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Hyperuricemia has emerged as a significant global health concern, closely
associated with various metabolic disorders. The adverse effects frequently
observed with current pharmacological treatments for hyperuricemia highlight
the urgent need for reliable animal models to elucidate the disease’s
pathophysiological mechanisms, thereby facilitating the development of safer
and more effective therapies. In this study, we established three rat models of
hyperuricemia using potassium oxonate, either alone or in combination with
fructose and adenine. Each model exhibited distinct pathological changes, with
the combination of potassium oxonate, fructose, and adenine causing
significantly more severe damage to liver and kidney functions than potassium
oxonate alone. Serum metabolomics analyses revealed profound dysregulation
in the metabolic pathways of purine, pyrimidines, and glutathione, underscoring
the pivotal role of oxidative stress in the progression of hyperuricemia. We
identified key biomarkers such as orotidine, ureidosuccinic acid, uracil, and
pseudouridine, which are associated with uric acid-induced damage to
hepatic and renal systems. MetOrigin tracing analysis further revealed that
differential metabolites related to hyperuricemia are primarily involved in host-
microbiome co-metabolic pathways, particularly in purine metabolism, with
bacterial phyla such as Pseudomonadota, Actinomycetota, and Ascomycota
being closely linked to the critical metabolic processes of uric acid
production. These findings not only enhance our understanding of the
pathogenic mechanisms underlying hyperuricemia but also provide a robust
experimental model foundation for the development of innovative treatment
strategies.
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1 Introduction

Hyperuricemia is a globally recognized health concern (https://
www.medscape.com), characterized by elevated serum uric acid
levels. Epidemiological studies have documented a rising
prevalence and an earlier onset of hyperuricemia (Li et al., 2017;
Li et al., 2021; Ito et al., 2020), largely attributable to lifestyle changes
(Zhang et al., 2022a). In China, the prevalence increased from 11.1%
in 2015–2016 to 14.0% in 2018–2019, with notable gender
disparities (Zhang et al., 2022a). Similarly, data from the
National Health and Nutrition Examination Survey (NHANES)
in the United States indicated an increase from 19.1% in
1988–1994 to 21.5% in 2007–2008 (Zhu et al., 2011). This
upward trend is evident in both developed and developing
countries, reflecting broader societal changes such as
urbanization, increased sedentary behavior (Hou et al., 2021),
and the consumption of high-purine diets (Zhou et al., 2022).

The etiology of hyperuricemia is complex, influenced by
multiple factors, particularly dietary patterns (Zhang et al.,
2022a). High purine intake from foods such as seafood, meat,
animal offal, and alcoholic beverages leads to increased urate
production (Zhang et al., 2022a; Zhou et al., 2022). The
metabolic conversion of fructose to fructose-1-phosphate reduces
adenosine triphosphate (ATP) levels and raises adenosine
monophosphate (AMP) levels, thereby promoting uric acid
production (Zhang et al., 2022b). Additionally, the evolutionary
loss of uricase (urate oxidase) in humans leads to the accumulation
of monosodium urate crystals, predisposing individuals to
hyperuricemia, gout, and kidney stones (Liu et al., 2023). Beyond
these conditions (Dalbeth et al., 2021), hyperuricemia triggers
systemic effects, including uric acid deposition in renal tissues,
which activates macrophages and inflammatory responses,
contributing to nephropathy and its strong association with
chronic kidney disease (CKD) (Balakumar et al., 2020; Sharaf El
Din et al., 2017). Moreover, hyperuricemia is closely linked with
various metabolic disorders (Zheng et al., 2024; Yanai et al., 2021),
including diabetes mellitus (Liu et al., 2018), cardiovascular diseases
(Borghi et al., 2020), hypertension (Johnson et al., 2018), and
metabolic syndrome (Niu et al., 2022), through mechanisms
involving oxidative stress, endothelial dysfunction, and systemic
inflammation (Gherghina et al., 2022).

Current pharmacological treatments for hyperuricemia, such as
allopurinol and febuxostat, primarily aim to modulate uric acid
synthesis, reabsorption, and excretion (Shi et al., 2024). However,
these medications often result in adverse effects, including
hepatotoxicity (Fontana et al., 2021), nephrotoxicity (Esposito
et al., 2017), and hypersensitivity reactions (Yang et al., 2015),
highlighting the need for safer and more effective therapies.
Reliable and stable animal models are crucial for exploring the
pathophysiological aspects of hyperuricemia and facilitating the
development of preventative and therapeutic agents (Lu et al.,
2019). Currently, hyperuricemia models primarily involve mice
and rats, using techniques that either increase endogenous uric
acid sources (e.g., adenine, fructose), decrease renal uric acid
clearance (e.g., ethambutol), inhibit uricase activity (e.g.,
potassium oxonate), or employ genetic modifications
(e.g., ABCG2 knockout) (Zhou et al., 2024). These methods,

applied individually or in combination, offer substantial insights
into urate metabolism (Liu et al., 2024; Pan et al., 2020).

The variability in the selection of chemicals, dosages, and
administration routes for creating hyperuricemia models has
been noted in the literature (Liu et al., 2024; Dhouibi et al.,
2021). Evaluating these models based on single indices and time
points poses challenges in comprehensively understanding the
disease’s onset and progression, thereby complicating the
assessment of the stability and effectiveness of different modeling
techniques.

In this study, we employed potassium oxonate, alone or in
combination with fructose and adenine, to induce hyperuricemia in
rat models and assess its reversibility. Systematic monitoring at various
time points allowed for the examination of the characteristics of
different modeling methods in inducing hyperuricemia and their
impacts on hepatic and renal functions. This approach establishes a
solid foundation for animal models in various drug development
contexts. Through serum metabolomics, we aim to identify the key
metabolic pathways and biomarkers altered in hyperuricemia, thereby
enhancing our understanding of its molecular pathophysiology and
informing the development of new therapeutic targets.

2 Materials and methods

2.1 Chemical reagents

Fructose, potassium oxonate, and sodium carboxymethyl
cellulose were procured from Shanghai Yuanye Biotechnology
Co., Ltd. (Shanghai, China). Allopurinol and adenine were
sourced from Shanghai Aladdin Biochemical Technology Co.,
Ltd. (Shanghai, China). High-purity LC-MS grade methanol and
acetic acid were purchased from Thermo Fisher Scientific
(Waltham, Massachusetts, United States), and LC-MS grade
water was supplied by Merck (Darmstadt, Germany). Diagnostic
kits for measuring uric acid, creatinine, urea, aspartate
aminotransferase, and alanine aminotransferase levels were
acquired from Shenzhen Myriad Biomedical Electronics Co., Ltd.
(Shenzhen, China). The hematoxylin and eosin (H&E) staining kit
for histological analysis was obtained from Beijing Solarbio Science
and Technology Co., Ltd. (Beijing, China).

2.2 Animals

Specific pathogen-free (SPF) male Sprague-Dawley (SD) rats,
weighing between 200 and 240 g, were obtained from the
Laboratory Animal Center of Xinjiang Medical University. The rats
were housed in a controlled environment with a 12-h light-dark cycle, at
an ambient temperature of 22°C ± 2°C and relative humidity of 45% ±
5%. They were provided ad libitum access to water and standard rodent
chow. All experimental protocols involving animals were conducted in
accordance with ethical standards and guidelines for animal welfare.
The study’s design, care, and use of the animals were reviewed and
approved by the Animal Ethics Committee of Xinjiang Medical
University (Approval No. IACUC-JT-20230110-9), ensuring
adherence to the principles of ethical conduct in animal research.
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2.3 Group information

To ensure consistency in experimental outcomes, tail-vein blood
samples were collected for fasting serum uric acid (SUA) analysis on
the 7th and 14th days of acclimation. Rats with abnormal SUA
levels—too high, too low, or exhibiting significant
fluctuations—were excluded to ensure the reliability of the

experimental data. The remaining 42 SD rats, stratified based on
body weight and fasting SUA levels, were then randomly assigned
into seven groups (n = 6 per group) to ensure balanced
representation.

The group assignments and treatments were as follows
(Figure 1A): the normal control group (NC), serving as the
baseline for the study, received subcutaneous injections and oral

FIGURE 1
Temporal dynamics in food and water intake, and body weight in hyperuricemic rats. (A) the study protocol for assessing different hyperuricemia rat
models; (B) food intake; (C)water intake; and (D) bodyweight. Data are depicted asmean± SD for six rats per group (n = 6). Statistical differences between
model and control groups were assessed using one-way ANOVA, with significance denoted by *P < 0.05, **P < 0.01, and ***P < 0.001.
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doses of 0.5% sodium carboxymethyl cellulose (CMC-Na) solution.
The first model group, the potassium oxonate (PO) group (M1),
received 0.5 g·kg−1·d−1 of the PO solution via subcutaneous
injections. In the second model, the PO + 20% fructose group
(M2), rats received the same PO dosage and had ad libitum access to
20% fructose (Fru) water. The third model group, PO + adenine
(M3), involved administering PO injections alongside oral doses of
0.1 g·kg−1·d−1 adenine (Ade). Additionally, three positive control
groups (PC1, PC2, and PC3), each corresponding to one of the
model groups, were treated with a daily oral dose of 0.02 g·kg−1·d−1
allopurinol (Allo) in the afternoon to assess the reversibility and
therapeutic potential of the treatments against the induced
hyperuricemia. The molding period was set at 30 days, allowing
for the observation of both the acute and chronic effects of the
hyperuricemia models and a comprehensive evaluation of the
pathophysiological changes.

2.4 Sample collection and testing

2.4.1 Biochemical analysis
During the experimental phase, detailed daily records were

maintained for each rat group, including water and food
consumption, defecation and urination frequency, fur color, and
behavior. Body weight was measured, and tail vein blood was
collected on days 9, 18, and 27 to determine fasting SUA levels
using an automatic biochemical analyzer.

On the 30th day, after a fasting period with access to water, urine
samples were collected over 24 h using metabolic cages. Urine
volume (UV) was recorded, followed by analyses of urine
creatinine (UCr) and urine urea nitrogen (UUr) concentrations.
The endogenous creatinine clearance rate (CCr) was calculated
using the formula: CCr = (UCr × UV)/SCr.

On the 31st day, the rats were anesthetized, and blood samples
were obtained from the abdominal aorta. These samples were
subsequently used to assess serum biochemical parameters and
perform metabolomics assays.

2.4.2 Histopathology examination
Following blood sample collection, kidney tissues were

immediately excised on an ice-cooled platform and weighed to
calculate the organ coefficients. For histological preservation, the
tissues were fixed in 4% paraformaldehyde. The preserved tissues
were then embedded in paraffin, sectioned, and stained using
Hematoxylin and Eosin (H&E) staining. The stained tissue
sections were examined under a microscope.

2.5 Metabolomics analysis

2.5.1 Metabolites extraction
To extract metabolites, 100 μL of plasma from each rat sample

was mixed with 400 μL of pre-chilled 80%methanol in Eppendorf
tubes. The mixture was incubated on ice for 5 min before being
centrifuged at 15,000 g and 4°C for 20 min. A portion of the
resulting supernatant was diluted with LC-MS grade water to
achieve a final methanol concentration of 53%. This solution was
subjected to a second round of centrifugation under the same

conditions to collect the clear supernatant for subsequent LC-
MS/MS analysis. To ensure analytical consistency and reliability,
quality control (QC) samples were prepared by pooling 10 μL
from each plasma sample.

2.5.2 UHPLC-MS/MS analysis
Ultra-high-performance liquid chromatography coupled with

tandem mass spectrometry (UHPLC-MS/MS) analysis was
conducted at Novogene Co., Ltd. (Beijing, China).
Chromatographic separation was achieved using a Hypersil Gold
column (100 × 2.1 mm, 1.9 μm particle size) under a 12-min linear
gradient at a flow rate of 0.2 mL/min. The mobile phase consisted of
eluent A (0.1% formic acid in water) for positive polarity mode and
eluent B (methanol) for negative polarity mode. The solvent gradient
was set as follows: 2% B, 1.5 min; 2%–85% B, 3 min; 85%–100% B,
10 min; 100%–2% B, 10.1 min; 2% B, 12 min.

Mass spectrometric detection was conducted using the Q
Exactive™ HF mass spectrometer, operating in both positive and
negative ionization modes with a spray voltage set at 3.5 kV. The
capillary temperature was regulated at 320°C. Sheath and auxiliary
gas flows were maintained at 35 psi and 10 L/min, respectively, with
the S-lens RF level set at 60. The auxiliary gas heater temperature was
kept constant at 350°C.

2.5.3 Data preprocessing and metabolite
identification

The raw data from the UHPLC-MS/MS analyses were processed
with Compound Discoverer 3.3 (CD3.3, Thermo Fisher Scientific)
for peak alignment, peak detection, and metabolites quantification.
The key parameters were configured as follows: peak areas were
adjusted based on the first QC sample, with a mass tolerance of
5 ppm, a signal intensity tolerance of 30%, and a minimum
intensity threshold.

The molecular formula of each metabolite was predicted using
the normalized data, taking into account molecular ion peaks,
additive ions, and fragment ions. Peak matching was conducted
using databases such as mzVault, mzCloud, and MassList. Statistical
analysis was performed using Python (version 2.7.6) and R (version
3.4.3) software for metabolite identification and relative
quantification.

Metabolites with a relative standard deviation (RSD) in QC
sample peak areas exceeding 30% were excluded. Metabolite
annotation and comprehensive metabolic profiling were
performed using databases such as KEGG (https://www.genome.
jp/kegg/pathway.html), HMDB (https://hmdb.ca/metabolites) and
LIPID MAPS (http://www.lipidmaps.org/).

2.5.4 Data analysis
Data analysis was performed using multivariate statistical

techniques such as principal component analysis (PCA) and
orthogonal partial least squares-discriminant analysis (OPLS-DA)
with SIMCA 14.1 software (Umetrics AB, Umeå, Sweden).

Permutation testing, conducted 200 times, was applied to the
OPLS-DA models to prevent overfitting, ensuring the validity of the
model’s predictive capability. Metabolites were then screened for
significance based on Variable Importance in the Projection (VIP)
scores (VIP > 1), fold-change (FC > 2 or < 0.5) values, and
P-values (p < 0.05).
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Hierarchical Clustering Analysis (HCA) was employed to
analyze the distribution and clustering of the differentiated
metabolites, with heatmaps generated with the R software. This
analysis was based on the normalized relative quantities of these
metabolites, aiming to elucidate systematic variations and
similarities among the groups.

MetOrigin (http://metorigin.met-bioinformatics.cn/) was used
for tracing the origin of differential metabolites. Origin analysis,
functional analysis, and Sankey network analysis were all conducted
using the simple MetOrigin analysis mode available on the
official website.

Additionally, Receiver Operating Characteristic (ROC) curve
analysis was used to determine the predictive accuracy of the
metabolites. This was achieved using the “pROC” package in R,
establishing a threshold to effectively discriminate between the
different conditions reflected in the metabolic data.

2.6 Statistical analysis

Biochemical data were analyzed using SPSS 25.0 software (SPSS
Inc., Chicago, IL, United States). One-way Analysis of Variance
(ANOVA) was used to determine the differences among the three
hyperuricemia rat models and the normal control group. Post hoc
comparisons were conducted using the Least Significant Difference
(LSD) method to identify specific group differences. T-tests were
performed to assess differences between each model group and its
corresponding positive control group. The relationships between
differential metabolites and liver and kidney function parameters
were examined through Pearson or Spearman correlation analyses,
depending on the data distribution. All results are presented as mean ±
standard deviation (SD), with significance level set at p < 0.05.

3 Results

3.1 Analysis of general conditions

3.1.1 Condition of rats with hyperuricemia
During the experimental period, the control group rats displayed

excellent health, as demonstrated by their energetic behavior and
pristine fur condition. Conversely, rats in the hyperuricemia model
groups exhibited signs of health deterioration, such as reduced
activity levels, slower body weight gain, and deteriorating
fur condition.

3.1.2 Food and water intake, and body mass
changes in hyperuricemia rats

Throughout the modeling phase, no mortality was observed in
any of the hyperuricemia model or positive control groups. A
substantial reduction in food consumption was noted across all
hyperuricemia model groups compared to the NC group (p < 0.01),
with the most significant decrease observed in the M2 group, where
food intake was reduced by 37.8%–60.0% relative to the NC group
(Figure 1B). Water intake in the M2 group fluctuated compared to
the NC group, whereas the M3 group showed a marked increase in
water consumption by the fourth week, reaching a significant peak
(p < 0.01) (Figure 1C).

Regarding body mass, all hyperuricemia model groups showed a
slower rate of weight gain compared to the NC group. Notably, the
M3 group experienced the most significant weight reduction, with a
16% decrease relative to the NC group by the end of the study
(Figure 1D). Between the three positive control groups and their
corresponding model groups, no substantial differences were
observed in food and water consumption or body weight.

3.2 Clinical chemistry analysis

3.2.1 Dynamics of serum uric acid in
hyperuricemic models

During the adaptive feeding period, the SUA levels remained
stable across all groups, showing no statistically significant
differences (p > 0.05) and establishing a uniform baseline for the
study (Figure 2A). At the start of the modeling phase, distinct
temporal patterns in SUA levels emerged, corresponding to the three
hyperuricemia inductionmethods. Compared to the NC group, each
model group initially exhibited a decrease in SUA levels, followed by
a significant rise (P < 0.05). Specifically, the M1 group displayed an
early reduction in SUA levels, which then increased and stabilized.
Conversely, the SUA levels in the M3 group increased rapidly and
significantly. The M2 group’s SUA levels, however, showed a more
gradual increase.

Figure 2B demonstrates that the positive control groups did not
exhibit a significant increase in SUA levels compared to their
respective model groups (P < 0.05), suggesting the potential for
reversibility of hyperuricemia in these models. Moreover, this trend
underscores the efficacy of allopurinol in attenuating the elevation of
SUA levels under hyperuricemic conditions.

3.2.2 Renal function implications of
hyperuricemia models

Serum creatinine (SCr) and serum urea nitrogen (SUN) are
crucial clinical indicators for assessing renal function. Prior to
hyperuricemia development, baseline levels of SCr and SUN
remained consistent across all groups, establishing a uniform
foundation for the study conditions (P > 0.05, Figures 3A,B).
Following the modeling phase, no significant alterations in SCr
and SUN levels were observed in the M1 and M2 groups relative to
the NC group (P > 0.05). In contrast, the M3 group demonstrated a
marked increase in both SCr and SUN levels (P < 0.001), signaling
considerable renal impairment. The positive control groups did not
show significant improvement in these biomarkers compared to the
elevated levels in the M3 group (P > 0.05).

Compared to the control, all hyperuricemia models exhibited
significant reductions in urine creatinine (UCr), urine urea nitrogen
(UUN), and creatinine clearance rate (CCr) (P < 0.05, Figures
3C–E), indicating impaired uric acid excretion efficiency.
Notably, the M3 group showed pronounced increases in urine
volume (UV) and kidney coefficients (P < 0.05 and P < 0.001,
respectively, Figures 3F,G), which suggests severe renal dysfunction.
These results highlight a broad decline in uric acid clearance across
the models, with the M3 group showing the most significant impact.
Despite these alterations, the positive control groups did not exhibit
a significant improvement in renal function compared to their
respective model groups (P > 0.05, Figures 3C–E).
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3.2.3 Impact of hyperuricemia models on
liver function

Aspartate aminotransferase (AST) and alanine aminotransferase
(ALT) are crucial biomarkers for liver function assessment in clinical
diagnostics. Following the modeling phase, AST and ALT levels in
the hyperuricemia model groups remained comparable to those in
the NC group, with no significant differences observed (P > 0.05,
Figures 4A,B). However, the liver coefficients in the M2 and
M3 groups showed significant increases relative to the NC group
(P < 0.05, Figure 4C), indicating potential hepatic alterations, as
evidenced by changes in liver size or mass. Additionally, the positive
control groups did not exhibit a significant decrease in liver
coefficients compared to their corresponding model groups (P >
0.05, Figure 4C).

3.3 Histological evaluation

In Figure 5A, the gross observation of the kidneys shows that in
the NC group, the kidneys are dark red, with smooth and glossy
surfaces and no swelling. In contrast, the kidneys in all three model
groups are enlarged, especially in the M3 group, where the kidneys
display distinct crystalline granules on their surfaces and are dark
yellow. In the positive control groups, PC1 and PC2, a significant
reduction in kidney enlargement is observed. The H&E staining
results (Figure 5B) reveal that the kidney tissue in the NC group
maintains a mostly normal structure, with uniform thickness of the
renal tubular walls and broadly normal glomerular architecture.
However, the kidneys in the three model groups exhibit varying
degrees of thinning and atrophy of the renal tubular walls,
detachment of epithelial cells and brush borders, and dilation of
renal tubules. TheM3 group is characterized by severe inflammatory
cell infiltration around the renal tubules and marked cytoplasmic
vacuolar degeneration in epithelial cells, indicating the most severe
damage to renal tissue in this group. Compared to the model groups,
the positive control groups show some pathological improvement.

3.4 Plasma metabolomics profiling

3.4.1 Multivariate data analysis
PCA, an unsupervised statistical method, was applied to assess

the overall metabolic variances and to pinpoint outliers within the
dataset. The PCA score plots for both ionization modes, as
illustrated in Figures 6A,C, exhibited distinct separations between
the model groups and the NC group. This differentiation suggests
notable variances in the serum endogenous metabolite profiles. QC
samples clustered tightly near the PCA plot origin, affirming the
consistency of the analytical method (Figures 6A,C). Additionally,
Hotelling’s T2 plot, used to identify strong outliers (indicated by
surpassing the red dashed line), revealed no significant outliers,
corroborating the serummetabolomics analysis system’s robustness,
stability, and reproducibility (Figures 6B,D).

OPLS-DA was subsequently conducted to confirm the
differences observed in the PCA, with score plots displaying
clustering patterns among samples from the various groups in
both positive and negative ion modes. Although some overlap
was observed between the M1 and M2 groups, distinct clustering
away from the NC group was evident for all model groups
(Supplementary Figures S1A,C). Permutation tests performed on
the OPLS-DA models confirmed their reliability and stability
(Supplementary Figures S1B,D).

The distinct separations among the three model groups and the
control group were further substantiated in the OPLS-DA score
plots (Figure 7), with permutation test outcomes (Supplementary
Figure S2) indicating the absence of model overfitting. These
analyses suggest that the induction methods for hyperuricemia
resulted in distinct serum metabolic alterations in the rats,
establishing a reliable model for identifying differential
metabolites between the model and NC groups.

3.4.2 Differential metabolites screening
In this analysis, 410 metabolites were detected in positive ion

mode and 283 in negative ion mode. Employing VIP scores, P

FIGURE 2
Serum uric acid dynamics in hyperuricemic rats using various induction protocols. Panel (A) shows group comparisons via ANOVA (*P < 0.05, **P <
0.01, ***P < 0.001). Panel (B) uses the LSD test for model-control group differences, and t-tests compare eachmodel group with its positive control (#P <
0.05, ##P < 0.01, ###P < 0.001). Data are means ± SD (n = 6).
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values, and FC as criteria for analysis, 205 metabolites were
determined to be significantly altered in the comparison pairs
M1-NC, M2-NC, and M3-NC. Supplementary Figure S3A
presents a clustering heatmap of these differential metabolites,
with pronounced clustering observed between the M1 and
M2 groups indicating similarity in their metabolic expression
profiles and pathways, distinct from the M3 group, highlighting
the unique metabolic alterations triggered by the various
hyperuricemia induction models.

Volcano plots (Figure 8A) illustrated the distribution of
differential metabolites between the model groups and the NC
group. Specifically, 73 metabolites differentiated the M1 group

from the NC, with 35 being upregulated and 38 downregulated.
For the M2 group compared to the NC, 87 metabolites were
identified as differential, with 70 upregulated and
17 downregulated. The M3 group exhibited the most pronounced
variation, with 143 differential metabolites, of which 112 were
upregulated and 31 downregulated. As shown in Figure 8B, the
predominant classes of these differential metabolites—lipids and
lipid-like molecules, organic acids and their derivatives, and
organoheterocyclic compounds—comprised approximately 75%
of the total identified differential metabolites, highlighting the
significant impact of hyperuricemia on these metabolic
categories. Heatmap analysis of the differential metabolites within

FIGURE 3
Renal function alterations under different hyperuricemia induction methods. This figure presents the effects of different hyperuricemia induction
methods on renal function, evaluated through markers such as (A) SCr, (B) SUN, (C) UCr, (D) UUN, (E) CCr, (F) UV, and (G) kidney coefficients. Data are
means ± SD (n = 6). Statistical significance for the variations between themodel groups and the normal control group is indicated by *P < 0.05, **P < 0.01,
and ***P < 0.001. Differences between the model groups and their respective positive control groups are denoted by #P < 0.05, ##P < 0.01, and
###P < 0.001.
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the M1-NC, M2-NC, and M3-NC comparisons (Supplementary
Figure S3B) illustrated their expression trends, showing distinct
clustering patterns within each group and significant variations
between groups.

In Figure 8C, a Venn diagram identifies 22 metabolites shared
across the three comparisons, highlighting potential biomarkers for
hyperuricemia. These are predominantly amino acids and lipids, with
14 metabolites upregulated and 8 downregulated, as detailed in
Supplementary Table S1. The clustering heatmap (Figure 8D)
further demonstrated significant changes and a consistent trend in
these 22 metabolites across the models compared to the NC
group. Notably, the M3 group exhibited the most pronounced
changes in metabolite levels, indicating severe metabolic disruptions.

3.4.3 KEGG pathway analysis
The metabolic pathway analysis involved mapping significant

differential metabolites identified across the M1-NC, M2-NC, and
M3-NC comparison groups to the KEGG pathway database, as
depicted in Figure 8E. In the M1-NC comparison, significant
alterations were observed in pathways related to ascorbate and
aldarate metabolism, purine metabolism, and glutathione
metabolism. Key findings included elevated levels of L-ascorbate,
adenosine, inosine, and (5-L-glutamyl)-L-amino acids, along with a
reduction in dehydroascorbic acid and adenylyl sulfate levels. For
the M2-NC group, notable impacts were seen on pyrimidine
metabolism, purine metabolism, and glutathione metabolism.
This was characterized by increased concentrations of metabolites

FIGURE 4
Liver function alterations under different hyperuricemia induction protocols. (A) AST levels, (B) ALT levels, and (C) liver coefficients are shown. Data
are means ± SD (n = 6). Statistical significance of the differences between the model groups and the normal control group is denoted by *P < 0.05, **P <
0.01, and ***P < 0.001. Variations between the model groups and their respective positive control groups are represented by #P < 0.05, ##P < 0.01, and
###P < 0.001.

FIGURE 5
Comparative analysis of renal gross anatomy (A) and histopathology with H&E staining [(B), ×200] in various groups.
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such as uracil, pseudouridine, orotidine, 5-methylcytosine,
ureidosuccinic acid, adenosine, inosine, and (5-L-glutamyl)-L-
amino acids, and decreased levels of adenylyl sulfate, spermine,
and dehydroascorbic acid. In the M3-NC comparison, pathways
including purine metabolism, caffeine metabolism, pyrimidine
metabolism, lysine degradation, and glutathione metabolism were
significantly affected, showing elevated levels of metabolites such as
uric acid, 1-methyluric acid, uracil, pseudouridine, orotidine, 5-
methylcytosine, ureidosuccinic acid, 2-aminoadipic acid, 5-
aminopentanoate, pipecolic acid, (5-L-glutamyl)-L-amino acids,
and L-ascorbate, with reductions in adenylyl sulfate, xanthosine,
deoxyinosine, 2,6-dihydroxypurine, xanthine, L-glutathione
oxidized, and spermine.

Notably, the purine metabolism, pyrimidine metabolism, and
glutathione metabolic pathways were significantly altered in at least
two models, underscoring the key metabolic pathways most
disrupted during hyperuricemia onset. Figure 9 illustrates the
critical metabolic pathways and the biochemical interconnections
among metabolites in hyperuricemic rats, revealing the pivotal role
of oxidative stress in the progression of hyperuricemia.

3.4.4 Metorigin tracing analysis of differential
metabolites

In a comparative analysis of the M1-NC, M2-NC, and M3-NC
groups, a total of 204 differential metabolites associated with

hyperuricemia were identified (Figure 8C), 119 of which
corresponded with entries in the KEGG and HMDB databases.
MetOrigin tracing analysis was applied to these 119 metabolites to
investigate the interactions between the gut microbiome and
metabolome. This analysis identified 32 microbiota-host co-
metabolites, 2 host-specific metabolites, and 32 microbiota-
specific metabolites, as illustrated in Figures 10A,B. Functional
analysis showed that 1, 6, and 32 metabolic pathways
corresponded with host, microbiota, and co-metabolism
databases, respectively (Figure 10C). Figure 10D highlights
significant metabolic pathways associated with hyperuricemia
(log0.05 P value > 1), where, apart from the degradation of
flavonoids and toluene degradation pathways that are
microbiota-specific, the remaining primarily involve host-
microbiota co-metabolism. Key among these are purine
metabolism, glutathione metabolism, and pyrimidine metabolism,
which are the most critical co-metabolic pathways related to
hyperuricemia (log0.05 P value > 2), thereby validating the KEGG
pathway enrichment results.

Additionally, Sankey network visualization was utilized to
delineate the statistical correlations and biological relationships
between microbial communities and metabolites. Specifically,
within the purine metabolism pathway, multiple metabolic
reactions (R01768, R01769, R02103, and R02107) were found to
be instrumental in the critical pathway converting hypoxanthine

FIGURE 6
PCA and Hotelling’s T2 Plots. (A,B) Present PCA score and Hotelling’s T2 plots for the positive ion mode; (C,D) for the negative ion mode.
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and xanthine into uric acid. The phyla Pseudomonadota,
Actinomycetota, and Ascomycota were identified as the primary
gut phyla intimately linked to these reactions
(Supplementary Figure S4).

3.4.5 Association between plasma metabolites and
hyperuricemia

Metabolites present in at least two of the model groups and
enriched in key metabolic pathways were subjected to classical

FIGURE 7
OPLS-DA score plots: comparative analysis across model groups and NC group in different ionization modes. (A,C,E) for positive ion mode, and
(B,D,F) for negative ion mode.
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univariate ROC analysis. This analysis aimed to identify
potential biomarkers for hyperuricemia, with the detailed
findings presented in Table 1. Eleven metabolites, each

exhibiting an AUC greater than 0.90, were identified.
Notably, orotidine, (5-L-glutamyl)-L-amino acids, and
adenylyl sulfate were recognized as differential metabolites

FIGURE 8
Plasmametabolomics profiling. (A) Volcano plots for differential metabolites; (B) Pie charts categorizing metabolites; (C) Venn diagram showing the
intersection of differential metabolites among the three comparison groups (M1-NC, M2-NC, M3-NC); (D) Heatmap of intersecting differential
metabolites; (E) KEGG pathway mapping across comparison groups.
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across all three model groups, underscoring their critical roles in
hyperuricemia.

Spearman’s correlation analysis was conducted to evaluate the
relationships between selected metabolites and liver/kidney function
indicators, with the results presented in Figure 11. This analysis
revealed significant and consistent correlations for orotidine,
ureidosuccinic acid, uracil, and pseudouridine with liver and
kidney function markers. These metabolites were established as
optimal discriminators for hyperuricemia, demonstrating high
predictive accuracy with AUC values of 0.97 or higher.

4 Discussion

Hyperuricemia, ranked alongside hypertension, hyperglycemia,
and hyperlipidemia as a major health concern, is closely associated
with a spectrum of metabolic disorders (Yanai et al., 2021; Johnson
et al., 2018) and serves as an independent risk factor for
hyperuricemic nephropathy (Sharaf El Din et al., 2017; Niu et al.,
2022; Li et al., 2022). The development of stable and reliable animal
models is crucial for the advancement of hyperuricemia research
and the discovery of novel therapeutic agents. In rodents, the natural

FIGURE 9
Predominantly disrupted metabolic pathways and their interrelations among metabolites in hyperuricemic rats. Metabolites annotated in green are
identified but not significantly altered, red indicates upregulated differential metabolites, and blue denotes downregulated differential metabolites.
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FIGURE 10
MetOrigin tracing analysis of differential metabolites. (A,B) represent the Venn diagram and histogram of tracing differential metabolites,
respectively; (C,D) depict the Venn diagram and histogram of enrichment analysis of differential metabolic pathways, respectively.

TABLE 1 ROC analysis of metabolites for hyperuricemia prediction.

Metabolite AUC Label Pathway involved

M1 vs. NC M2 vs. NC M3 vs. NC

Uracil - 1.00 1.00 up Pyrimidine metabolism

Pseudouridine - 0.97 1.00 up Pyrimidine metabolism

Orotidine 1.00 1.00 1.00 up Pyrimidine metabolism

5-Methylcytosine - 1.00 1.00 up Pyrimidine metabolism

Ureidosuccinic acid - 1.00 1.00 up Pyrimidine metabolism

Adenylyl Sulfate 1.00 1.00 0.97 down Purine metabolism

Adenosine 1.00 0.94 - up Purine metabolism

Inosine 0.97 0.94 - up Purine metabolism

Spermine - 0.94 1.00 down Glutathione metabolism

(5-L-Glutamyl)-L-Amino Acid 1.00 1.00 1.00 up Glutathione metabolism

Dehydroascorbic acid 0.97 0.94 - down Glutathione metabolism

L-Ascorbate 0.97 - 1.00 up Glutathione metabolism
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uricase activity that converts uric acid into allantoin (Lu et al., 2019)
highlights the importance of uricase inhibition in creating effective
disease models. Accordingly, our study utilized potassium oxonate, a
competitive uricase inhibitor, both alone and in combination with
fructose and adenine, to successfully elevate uric acid levels in rats,
thereby establishing and validating robust hyperuricemia models.

During the modeling phase, we observed a consistent pattern in
which SUA levels initially decreased and then significantly increased
across all methods employed. This fluctuation is likely due to a
transient increase in uric acid following the administration of
potassium oxonate, potentially enhancing uricase activity or
expression to maintain uric acid homeostasis, leading to a
subsequent decrease in uric acid levels (Wen et al., 2020).
However, with prolonged exposure, a compensatory imbalance
became evident, marked by the cumulative effect of potassium
oxonate, which resulted in continuous uricase inhibition and
elevated blood uric acid levels.

The three modeling methods exhibited distinct temporal
patterns in SUA levels. The M3 group showed the earliest and

most significant rise in SUA, initially decreasing due to uricase
feedback before consistently rising. Interestingly, the M2 group,
which combined 20% fructose water with potassium oxonate,
did not achieve higher SUA levels than the M1 group that used
only potassium oxonate. This finding challenges the perceived
benefits of combined modeling and also increases the cost of
animal experiments, which contrasts with previous research
that has supported the use of potassium oxonate and fructose
for establishing a stable, long-term hyperuricemia model (Zhu
et al., 2021). The difference might be attributed to variations in
sample collection times: in our study, blood samples were
collected the following morning after a 12-h fast without
water restriction, unlike other studies that sampled blood
1 hour post the final potassium oxonate dose (Zhu et al.,
2021). Furthermore, the positive control groups in each
model exhibited reduced SUA levels compared to their
respective model groups, indicating the efficacy of all three
modeling approaches in evaluating uric acid-lowering drugs
(Bao et al., 2022; Meng et al., 2021).

FIGURE 11
Correlation analysis between plasma metabolites and biochemical indices. Statistical significance denoted as *P < 0.05, **P < 0.01.
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The kidney, essential for uric acid excretion, often incurs
significant damage in cases of hyperuricemia (Niu et al., 2022;
Wu et al., 2021). Research has established a definitive link
between hyperuricemia and hepatic steatosis (Wan et al., 2016),
or fatty liver (Xu, 2016), demonstrating the significant impact of
elevated uric acid levels on hepatic lipid metabolism and overall
metabolic balance (Yang et al., 2022). In our study, biochemical
indices and pathological analyses revealed that the M1 model
showed minimal kidney damage, whereas the M2 model caused
early, mild kidney dysfunction. The M3 model, however, resulted in
severe renal impairment. The methodologies employed in our
research effectively induced varying degrees of renal damage,
addressing diverse research and clinical needs in hyperuricemia.
This variation in organ impairment allows for the selection of
models tailored to specific experimental or therapeutic goals,
thereby enhancing the relevance and application of our findings
in hyperuricemia research. The positive control groups did not show
significant improvements in kidney function compared to the model
groups, highlighting the need to focus on both uric acid reduction
and organ health in hyperuricemia management. Notably, none of
the modeling methods significantly affected serum AST and ALT
levels, suggesting that the duration of the modeling period may have
influenced these results (Zhu et al., 2021). This observation
underscores the importance of considering both the modeling
duration and the comprehensive effects of therapeutic agents on
kidney functions in the development and evaluation of
hyperuricemia models.

The regulation of uric acid homeostasis critically depends on the
balance between synthesis and excretion. Recent studies indicate
that disruptions in the excretory mechanisms of uric acid, primarily
through renal and intestinal pathways, are responsible for more than
90% of hyperuricemia cases in clinical settings (Terkeltaub et al.,
2006). Our study, employing three distinct methodologies to
establish rat models of hyperuricemia, revealed a significant
reduction in urinary excretion of uric acid and urea nitrogen
compared with the control group. This finding suggests potential
obstacles in the uric acid elimination process (Perez-Ruiz et al.,
2002), potentially related to abnormalities in uric acid transport
protein expression (Mandal and Mount, 2015; So and Thorens,
2010; Nakayama et al., 2017). The precise mechanisms behind these
excretory challenges, however, require further investigation.

Moreover, our study conducted a comprehensive assessment of
serum metabolic changes in hyperuricemic rats via non-targeted
metabolomics. This analysis identified significant alterations in the
metabolism of purine, pyrimidines, and glutathione, which are
crucially linked to the development of hyperuricemia. These
metabolic shifts highlight the complex interplay between uric
acid production, excretion, and oxidative stress, underscoring the
multifaceted nature of this disorder. Additionally, metabolite tracing
analysis utilizing MetOrigin indicated that the metabolites
associated with hyperuricemia predominantly originate from
microbial sources, with the metabolic pathways largely involving
host-microbiome co-metabolism. This finding underscores the
significant influence of the gut microbiome on the pathogenesis
of hyperuricemia.

Purines and their derivatives, particularly adenosine and
adenosine triphosphate (ATP), play fundamental roles in
regulating intracellular energy balance and nucleotide synthesis

(Huang et al., 2021). This study revealed that abnormalities in
purine metabolism, such as elevated levels of adenosine and
inosine, along with reduced adenylyl sulfate, are critical for
identifying metabolic imbalances underlying hyperuricemia and
pinpointing potential therapeutic targets. Adenosine deaminase
(ADA) facilitates the conversion of adenosine to inosine, both of
which serve as precursors to uric acid. Elevated levels of these
compounds suggest either accelerated purine metabolism or
dysfunction in the uric acid excretion mechanism, leading to
increased SUA concentrations. Recent research has focused on
new drug developments targeting these metabolic pathways (Du
et al., 2023; Wang et al., 2019; Lin et al., 2022). For instance, studies
by Wang et al. demonstrated that Lactobacillus DM9218
significantly degrades inosine in the gut, reducing uric acid
production induced by a high-fructose diet and decreasing
inosine circulation in the liver (Wang et al., 2019). This
highlights the potential of inosine as a biodegradable therapeutic
target for treating hyperuricemia and its renal complications.
Furthermore, explorations using the Bio-Sankey network revealed
that bacterial phyla such as Pseudomonadota, Actinomycetota, and
Ascomycota are closely related to the key processes of uric acid
production from hypoxanthine and xanthine in purine metabolism.
Research has indicated that hypoxanthine and xanthine, when
produced by bacteria, contribute to the regeneration of the
intestinal mucosal barrier and protection of intestinal integrity
(Lee et al., 2020). Currently, the gut microbiome is recognized as
a novel target for managing hyperuricemia. Research has shown that
the gut microbiota, through the secretion of active enzymes,
participates in the breakdown and metabolism of purines and
uric acid, with genera such as Lactobacillus and Pseudomonadota
synthesizing urate oxidase to enhance uric acid degradation and
ultimately facilitate urea excretion (Wang et al., 2022). Li et al.
highlighted the role of three ribonucleoside hydrolases—RihA, B,
and C in Lactiplantibacillus plantarum—in catalyzing the
conversion of nucleosides into bases, thereby aiding in the
regulation of urate metabolism in mice on a high-nucleoside diet
(Li et al., 2023). Moreover, recent studies by Kasahara et al. and Liu
et al. have further advanced the understanding of urate degradation
by the gut microbiome, proposing that microbial purine degradation
serves as a crucial regulatory mechanism in maintaining purine
homeostasis and stabilizing circulating uric acid levels within the
host (Liu et al., 2023; Kasahara et al., 2023).

Purine and pyrimidine metabolism are intricately
interconnected within biological systems, playing essential roles
in the synthesis and breakdown of nucleic acids, and providing
the necessary nucleotides for DNA and RNA production (Edwards
and Fox, 1984). Phosphoribosyl pyrophosphate synthetase (PRPP
synthetase), a pivotal enzyme in both metabolic pathways (Dewulf
et al., 2022; Yang et al., 2020), is regulated by nucleotide and
nucleoside levels, indicating a complex cross-regulation between
purine and pyrimidine metabolism. In conditions such as
hyperuricemia, an upsurge in purine metabolism and PRPP
synthetase activity necessitates increased synthesis of pyrimidine
nucleotides to balance the elevated purine nucleotides (Nyhan,
2005), thereby meeting the demand for DNA and RNA synthesis.
Additionally, the accumulation of uric acid in the body may
influence the pyrimidine metabolic pathway through a negative
feedback mechanism (Ames et al., 1981), as evidenced by the
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increased serum levels of pyrimidine metabolites observed in this
study, such as uracil, pseudouridine, orotidine, 5-methylcytosine,
and ureidosuccinic acid.

Initial research has underscored the role of uric acid as a pivotal
endogenous antioxidant, neutralizing singlet oxygen and free
radicals, thus protecting enzymes like superoxide dismutase and
alleviating oxidative stress caused by increased levels of reactive
oxygen species (ROS) (Fabbrini et al., 2014; Zinellu and Mangoni,
2023). However, recent studies have highlighted the limitations of
the antioxidant properties of uric acid, indicating that levels
exceeding physiological norms can disrupt redox balance and
intensify oxidative damage (Mandal and Mount, 2015; Ferreira
et al., 2023). In the context of glutathione (GSH) metabolism,
which involves synthesis from glutamate, cysteine, and glycine
through the γ-glutamyl cycle and serves as a key intracellular
antioxidant (Raghu et al., 2021), findings suggest that
hyperuricemia induces metabolic disturbances. This is evidenced
by elevated levels of (5-L-glutamyl)-L-amino acids and reduced
levels of spermine. Such disturbances are likely due to increased
production of ROS associated with elevated uric acid levels, leading
to accelerated metabolism of GSH or enhanced activity of
glutathione synthetase. Given the importance of spermine in
cellular growth, differentiation, and DNA stability (Wang et al.,
2023; Zhao et al., 2023), disturbances in the glutathione pathway in
hyperuricemia may impair cellular defenses against oxidative stress,
consequently increasing the risk of cellular damage.

Correlation analysis in our study revealed a significant
association between elevated levels of pyrimidine metabolites,
such as uracil, ureidosuccinic acid, orotidine, and pseudouridine,
and organ damage in conditions of hyperuricemia. This damage was
particularly evident in the kidneys. The analysis indicates the
potential of these metabolites as powerful biomarkers for
hyperuricemia, with a high predictive value (AUC ≥ 0.97). The
kidneys, which are crucial for waste metabolism and elimination,
experience stress due to the accumulation of these metabolites,
leading to cellular and functional impairments (Cao et al., 2005).
Specifically, elevated levels of uracil and ureidosuccinic acid may
disrupt uric acid excretion, increasing renal stress and potentially
leading to kidney stones or impaired renal function (Mazzali et al.,
2001; Fathallah-Shaykh and Cramer, 2014). Furthermore, increased
levels of orotidine and pseudouridine could signal enhanced RNA
degradation and cellular damage (Kim et al., 2017; Li et al., 2016),
particularly in the context of organ dysfunction (Simmonds et al.,
1991). Dysregulation of pyrimidine metabolism may induce
oxidative stress (Xu et al., 2022), resulting in cellular and tissue
oxidative damage, characterized by the overproduction of free
radicals or reactive oxygen species, thereby accelerating aging and
triggering inflammation harmful to kidney health. Thus, monitoring
these pyrimidine metabolites provides crucial diagnostic and
prognostic insights for managing hyperuricemia and its related
organ complications.

5 Conclusion

In this study, we established rat models of hyperuricemia with
varying degrees of kidney damage by administering potassium
oxonate both alone and in combination with fructose and

adenine. The reversibility of these models was also confirmed.
Serum metabolomics analysis revealed significant alterations in
the metabolism of purine, pyrimidines, and glutathione,
highlighting the critical role played by oxidative stress in this
pathology. Notably, pyrimidine metabolites such as orotidine,
ureidosuccinic acid, uracil, and pseudouridine, which are closely
associated with liver and kidney damage, were identified as
important and potential biomarkers for hyperuricemia.
Furthermore, metabolite tracing analysis utilizing MetOrigin
demonstrated that the gut microbiome significantly influences the
pathogenesis of hyperuricemia. Future research should be directed
towards elucidating the underlying mechanisms of these
metabolic changes and developing novel therapies that effectively
lower uric acid levels while protecting liver and kidney function.
It is recommended that special focus be placed on the interactions
between drug formulations, the gut microbiome, and hyperuricemia.
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SUPPLEMENTARY FIGURE S1
OPLS-DA score plots and permutation test results. (A,B) Show OPLS-DA
score plots and permutation test results for positive ion mode; (C,D) for
negative ion mode.

SUPPLEMENTARY FIGURE S2
Permutation test results: comparative analysis across model groups and NC
group in different ionization modes. (A,C,E) for positive ion mode, and
(B,D,F) for negative ion mode.

SUPPLEMENTARY FIGURE S3
Clustering heatmaps. (A) Global clustering heatmap of differential
metabolites across hyperuricemia rat models (M1, M2, M3) and the NC
group; (B) Pairwise clustering heatmaps comparing differential metabolites
between each hyperuricemia model and the NC group.
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