood and fluid circulation. With the
deepening of HF research in recent years, more studies have shown
that TCM compounds achieve anti-inflammatory, anti-fibrosis, and
myocardial tissue protection by regulating the polarization of
macrophages. The synergistic effect of complicated components
in TCM compounds may explain their various therapeutic effects
in HF treatment. Table 1 lists some TCM compounds that regulate
the polarization of HF macrophages.

5.1.1 Qishen Granule
Qishen Granule (QSG) is a clinically approved TCM compound

for the treatment of HF, which has the effect of warming yang and
invigorating qi, promoting blood circulation and detoxifying. QSG
consists of Astragalus mongholicus Bunge (Fabaceae; Astragali
Radix), Salvia miltiorrhiza Bunge (Lamiaceae; Salviae
miltiorrhizae radix et rhizoma), Lonicera japonica Thunb
(Caprifoliaceae; Lonicerae Japonicae Flos), Aconitum carmichaelii
Debeaux (Ranunculaceae; Aconiti Lateralis Radix Praeparata),
Scrophularia ningpoensis Hemsl (Scrophulariaceae; Scrophulariae
Radix) and Glycyrrhiza uralensis Fisch (Fabaceae; Glycyrrhizae
Radix et Rhizoma). Clinical research has demonstrated that QSG
is superior to placebo in decreasing NT-proBNP in CHF patients
and enhancing the quality of life, the 6-min walk test (6MWD), the
NYHA cardiac function grade, and the symptom score scale (Du
et al., 2022). Lu et al. (2019) discovered that QSG could inhibit
inflammation and fibrosis and improve the cardiac function of HF
rats. Its mechanism was to reduce the recruitment and release of
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monocytes in damaged myocardial tissues, restrict the conversion of
monocytes to M1 macrophages, and promote the M2 macrophage
polarization by suppressing the AT1/MCP-1/CCR2 signaling
pathway. Decreased M1 macrophages further inhibited TGF-β1/
Smad3 pathway-mediated myocardial fibrosis, whereas an increase
in M2 macrophages led to a rise in VEGF expression and
proliferation in cardiac microvessels to alleviate ischemia and
hypoxia in damaged myocardium. Based on previous studies, Li

et al. demonstrated in vitro that QSG impeded the transformation of
Ly6high monocytes to M1 macrophages, possibly by
downregulating the expression of the TLR4-MyD88-NF-κB
p65 pathway (Li et al., 2022).

5.1.2 Nuanxinkang
Nuanxinkang (NXK) is a simplified TCM compound derived

from Xin Yang tablet, which contains Panax ginseng C.A.Mey.

TABLE 1 TCM compound alleviates HF by regulating macrophage polarization.

TCM
compound

Animal or
cellular
models

Effect of action Mechanisms Refer

Qishen Granule 1)Ligation of the
LAD-induced HF in
rats and mice
2)LPS induced
RAW264.7 cells

1)Inhibited
inflammation and
myocardial remodeling
and promotesd
angiogenesis
2)Improved cardiac
function

1)AT1-MCP1/CCR2 signaling pathways↓
2)TGF-β1/Smad3 signaling pathway↓ 3)TLR4-MyD88-NF-κB p65 signaling pathway↓
4)M1↓,M2↑,AngⅡ↓,MMP2↓,ColⅢ↓,VEGF↑,Ly6Chighmonocytes↓,Ly6Clowmonocytes↑

Lu et al.
(2019), Li
et al. (2022)

Nuanxinkang 1)Ligation of the
LAD-induced HF in
mice
2)LPS induced
RAW264.7 cells

1)Improved cardiac
function
2)Inhibited
inflammation, and
reduced myocardial
fibrosis and apoptosis
3)Inhibited glycolytic
capacity

1)IKKβ/IκBα/NF-κB signaling pathway↓; HIF-1α/PDK1 axis↓
2)IL-1β↓, IL-6↓, TNF-α↓, IL-10↑, M1↓, M2↑(day3), M2↓(day28), basal acidification
rate↓, glycolytic reserve capacity↓

Dong et al.
(2022a),
Dong et al.
(2022b)

Shexiang Tongxin
Dropping Pill

1)Ligation of the
LAD-induced CMD
in rats
2)OGD/R-induced
human umbilical
vein endothelial
cells

1)Inhibited vascular
lumen stenosis and
microvascular leakage,
and improved cardiac
function
2)Reduced
inflammatory cell
infiltration and
endothelial
dysfunction
3)Promoted
angiogenesis

1)Dectin-1/Syk/IRF5 signaling pathway↓
2)PI3K/AKT/mTORC1 signaling pathway ↑
3)M1↓,M2↑,ZO-1↑,Occludin↑,Claudin-5↑
VE-cadherin↑,iNOS↓,IL-1β↓,IL-10↑,VEGF-A↑

Lu et al.
(2022a),
Cui et al.
(2023)

Naoxintong Ligation of the LAD
induced-HF in mice

1)Improved cardiac
function and reduced
infarct size
2)Inhibited
inflammation

IL-1β↓, P20↓, NLRP3↓, M1↓, M2↑ Wang et al.
(2017)

Shenfu Injection ISO-induced HF in
mice

1)Improved cardiac
function
2)Inhibited myocardial
remodeling

1)TLR4/NF-κB signaling pathway↓
2)M1↓, M2↑, TNF-α↓, IL-6↓, IL-10↑, Arg-1↑

Yang et al.
(2024)

QiShenYiQi Pill 1)Pressure
overload-induced
cardiac hypertrophy
in rats
2)Ang Ⅱ-induced
H9C2 cells

1)Improved cardiac
function
2)Inhibited myocardial
fibrosis and apoptosis

1)RP S19/TGF-β1/Smad signaling pathway↓
2)M1↓,M2↓,NT-ProBNP↓,caspase-3↓,ATP↑,MMP2↓,MMP9↓,ColⅢ↓

Anwaier
et al. (2022)

Xinyin Tablet TAC-induced HF in
mice

1)Improved cardiac
function
2)Inhibited myocardial
fibrosis and
remodeling

1)MLK3/JNK signaling pathway↓
2)M2↓,TGF-β↓,IL-10↓,Arg-1↓,ColⅠ↓,ColⅢ↓

Liu et al.
(2021)

Fangji Fuling
Decoction

ISO-induced
myocardial fibrosis
in mice

1)Inhibited myocardial
fibrosis
2)Inhibits
inflammation and
oxidative stress

M1↓, M2↑, TNF-α↓, IL-1β↓, IL-6↓, IL-10, TGF-β1↓, SOD↓, GSH↓, MDA↑ Shi et al.
(2023)
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(Araliaceae; Ginseng Radix et Rhizoma Rubra) and Ilex pubescens
Hook. et Arn (Aquifoliaceae; Ilex pubescentis radix et caulis). It has
been used for decades in the treatment of HF because it effectively
warms yang and invigorates qi, detoxifies, and activates blood
circulation (Chen et al., 2019). Dong et al. demonstrated that in
MIRI-induced HF mice, NXK reduced the percentage of cardiac
M1 macrophage in the acute (days 0–3) and healing phases (days
3–14), lowered levels of blood and cardiac inflammatory cytokines,
including TNF-α, IL-1β, and IL-6 to inhibit systemic and local
inflammatory, and revealed the mechanism that NXK reduced
M1 macrophage by suppressing phosphorylation and nuclear
translocation of critical proteins of the IKKβ/IκBα/NF-κB
pathway in vitro. Additionally, this experiment found that NXK
increased M2 macrophages and promoted wound healing in the
early but inhibited M2 and the chronic accumulation of TGF-β in
the chronic phase (after day 28) to delay collagen fiber aggregation
(Dong et al., 2022a). They further explored the regulatory effects of
NXK on macrophage energy metabolism and found that NXK
depressed the HIF-1α/PDK1 axis to reduce glycolysis in
RAW264.7 cells, which ameliorated myocardial injury and slowed
down the process of HF (Dong et al., 2022b).

5.1.3 Shexiang Tongxin Dropping Pill
Shexiang Tongxin Dropping Pill (STDP) is composed of

Moschus berezovskii Flerov (Cervidae; Moschus), total ginsenoside
of P. ginseng C. A. Mey. (Araliaceae; Ginseng Rhizoma et leafy), Bufo
gargarizans Cantor (Bufonidae; Bufonis Venenum), Bos taurus
domesticus Gmelin (Bovidae; Bovis Calculus), Selenarctos
thibetanus G. Cuvier (Ursidae; Ursi Fellis Pulvis), Dryobalanops
aromatica C.F.Gaertn (Dipterocarpaceae; Borneolum Syntheticum)
and S. miltiorrhiza Bunge. As a prescription medication approved by
The Chinese State Food and Drug Administration (SFDA), STDP
has excellent therapeutic efficacy and has been widely used in the
treatment of cardiovascular diseases (Lu et al., 2020; Lin et al., 2022).
Clinical studies have shown that compared with trimetazidine alone,
STDP combined with trimetazidine to treat ischemic HF can
significantly reduce inflammatory factors and neurohormonal
factors, restrain left ventricular remodeling, and improve heart
function and symptoms of HF (Wu and Hu, 2019). Li et al.
induced coronary microvascular dysfunction (CMD) rat and
OGD/R-induced endothelial injury model, respectively, proving
that STDP alleviates M1 macrophage-related inflammation and
endothelial dysfunction by suppressing the Dectin-1/Syk/
IRF5 pathway (Cui et al., 2023). According to another research,
STDP stimulates M2 macrophages to release VEGF-A, which
promotes microangiogenesis, increases blood flow, and improves
cardiac function in CMD rats (Lu X. et al., 2022).

5.1.4 Naoxintong
Naoxintong (NXT) originated from the Buyang huanwu

decoction in “Correction on the Errors of Mecical Works” by
Wang Qingren in the Qing Dynasty. It has a total of 16 herbs and
has the effect of promoting blood circulation. A systematic review
and meta-analysis of RCT in 1589 CHF patients showed that NXT
combined with conventional western medicine was better than
conventional Western medicine alone, reduced BNP, and
improved cardiac function indicators more effectively (Ban
and Ke, 2020). According to reports, NXT protects the heart

by encouraging angiogenesis, reducing oxidative stress and
inflammation, and controlling the metabolism of fats and
carbohydrates (Han et al., 2019). Naoxintong was found to
improve heart function and reduce infarct size in MIRI by
inhibiting the activation of NLRP3 inflammasome, restricting
M1 macrophage polarization and IL-1β to prevent inflammation
(Wang et al., 2017).

5.1.5 Shenfu injection
Shenfu injection (SFI) is a modified medication from Shenfu

decoction, composed of P. ginseng C. A. Mey. (Araliaceae; Ginseng
Radix et Rhizoma) and A. carmichaelii Debeaux can invigorate qi
to engender blood and restore yang. SFI is frequently used
clinically to treat HF, and a systematic review of RCT involved
in 1042 CHF patients revealed that SFI combined with western
medicine improved patients’ quality of life and activity tolerance
more effectively than using western medicine alone (Zhou et al.,
2023). Another similar systematic review and meta-analysis of
RCT in 3231 HF patients showed that SFI adjuvant therapy was
superior to conventional western medicine alone in terms of
clinical efficacy and improved cardiac function indicators and
could reduce the incidence of adverse reactions (Wu et al.,
2022; Yang et al., 2024). Established the HF mice by
intraperitoneal injection of isoproterenol (ISO) and observed
the M1/M2 imbalance was mainly caused by the increase of
M1 macrophages. SFI can inhibit M1 macrophage activation,
significantly reduce TNF-α and IL-6 secretion, promote
macrophage polarization towards M2, release Arg1 and IL-10,
reduce inflammation, and improve cardiac function and
ventricular remodeling by downregulating the TLR4/NF-κB
signaling pathway (Yang et al., 2024).

5.1.6 QiShenYiQi pill
QiShenYiQi Pill (QSYQ) is a compound approved by the

SFDA that benefits qi and promotes blood circulation. It is
composed of A. mongholicus Bunge, S. miltiorrhiza Bunge,
and Panax notoginseng (Burk.)F. H. Chen (Araliaceae;
Notoginseng Radix), and Dalbergia odorifera T. Chen
(Leguminosae; Dalbergiae Odoriferae Lignum). Numerous
clinical investigations have shown that QSYQ is an effective
treatment for HF. A systematic review and meta-analysis
involving 895 patients with HFpEF revealed that western
medicine combined with QSYQ could better decrease BNP
and increase the rate of cardiac function improvement and 6-
MWD compared with the western medicine group (Wang et al.,
2021). Research has demonstrated that high-dose QSYQ
(0.8 g/kg) reduces cardiac hypertrophy induced by pressure
overload, restrains cardiomyocyte apoptosis, and the
expression of our-and-a-half LIM domains protein 2 (FHL2),
inhibits M1/M2 macrophage polarization and myocardial
fibrosis mediated by RP S19/TGF-β1/Smad signaling pathway
(Anwaier et al., 2022).

5.1.7 Xinyin Tablet
Xinyin Tablet (XYT) comprises P. ginseng C. A. Mey., A.

mongholicus Bunge, Schisandra Chinensis (Turcz.)Baill.
(Magnoliaceae; Schisandrae Chinensis Fructus), Leonurus
japonicus Houtt. (Lamiaceae; Leonuri Herba), Descurainia sophia
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(L.). Webb ex Prantl (Brassicaceae; Descurainiae Semen), and I.
pubescens Hook. et Arn. It is a hospital preparation approved by the
Guangdong Food and Drug Administration (approval number:
Yueyao Z20071178) and has been in clinical use for HF for
several decades (Liu Q. et al., 2020). Clinical research has
demonstrated that the combination of XYT can considerably
improve the left ventricular systolic and cardiopulmonary
function in male CHF patients when used by standardized
western medicine treatment (Ye et al., 2019). The myocardial
tissue of CHF mice resulting from transverse aortic constriction
(TAC) exhibited significant collagen fiber deposition, a marked
degree of myocardial fibrosis, and elevated expression of
M2 macrophage markers. Through restricting the MLK3/JNK
signaling pathway, XYT inhibits the transformation of
macrophages into M2 and the release of anti-inflammatory
factors, thereby reducing the synthesis of Col I and Col Ⅲ in
myocardial tissue and abnormal deposition in the extracellular
stroma, alleviating myocardial fibrosis and delaying ventricular
remodeling (Liu et al., 2021).

5.1.8 Fangji Fuling Decoction
Fangji Fuling Decoction (FFD), derived from “Synopsis of

Golden Chamber” by Zhang Zhongjing in the Han Dynasty, is
composed of five herbs: Stephania tetrandra S.Moore
(Menispermaceae; Stephaniae Tetrandrae Radix), Poria cocos
(Schw.) Wolf (Polyporaceae; Poria), Cinnamomum verum J.Presl
(Lauraceae; Cinnamomi Ramulus), A. mongholicus Bunge and G.
uralensis Fisch. It has the effect of warming yang, invigorating qi and
promoting blood and fluid circulation, and is a frequently used
compound in clinical treatment of HF (Wang and Lu, 2015).
According to studies, FFD inhibit inflammation, decrease
collagen deposition in mice with myocardial fibrosis, increase the
expression of the anti-inflammatory factor IL-10, decrease the
expression of pro-inflammatory factors TNF-α, IL-1β and IL-6,
and promote the transformation of macrophage from M1 to M2
(Shi et al., 2023).

5.2 Active ingredient of single TCM alleviate
HF by regulating macrophage polarization

Through the analysis of the rule of medicine in the treatment of
HF by TCM, it is concluded that the main effect of medicine for HF
is to warm yang and benefit qi, promote blood circulation and
remove blood stasis. The active ingredients of single TCM are the
material basis for its effect. The studies demonstrated how TCM
active ingredients modulate M1/M2 macrophage polarization
balance in various ways, potentially aiding in the treatment of
HF. Table 2 lists some active ingredients of single TCM that
regulate the polarization of HF macrophages.

5.2.1 Puerarin and tanshinone ⅡA
Puerarin (Pue), the primary active ingredient of Pueraria lobata

(Willd.) Ohwi (Leguminosae; Puerariae Lobatae Radix) has a wide
range of pharmacological effects and is closely related to
cardiovascular diseases. Studies have shown that Pue inhibits
cardiac hypertrophy by reducing the generation of ROS and
inhibiting the activation of ERK1/2, p38 MAPK and NF-κB

pathways (Chen et al., 2014). Tanshinone ⅡA is one of the active
ingredients of S. miltiorrhiza Bunge, which has therapeutic value in
alleviating cardiac oxidative stress, inflammation and fibrosis (Lu
TC. et al., 2022). The combination of tanshinone ⅡA and Pue in
treating ischemic heart disease has a synergistic effect. The two
combined at a 1:1 ratio for 28 days have been shown in an
experiment to significantly improve cardiac dysfunction resulting
from AMI. This improvement may be attributed to the inhibition of
M1 macrophage and the promotion of M2 macrophage during the
early stages of inflammation, reducing collagen synthesis and
inhibiting myocardial fibrosis and ventricular remodeling (Gao
et al., 2019).

5.2.2 Dihydrotanshinone Ⅰ
Dihydrotanshinone I (DHT) is another active ingredient of S.

miltiorrhiza Bunge, which has a protective effect on myocardial
injury. DHT significantly reduces the oxidative stress damage of
H9C2 cells induced by OGD/R to reduce cell apoptosis (Wang et al.,
2024). Doxorubicin (DOX) -induced cardiac inflammation is a high-
risk factor for HF. Wang et al. discovered that DHT improves DOX-
induced cardiac dysfunction by regulating the mTOR-TFEB-NF-κB
signaling pathway, reducing M1 macrophage polarization and the
release of TNF-α and IL-1β, and controlling inflammation (Wang
et al., 2020).

5.2.3 Salvianolic acid B
Salvianolic acid B (Sal B) is also one of the active components of

S. miltiorrhiza Bunge, which has anti-oxidation, anti-MIRI, and
anti-atherosclerosis effects and has positive impacts on cardia-
cerebrovascular disease (He et al., 2023). It has been reported
that in MIRI mice, Sal B reduces M1 macrophages and increases
M2 macrophages after reperfusion for 3 days by inhibiting
mTORC1-induced glycolysis, thus reducing collagen deposition,
improving cardiac dysfunction, and restricting inflammation
following MIRI (Zhao et al., 2020).

5.2.4 Curcumin
Curcumin, the primary active ingredient of Curcuma longa L.

(Zingiberaceae; Curcumae Longae Rhizoma), is a regulator of
macrophage polarization, which plays a cardioprotective role
through various signaling pathways (Zhou et al., 2015). Studies
have found that curcumin activates the STAT6 pathway through the
secretion of IL-4 and IL-13, promotes the polarization of
M2 macrophages, reduces the infiltration of proinflammatory
cells, and enhances the cardiac function indicators of dilated
cardiomyopathy induced by autoimmune myocarditis (Gao et al.,
2015). Subsequently, Yan et al. investigated how curcumin affected
macrophage polarization in MI mice, and the results showed that
curcumin decreased M1 macrophages, TNF-α, IL-1β and IL-6
through the AMPK pathway, increased M2 macrophages and IL-
10, inhibited early inflammation, and thus impaired myocardial
remodeling after 3 months of MI (Yan et al., 2021).

5.2.5 Latifolin
Dalbergia odorifera T. Chen is an herb that promotes blood

circulation and relieves pain. Latifolin is one of the active ingredients
of D. odorifera T. Chen. According to pharmacological research,
Latifolin possesses antithrombotic, anti-inflammatory, and
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antioxidant properties (Yang et al., 2013). Latifolin suppressed the
expression of M1 biomarkers (iNOS, CD86), enhanced the
expression of M2 biomarkers (CD206, IL-10, IL-4R), and
decreased the secretion of TNF-α, IL-1β, and IL-6 to block
cardiac inflammation caused by DOX plays a role in cardiac
protection (Zhang N. et al., 2020).

5.2.6 Arctigenin
Arctigenin (ATG) is the essential ingredient in Arctium

lappa L. (Asteraceae, Arctii Fructus), possessing anti-
oxidative stress, anti-cancer and anti-inflammatory properties
(Gu et al., 2012; Xu X. et al., 2020; Guo et al., 2020). Ni et al.
revealed that ATG reduces cardiac inflammation, enhances
cardiac function, shrinks infarct size, prevents M1/M2c
macrophage polarization, and promotes M2a/M2b/M2d
polarization in MI mice. Utilizing RNA-Seq analysis, they
proceeded to ascertain the regulatory mechanism of ATG on
macrophages. Their findings were validated in subsequent
in vitro and in vivo experiments, which indicated that ATG

regulation of macrophage polarization was associated with
inhibition of the JAK-STAT and NF-κb pathways induced by
NFAT5 genes (Ni et al., 2020).

5.3 Acupuncture alleviates HF by regulating
macrophage polarization

Acupuncture, a common complementary and integrative
therapy, has been used clinically by millions worldwide. It
specifically improves angina pectoris, palpitations, and other
systemic diseases. Anti-inflammation is one of the therapeutic
mechanisms of acupuncture related to regulating macrophage
polarization. In AMI mice induced by LAD ligation,
electroacupuncture pretreatment at Neiguan (PC6) for 3 days
inhibited the activation of the NLRP3 inflammasome, promoted
M2 macrophages polarization, and reduced the degree of
inflammation after AMI injury, thereby reducing infarct size and
improving cardiac function (Zhang T. et al., 2020). Hua et al.

TABLE 2 TCM active ingredient alleviates HF by regulating macrophage polarization.

TCM active
ingredient

Source Animal or
cellular models

Effect of
action

Mechanisms Refer

Puerarin
+
Tanshinone IIA

Pueraria lobata
(Willd.) Ohwi +
Salvia miltiorrhiza
Bunge

1)Ligation of the LAD-
induced MI in mice
2)LPS-induced
RAW264.7 cells

1)Improved cardiac
function and
hemodynamics
2)Inhibited
inflammation
3)Attenuated
cardiac fibrosis

LDH↓,CK↓,CK-MB↓,M1↓,M2↑,IL-6↓,IL-1β↓,iNOS↓,IL-
10↑,α-SMA↓, TLR4↓, C/EBP-β↑

Gao et al.
(2019)

Dihydrotanshinone I Salvia miltiorrhiza
Bunge

1)DOX induced-DIC in
zebrafish and mice
2)LPS-induced
RAW264.7 cells and
DOX-induced
H9C2 cell

1)Improved cardiac
function
2)Inhibited
inflammation

1)TFEB-IKK-NF-κB inflammatory signaling axis↓
2)M1↓,TNF-α↓,IL-1β↓,p-NF-κB↓,COX2↓,IL-8↓,p-
mTOR↓

Wang et al.
(2020)

Salvianolic acid B Salvia miltiorrhiza
Bunge

Ligation of the LAD-
induced MI/R in mice

1)Inhibited
inflammation and
glycolysis
2)Improved cardiac
function
3)Preserved cardiac
morphology and
structure

M1↓,M2↑,TNF-α↓,IL-6↓,IL-
1β↓,Arg1↑,Clec10a↑,Mrc↑,mTORC1, ECAR↓, lactate↓

Zhao et al.
(2020)

Curcumin Curcuma longa L 1)Cardiac myosin-
induced EAM in rats
2)IL-4 and IL-13
induced-
RAW264.7 cells
3)Ligation of the LAD-
induced MI in mice
4)M-CSF
induced-BMM.

1)Ameliorated heart
injury
2)Inhibited
inflammation
3)Reduced infarct
size and myocardial
fibrosis
4)Improved cardiac
function

M1↓,M2↑,IL-4↑,IL-13↑,STAT6↑,MMR↑,Arg1↑,IL-
1β↓,iNOS↓,TNF-α↓,IL-1β,IL-6↓,IL-10↑,AMPK↓

Gao et al.
(2015), Yan
et al. (2021)

Latifolin Dalbergia odorifera
T. Chen

1)DOX-induced DIC in
mice
2)Peritoneal
Macrophage in mice

1)Improved cardiac
function
2)Inhibited
inflammation

LDH↓,M1↓,M2↑,iNOS↓,CD86↓,CD206↑,IL-10↑,IL-
4R↑,TNF-α↓,IL-1β↓,IL-6↓

Zhang et al.
(2020a)

Arctigenin Arctium lappa L 1)Ligation of the LAD-
induced MI in mice
2)LPS induced-
RAW264.7 cells

1)Alleviated
postinfarction
cardiac injury
2)Inhibited
inflammation

TNF-α↓,IL6↓,M1↓,M2c↓,M2a↑,M2b↑,M2d↑,NFAT5↓,p-
JAK2↓,p-STAT1↓,p-IKBα↓,p-P65↓

Ni et al.
(2020)
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detected and sampled MIRI rats at 6 h, 24 h, and 3 days after
reperfusion, which further proved that electroacupuncture
accelerated the M2 macrophages polarization, promoted the
transition from the acute proinflammatory phase to the anti-
inflammatory repair phase after MIRI, and ultimately produced
cardiac protection (Bai et al., 2023).

6 Conclusion and prospects

With the prevalence of coronary heart disease, hypertension,
obesity, diabetes, and other diseases, the morbidity and
mortality of HF are increasing annually, which seriously
affects people’s lives and social development. At present,
there are still many barriers in the treatment of HF, so it is
urgent to develop new therapeutic strategies.

In recent years, the theory of immune inflammation has
gained widespread attention. Macrophages are a crucial
component of the immune system that is capable of rapidly
detecting and reacting to environmental changes, regulating
inflammation, and repairing tissues by polarizing into M1 or
M2 macrophages. During the course of HF, macrophages sense
early cardiac injury through various signaling molecules.
M1 macrophages secrete pro-inflammatory factors mediating
early inflammation, removing pathogens and damaged
myocardium to exert a cardioprotective effect. However,
excessive or persistent inflammation results in massive death
of cardiomyocytes and aggravates cardiac injury. As the disease
progresses, M2 macrophages release anti-inflammatory factors
to suppress the inflammation, promote fibroblast activation and
collagen deposition, and repair damaged heart, but immoderate
fibrosis causes cardiac stiffness and deterioration of cardiac
function. The regenerative capacity of microvessels and the
electrophysiological activity of cardiomyocytes are critical to
cardiac function and closely related to macrophage polarization.
It follows that maintaining a balance of M1/M2 macrophages is a
potential target for treating HF.

TCM has a broad clinical foundation for treating and
preventing HF, and long-term practice has shown its safety
and effectiveness. The function of M1 and M2 macrophages
is mutually restricted, consistent with TCM yin-yang theory.
The pathogenesis of HF is usually the decline of heart yang qi
and the stagnation of blood and fluid. Therefore, TCM, which
regulates the polarization of macrophages, has the effect of
warming yang, invigorating qi, and promoting blood and
fluid circulation. Although TCM has become increasingly
aware of the function that macrophage polarization plays in
HF, there are few studies on TCM compound regulation of
macrophage polarization. In addition, existing studies mainly
focus on inflammation and are limited to detecting M1/
M2 macrophage surface protein markers and inflammatory
factors secreted by macrophages. Some studies also ignored
the regulatory pathway mechanism, which leads to an
inadequate integration of evidence chains. It is unable to
meet the methodical understanding of TCM treatment for
HF. Furthermore, most researches are restricted to animal
and cellular levels and lack clinical evidence. TCM has the
characteristics of multi-component, multi-target and multi-

link action, and has varying functions in different stages of
disease development. In the future, it is necessary to strengthen
further the basic and clinical research of TCM intervention in
HF, especially TCM compounds. Meanwhile, the mechanism of
TCM regulating macrophage polarization in different
pathological stages of HF will be explored to enrich the
scientific connotation of TCM treatment of HF and highlight
the scientific and effectiveness of TCM yin-yang theory.
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