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Background: Aging is marked by the gradual deterioration of cells, tissues, and
organs and is a major risk factor for many chronic diseases. Considering the
complex mechanisms of aging, traditional Chinese medicine (TCM) could offer
distinct advantages. However, due to the complexity and variability ofmetabolites
in TCM, the comprehensive screening of metabolites associated with
pharmacology remains a significant issue.

Methods: A reliable and integrated identification method based on UPLC-Q
Exactive-Orbitrap HRMSwas established to identify the chemical profiles of Huan
Shao Dan (HSD). Then, based on the theory of sequential metabolism, the
metabolic sites of HSD in vivo were further investigated. Finally, a deep
learning model and a bioactivity assessment assay were applied to screen
potential anti-aging metabolites.

Results: This study identified 366 metabolites in HSD. Based on the results of
sequential metabolism, 135 metabolites were then absorbed into plasma. A total
of 178 peaks were identified from the sample after incubation with artificial gastric
juice. In addition, 102 and 91 peaks were identified from the fecal and urine
samples, respectively. Finally, based on the results of the deep learningmodel and
bioactivity assay, ginsenoside Rg1, Rg2, and Rc, pseudoginsenoside F11, and
jionoside B1 were selected as potential anti-aging metabolites.
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Conclusion: This study provides a valuable reference for future research on the
material basis of HSD by describing the chemical profiles both in vivo and in vitro.
Moreover, the proposed screening approach may serve as a rapid tool for
identifying potential anti-aging metabolites in TCM.
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1 Introduction

Abundant natural resources can significantly expedite drug
research and development. Research indicates that over 50% of
drugs marketed in the past three decades originated from natural
sources (Bent, 2008; Li and Vederas, 2009; Newman and Cragg,
2012). Traditional Chinese medicine (TCM), a crucial source of
natural resources, offers distinct advantages in treating chronic
diseases (Ma et al., 2017; Xue et al., 2013). Although there is
consensus on the pharmacodynamic effects of TCM, the
comprehensive screening of metabolites associated with
pharmacological activities and further elucidation of their material
base remain significant issues (Liao et al., 2018). Modern
pharmacology believes that in order to achieve desired therapeutic
effect, the majority of drugs need to be transported to the tissues or
targets through blood circulation and sustain a therapeutic blood
concentration (Bach et al., 2019). As such, compared with
traditional extraction–separation screening approaches, research on
comprehensive and efficient absorbed metabolites is urgently needed.
After oral administration, drugs are mainly metabolized sequentially by
gastric juice, the intestinal cavity, and the liver, are absorbed from the
small intestine, and are excreted through urine and feces. Hence, for
most oral agents, particularly multi-component drugs, attention should
be directed to understanding the spatial sequence of drug entry into the
organism’s digestive tract, termed the “sequential metabolism theory”
(Luo et al., 2021; Luo et al. 2013; Luo et al. 2016; Zhang et al., 2016).

Themetabolites in TCM formulas are diverse and complex, making
it challenging to experimentally confirm the target of each metabolite.
Employing statistical and machine learning models for drug-target
affinity (DTA) prediction could expedite the matching of each
metabolite to its interacting target (Ozturk et al., 2018). Machine
learning models have been utilized in numerous studies to integrate
training data derived from biological screens and publicly available
databases (Lavecchia, 2019). Chemical activities and pharmacological
properties can be predicted using thesemodels, which often incorporate
neural network architectures (Askr et al., 2023). Additionally, they aid in
the discovery ofmolecular binding targets and aging biomarkers, as well
as in the design of molecules that meet specific criteria pertaining to
biological activity and physicochemical properties. For instance, Wong
et al. (2023) employed deep learning methods to rapidly discover
senolytic small molecules from a very large database. Despite the
successful use of machine learning methodologies, further
development, testing, and application of these approaches in the
area of senolytics are still necessary. It is crucial to establish
appropriate conceptual frameworks, generate well-controlled training
data, select appropriate model architectures, and experimentally
validate the model predictions in these applications. These factors
play a significant role in assessing the predictive accuracy of the

models and demonstrating the efficacy of machine learning in the
discovery of chemical compounds (Aittokallio, 2022).

Huan Shao Dan (HSD), a classical TCM prescription, has been
recorded in Jiyang ofmateria medica published in the Ming dynasty
of China, including Polygonum multiflorum Thunb., Achyranthes
bidentata Bl., Rehmannia glutinosa Libosch., Cistanche deserticola
Y.C.Ma, Phellodendron chinense Schneid., Psoralea corylifolia L.,
Plantago asiatica L., Platycladus orientalis (L.) Franco, Dioscorea
opposita Thunb., Angelica sinensis (Oliv.) Diels, Cuscuta australis
R.Br., Panax ginseng C. A. Mey., and Schisandra chinensis (Turcz.)
Baill (Wu, 1995). Previous pharmacological experiments have
indicated that HSD and its modified formula possess antioxidant
properties, alleviate depressive symptoms, and potentially exhibit
anti-aging effects (Cheng et al., 2012; Hu et al., 2012). However,
there have been few systematic studies on the chemical and
metabolic profile of HSD, greatly hindering its in-depth
investigation.

Therefore, this study employed a comprehensive identification
approach based on UPLC-Q Exactive-Orbitrap HRMS and a deep
learning model to identify chemical profiles in vivo and in vitro, as
along with potential anti-aging metabolites. The schematic for the
experimental design is shown in Figure 1. First, the chemical
metabolites of the 13 botanical drugs comprising HSD were
identified using UPLC-Q Exactive-Orbitrap HRMS. Then, based
on sequential metabolism theory, metabolites from various sample
types were identified. Finally, a deep learning model was employed
to screen potential anti-aging metabolites, which were then verified
through bioactivity assessment assays. It is noteworthy that this is
the first report describing the chemical profiles of HSD both in vivo
and in vitro, providing a valuable reference about its material basis
for future research.

2 Methods

2.1 Reagents

Every TCMmaterial used was purchased from Tongrentang Co.,
Ltd. (Beijing, China) and authenticated by Prof. Jingjuan Wang.
Detailed information on reagents and reference standards are
described in the Supplementary Material.

2.2 UPLC-MS for metabolite analysis and
biological samples

Sample analysis was performed on a Vanquish Horizon
UPLC system with a Q Exactive Hybrid Quadrupole-Orbitrap
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high-resolution mass spectrometer (Thermo Fisher Scientific,
United States). Chromatographic separation was conducted on
Waters ACQUITY UPLC BEH Shield RP C18 column (100 mm ×
2.1 mm, 1.7 µm) maintained at 35°C with a flow rate of 0.3 mL/
min. Mobile phase A was 0.1% aqueous formic acid (v/v), and
mobile phase B was acetonitrile. The gradient was set as follows:
0–1 min, 95% A; 1–3 min, 95%–90% A; 3–15 min, 90%–70% A;
15–32 min, 70%–10% A; 32–34 min, 10–95% A;
34–36 min, 95% A.

Mass spectrometric detection with H-ESI was performed with
the following settings: spray voltage of 3.8 kV (positive) and 3.2 kV
(negative); sheath gas and auxiliary gas flow rate, 35 and 15; auxiliary
gas heater temperature, 300°C; capillary temperature, 350°C; mass
range, m/z 100–1,500. The dd-MS2 were obtained at resolutions of
17,500 and 70,000 for full mass. The collision energy values were
20%, 40%, and 60%.

2.3 Identification of metabolites in HSD

2.3.1 Sample preparation for chemical analysis
The reference standards were mixed and dissolved in methanol.

An accurately weighed 100 g sample of HSD powder was
ultrasonically extracted with 1,000 mL (1:10, w/v) ethanol (50%
v/v) for 1 h. The extracted solution was then filtered, and the
precipitate was extracted with another 1,000 mL of ethanol (50%
v/v) for 1 h. After filtration, the supernatants were combined and
concentrated to 0.25 g crude drug per milliliter. After dilution to
0.05 g/mL, the sample was filtered through a 0.22 μmmembrane for
LC-MS analysis.

2.4 Animal experiments based on sequential
metabolism theory

Adult male SD rats (250–300 g) were obtained from SPF
Biotechnology Co., Ltd. (Beijing, China). The animals were
adaptively raised for 7 days and fasted overnight before the
experiment.

2.4.1 Stability in artificial gastric juice
The experiment was conducted using artificial gastric juice

according to the Chinese Pharmacopoeia. The specific steps were
as follows. In total, 16.4 mL of diluted hydrochloric acid was added
to 800 mL of water, followed by 10 g of pepsin. After thorough
mixing, water was added to a final volume of 1,000 mL. HSD extracts
were added to artificial gastric juice at a ratio of 1:50 and incubated
in a 37°C shaking water bath for 2 h, followed by 0.1 M NaOH. LC-
MS analysis was carried out after centrifugation at 10,000 rpm for
10 min, followed by filtration through a 0.22 μm membrane.

2.4.2 In situ intestinal perfusion with venous
sampling (IPVS) surgical procedures

IPVS procedures were performed following Yang et al. (2021)
with minor adjustments. Prior to the IPVS, several rats were
randomly selected after 12 h of fasting. Blood was collected from
the abdominal aorta and kept in a 37°C water bath until
administration to the recipient rat. After being anesthetized, the
rats were positioned supine on the operating table and their body
temperature was maintained using an infrared lamp. The jugular
vein was carefully dissected, an intravenous needle was inserted, and
one end was connected to a blood reservoir via a peristaltic pump for

FIGURE 1
Schematic representation of the experimental design.
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transfusion. The abdominal cavity was carefully opened along the
midline of the rat’s abdomen. A segment of the jejunum
(approximately 10 cm) was selected as the test intestine, and the
blood vessels beyond this segment were ligated. The intestinal
contents were slowly flushed out with 37°C saline until the
effluent became clear. A syringe pump was connected to one end
of the jejunal segment, and the HSD decoction was instilled at a flow
rate of 0.2 mL/min for 2 h. Subsequently, an intravenous needle was
inserted into the mesenteric vein (intestinal metabolism) or femoral
vein (hepatic metabolism) with ligation of the hepatic portal vein.
The blood was pumped at a flow rate of 0.3 mL/min and collected
for 2 h.

2.4.3 Oral drug administration
SD rats were randomly divided into five groups of blank and

HSD-treated rats at different administration times, each group
containing six rats. They were fasted for 12 h before the
experiment. The administration dose for SD rats was primarily
based on the clinical usage dose, which was calculated as the
equivalent dose between humans and rats according to body
surface area. The HSD-treated groups were given HSD solution
(0.54 g/kg/d, half of the clinical dose) intragastrically at
10 mL/kg, and the blank group was given saline instead, once
a day, for 1 week.

In this study, we selected four time points (0.5, 1,1.5, and 2 h) for
blood sampling, primarily based on the pharmacokinetic properties
of TCM. According to the literature review and preliminary
experimental explorations by our research team, we found that
collecting blood within 2 h could encompass a wider range of
metabolites. As such, after 0.5, 1, 1.5, and 2 h, blood samples
were collected from the abdominal aorta of rats after they were
anesthetized. Meanwhile, another six rats were also divided into two
groups and treated with saline or HSD solution. Urine and feces
were collected from 0 to 72 h.

2.4.4 Biological sample pretreatment
Plasma samples: centrifugation at 4,000 rpm at 4°C for 15 min to

obtain 20 mL plasma was followed by precipitation with three times
the volume of acetonitrile, then centrifugation at 12,000 rpm for
20 min. The supernatant was dried in nitrogen at 50°C and
redissolved in 1 mL of acetonitrile.

Urine samples: urine was concentrated to 25 mL and mixed with
an equal volume of acetonitrile, followed by centrifugation at
12,000 rpm for 20 min at 4°C. The supernatant was dried under
nitrogen at 50°C, and the residue was redissolved in 5 mL of
acetonitrile.

Fecal samples: feces were dried and then crushed into a crude
powder. The powder (5.0 g) was ultrasonically extracted twice, each
time for 30 min with 50 mL of acetonitrile. After centrifugation at
12,000 rpm for 20 min, the supernatant was concentrated and
redissolved in 1 mL of acetonitrile.

2.5 Deep learning model analysis

2.5.1 Data collection and preparation
A PubChem dataset containing compounds with experimentally

confirmed senolytic activity was used for this study as the training

dataset. A curation process was performed to eliminate duplicates,
inorganic materials, and mixtures after presenting them by SMILES.
Briefly, we conducted a search using the keywords “anti-aging” and
“senolytic” and subsequently downloaded the relevant activity data,
including compound information and activity classifications of
aging targets. Target proteins “UniProt ID,” small molecule
“Substance ID,” and activity categories were extracted. In
PubChem, the activity categories were divided into four
categories: “Inactive,” “Active,” “Inclusive,” and “Unspecified.”
We classified the data with the activity category “Active” as
positive samples (active inhibitors) and labeled them “1”, while
the remaining activity categories were treated as negative samples
(non-active inhibitors) and labeled “0”. We obtained the SMILES of
active small molecules from the PubChem website using “Substance
ID” and the protein sequences from the UniProt database using
UniProt ID (https://www.uniprot.org/). Therefore, a dataset of
5,945 protein-drug samples (5,174 negative; 771 positive) was
acquired. The data were classified into a training set
(4,133 negative; 623 positive), a validation set (521 negative;
73 positive), and a test set (520 negative; 75 positive).

2.5.2 Establishing a deep learning model
Based on DrugBAN—a bilinear attention network (BAN)

framework with adversarial domain adaptation designed for
learning pairwise drug-target interactions—this study used deep
learning to learn pairwise interactions (Liu et al., 2023) (Figure 2A).

2.5.2.1 Model input
Protein sequences and SMILES representations of compounds

were used in this study.

2.5.2.2 Drug encoder
In the context of the drug encoder, each SMILES string was

transformed into a 2Dmolecular graph, denoted as GG. To represent
node-specific information within GG, an atom node was initiated
based on its chemical attributes using the DGL-LifeSci package.
Atoms were represented by 74-dimensional integer vectors,
comprising eight key characteristics: aromaticity indication, total
hydrogen atom count, formal charge, atom type, implicit hydrogen
atoms count, atom degree, number of radical electrons, and atom
hybridization. To maintain consistency with the maximum
allowable length of the protein sequence, we imposed a
predefined limit on the number of nodes, denoted as Θd. For
molecules with fewer nodes, virtual nodes were introduced and
zero-padded as needed. Consequently, the node feature matrix for
each graph was denoted as Md ∈ RΘd×74. Furthermore, we employed
a linear transformation to establish Xd, represented as Xd =W0M

⊤
d,

resulting in a real-valued dense matrix Xd ∈ RΘd×Dd, which serves as
the input feature.

To effectively learn graph representations, we utilized a three-
layer GCN block. Graph convolutional networks (GCNs) generalize
convolutional operators to irregular domains. Our approach
involved updating the atom feature vectors by aggregating
information from their corresponding sets of neighboring atoms.
Substructural details of the molecule are inherently captured by this
propagation mechanism. For the subsequent exploration of local
interactions with protein fragments, we retained the drug
representation at the node level.
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2.5.2.3 Protein encoder
There are three successive 1D convolutional layers in a protein

encoder that convert protein sequences into latent features. In this
matrix, each row describes a subsequence of the protein. Drawing
inspiration from word embedding principles, we initially initialized
all amino acids using a trainable embedding matrix, denoted as Ep ∈
R23×Dp. By performing a lookup operation on Ep, each protein
sequence PP could be assigned a matching feature matrix—Xp ∈
RΘp×Dp. Θp is the maximum allowable length for a protein sequence.
In line with prior research, protein sequences exceeding the
maximum allowed length were truncated, while those falling
short were padded with zeros to achieve alignment.

2.5.2.4 Bilinear attention and decoder
To capture pairwise interactions, a bilinear attention network

module was applied. In this model, pairwise attention weights were
captured by a bilinear interaction map, followed by a bilinear
pooling layer that extracted joint drug–target representations.
Finally, a fully connected classification layer obtained the scores.

2.5.3 Model optimization and evaluation
For each compound–protein pair, a binary activity value of 0

(possesses no anti-aging activity) or 1 (has anti-aging activity) was
conducted. The main metrics used to assess model efficiency were
the area under the receiver operating characteristic curve (AUROC)
and the area under the precision-recall curve (AUPRC). The datasets
were split randomly into 80–10–10 training–validation–testing
splits for 100 epochs. Following Bai et al. (2023), we used binary
cross entropy as the loss function by default. Scikit-learn was used to
generate precision-recall curves for compound–protein pairs by

comparing the prediction score to the activity value. Moreover,
sensitivity, accuracy, and specificity were performed at the threshold
associated with the optimal F1 score.

2.5.4 Model prediction
As a final step, we trained the model using all the data. The

model was subsequently implemented to forecast the metabolites
within the HSD, along with their respective scores in relation to
aging protein targets (Figure 2B). Among the numerous targets of
aging, we selected the recognized targets of AMP-activated protein
kinase (AMPK) and Sirt-6 (Table 1).

2.6 Bioactivity validation

2.6.1 Cell culture and viability assay

PC12 cells were cultured in high glucose DMEM under a 37°C,
5% CO2 atmosphere. To evaluate the cytotoxic effect of candidate
metabolites on PC12 cells, five candidate metabolites at different
doses were cultured with cells for 24 h. CCK-8 was used to determine
cell viability.

2.6.2 PC12 senescence model

Senescent PC12 cells were induced by D-gal. To determine the
optimal concentration of D-gal for aging induction, PC12 cells were
treated with different D-gal concentrations for 6, 12, 24, and 48 h.
Then, to assess the protective effect against D-gal-induced

FIGURE 2
Deep learning model and the prediction process. (A) DrugBAN model. (B) Deep learning model training and prediction process.
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PC12 cells, five candidate metabolites were pre-treated with
PC12 cells induced by D-gal for 24 h, and their viability was
determined by CCK-8.

2.6.3 LDH, MDA, SOD, CAT, and NO
measurements

The PC12 cells were treated as described above. The content of
lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide
dismutase (SOD), catalase (CAT), and nitric oxide (NO) were
determined by commercial assay kits following the
manufacturer’s protocol (Supplementary Material).

2.6.4 Cellular ROS concentration
measurement

Reactive oxygen species (ROS) concentrations were measured
with the ROS Assay Kit. Cells were seeded in 6-well plates (1 × 106

cells/well) and treated with 10 μM of five candidate metabolites
(ginsenoside Rg1, Rg2, and Rc, pseudoginsenoside F11, and
jionoside B1) for 24 h. D-gal was then used to induce senescent
cells for 24 h. The level of ROS was detected using a DCFH-DA
fluorescent probe and visualized by a fluorescence microscope
(Olympus U-HGLGPS, Japan).

2.6.5 SA-β-gal staining

Senescent PC12 cells were subjected to SA-β-gal staining.
Senescent cells were observed using a fluorescence microscope
(Olympus IX73, Japan). The positive rate of the senescent cells
was calculated using ImageJ software.

3 Results

3.1 Identification of chemical metabolites
in HSD

Based on CNKI, OTCML, Web of Science, and TCMSP, a
database of HSD was established. The total ion chromatogram
(TIC) in positive and negative ion modes is shown in Figure 3.
After further repeated correction, 366 metabolites were identified or
tentatively characterized in HSD, mainly including anthraquinones,
flavonoids, alkaloids, terpenoids, organic acids, phenylethanoid
glycosides, amino acids, and steroids. Among these, metabolite
identification was conducted by comparison of retention time

and exact mass of reference standards when standards were
available. The chemical structures of other metabolites were
mainly proposed by comparison with MS/MS data, accurate
mass, fragmentation pathways, and relevant literature. Detailed
information is summarized in Supplementary Tables S1, S2.

3.1.1 Anthraquinones in HSD
In this study, 11 anthraquinones were found in HSD. To

comprehensively investigate the MS/MS fragmentation pattern of
anthraquinones, two reference standards—aloe-emodin (Peak 351)
and emodin (Peak 352) —were unambiguously identified. Peak
352 produced precursor ions at m/z 269.0456 (C15H10O5) and
generated product ions at m/z 241.0507 (M-H-CO)−, 225.0559
(M-H-CO2)

−, 210.0320 (M-H-CO2-CH3)
−, and 197.0612

(M-H-CO-CO2)
− (Supplementary Figure 1). The [M-H]− ion of

Peak 256 at m/z 283.0613 with the molecular formula C16H12O5

yielded the ion atm/z 268.0376 (M-H-CH3)
−, 240.0249 (M-H-CH3-

CO)−, and 212.0477 (M-H-CH3-2CO)
−, which was presumed to be

physcion. As such, fragment ions of [M-H-15]−, [M-H-44]−, and
[M−H-28]− due to the loss of CH3, CO2, and CO could be
considered characteristic fragmentation behavior in the spectra of
anthraquinones.

3.1.2 Flavonoids in HSD
Flavonoids, a class of important polyphenolic metabolites from

TCM, consist of two benzene rings (A and B) linked by three carbon
atoms. In this study, 67 flavonoids were detected from HSD,
including flavones, isoflavone, flavanone, flavonol, flavanonol,
flavanol, and others. According to the mass spectra of the
standards, the main fragment patterns of the flavonoids were as
follows. First, the main MS/MS behavior of flavonoids is the
breakage of the glycosidic bond and C-ring generated by RDA
cleavage. In addition, the characteristic neutral loss mainly
contained H2O, CO2, CO, and CH3 (Xu et al., 2020).

3.1.2.1 Flavones in HSD
We identified 14 flavones in HSD. Four reference

standards—apigenin (Peak 302), luteolin (Peak 268), cosmosiin
(Peak 197), and wogonin (Peak 316) —were first ascertained. For
example, Peak 197 identified [M-H]− ions at 431.0988 (C21H20O10)
and produced ions at m/z 269.0457 by the neutral loss of Glc. A
series of ions at m/z 151.0040 [M-H-C8H6O]

−,m/z 117.0345 [M-H-
C7H4O4]

−, and m/z 107.0135 [M-H-C9H6O3]
− were generated by

RDA cleavage in the negative ion spectrum. Peak 197 was thus
accurately identified as cosmosiin. Its MS2 mass spectra and
fragmentation pathways are depicted in Supplementary Figure 2.
Peak 209 displayed an [M-H]− ion at m/z 269.0455 (C15H10O5).
Moreover, the fragment ions atm/z 241.0508,m/z 225.0559, andm/z
197.0607 were generated by successive and simultaneous losses of

TABLE 1 Selected aging protein information.

Uniport ID Protein Organism

Q8N6T7 NAD-dependent protein deacylase sirtuin-6 Homo sapiens

Q13131 5′-AMP-activated protein kinase catalytic subunit alpha-1

Q9Y478 5′-AMP-activated protein kinase subunit beta-1
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CO and CO2. Based on the MS/MS data recorded by Zou et al.
(2015), Peak 209 was tentatively identified as baicalein. Other
detected flavones are summarized in Supplementary Table S1.

3.1.2.2 Isoflavones in HSD
Nine isoflavones were identified in HSD. Peaks 125, 247, and

248 were determined to be daidzin, daidzein, and calycosin by
comparison with standards. Peak 247 displayed an [M + H]+ ion
at m/z 255.0652 (C15H10O4) and its MS2 spectra showed
representative ions at 237.0549 (M + H-H2O)

+, 227.0703 (M +
H-CO)+, 199.0756 (M + H-2CO)+, and 137.0233 (M + H-C8H6O)

+,

which was considered to be daidzein. Consequently, Peaks 297, 300,
331, 340, 342, and 361 were tentatively identified as genistein,
psoralenol, neobavaisoflavone, erythrinin A, corylin, and corylifol
A, respectively (Chen et al., 2012; Luan et al., 2018; Wang
et al., 2017).

3.1.2.3 Flavanones in HSD
Ten flavanones were identified in HSD. Peaks 243 and 282 were

determined to be eriodictyol and naringenin by comparing them
with reference standards. Peak 282 gave a precursor ion at m/z
271.0613 (C15H12O5) in the negative mode. The fragment ion atm/z

FIGURE 3
TIC of HSD from UPLC-Q Exactive-Orbitrap HRMS. (A) Positive ion mode. (B) Negative ion mode.
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151.0037(M-H-C8H8O)
−, 119.0502 (M-H-C7H4O4)

− was observed
by the RDA cleavage of the C-ring and m/z 177.0193
(M-H-C6H6O)

−, 107.0139 (M-H-C9H8O3)
−, so the structure of

this Peak 282 was considered to be naringenin
(Supplementary Figure 3).

3.1.2.4 Flavonols in HSD
We identified 22 flavonols in HSD. Six reference

standards—hyperoside (Peak 180), isoquercetin (Peak 181), rutin
(Peak 190), astragalin (Peak 203), quercitrin (Peak 215), quercetin
(Peak 271), and kaempferol (Peak 307) —were first unambiguously
identified by comparison with the references. Peak 190 displayed a
quasi-molecular ion at m/z 609.1469 (C27H30O16) in the negative
model. MS2 spectra showed representative ions at m/z 300.0273
(M-H-Glc-Rha)−, 271.0250 (M-H-Glc-Rha-H-CO)−, 257.0457
(M-H-Glc-Rha-CO2)

−, and 151.0035 (C7H3O4)
− resulting from

RDA cleavage. Peak 307 displayed deprotonated ions at m/z
287.0550 (C15H10O6) and produced ions at m/z 269.0441 and
259.0602 by the neutral loss of H2O and CO. A series of
representative ions at m/z 153.0184 and m/z 133.0287 were
generated by RDA fragmentation, identifying Peak 307 as
kaempferol. Similarly, based on similar fragmentation pathways,
the structures of other peaks were identified.

3.1.2.5 Flavanols in HSD
Five flavanols were identified in HSD. Peaks 77, 79, and 98 were

identified as cianidanol, procyanidin B1, and epicatechin by
comparison with the standards. For instance, Peaks 77 and
98 were considered to be isomers since they gave the same
(M–H)− ions at m/z 289.0720 (C15H14O6) and m/z 289.0719
(C15H14O6). In addition, they displayed similar fragment ions at
m/z 245.08 (M-H-CO2)

−, m/z 203.07 (M-H-C3H2O3)
−, m/z 123.05

(M-H-C8H6O4)
−, and 109.03 (M-H-C9H8O4

)− in the MS2 spectra.
Based on the retention time and MS/MS behavior of the standards,
they were considered to be cianidanol and epicatechin. Similarly,
based on similar fragmentation pathways, Peaks 113 and 172 were
tentatively identified as acetyl-epicatechin-O-glucoside and
epicatechin-O-gallate.

3.1.3 Alkaloids in HSD
In this study, alkaloids were tentatively identified, including

tetrahydroprotoberberine, protoberberine, aporphine,
benzylisoquinoline, indole, quinoline, and other alkaloids. By
comparing retention time and MS/MS behavior with reference
standards, Peaks 3, 58, 64, 128, 132, 150, 151, and 155 were
identified as betaine, phellodendrine, magnoflorine, columbamine,
jateorhizine, epiberberine, coptisine, and berberine.

Phellodendrine, the main tetrahydroprotoberberine alkaloid in
HSD, showed the quasi-molecular ion [M + H]+ at m/z 342.1699
(C20H24NO4) in positive ionmode, and the main fragment ions were
observed at m/z 192.1021 (M-C9H10O2)

+ and m/z 177.0785
(M-C9H10O2-CH3)

+ by retro Diels–Alder (RDA) fragmentation
of the C-ring (Supplementary Figure 4). It displayed the (M +
H)+ ions atm/z 356.1858 (C21H25NO4), and the main fragment ions
were 341.1617 [M + H-CH3]

+, 192.1021 [M + H-C9H10O2]
+,

177.0785 [M + H-C9H10O2-CH3]
+, and 165.0914 [M +

H-C11H13NO2]
+. Based on MS/MS fragmentation patterns and

the literature, Peak 104 was tentatively identified as yuanhunine.

As such, tetrahydroprotoberberine alkaloids possess a characteristic
fragmentation behavior with RDA cleavage and successive loss of
substituent groups from the parent nucleus, such as CH3 and OCH3.

In addition, the MS/MS behavior of protoberberine alkaloids
was characterized by the simultaneous or successive loss of
substituent groups like CO, CH4, and CH3. For instance, Peaks
150 and 155 exhibited similar (M + H)+ ions at m/z 336.1230
(C20H18NO4) and 336.1229 (C20H18NO4). Additionally, they shared
the same fragment ions atm/z 320.09 (M-CH4)

+, 306.08 (M-2CH3)
+,

292.10 (M-CH4-CO)
+, and 278.08 (M-2CH3-CO)

+. Based on the
retention time and fragmentation patterns of the reference
standards, they were accurately identified as epiberberine and
berberine. MS2 mass spectra and the fragmentation pathways of
berberine are depicted in Supplementary Figure 5. Peak 146 gave an
[M + H]+ ion at m/z 322.1075 with a molecular formula of
C19H15NO4. The predominant fragment ions appeared at
307.0841 (M + H-CH3)

+, 292.0593 (M + H-2CH3)
+, 279.0891 (M

+ H-CH3-CO)
+, 264.0665 (M + H-2CH3-CO)

+, and 251.0947 (M +
H-CH3-CO-CO)

+, consisting of the fragment patterns of
protoberberine alkaloids. Thus, it was tentatively identified as
berberrubine.

For aporphine alkaloids, the primary fragmentation pattern was
the successive loss of (CH3)2NH or CH3NH2. Magnoflorine was
taken as an example, giving the quasi-molecular ion [M +H]+ atm/z
342.1700 (C20H24NO4) and fragment ions at 297.1123 (M-
(CH3)2NH)+, 282.0882 (M-(CH3)2NH-CH3)

+, 265.0859 (M-
(CH3)2NH-CH3OH)+, and 237.0906 (M-(CH3)2NH-CH3OH-
CO)+ in positive ion mode. Their MS2 mass spectra and the
fragmentation pathways are depicted in Supplementary Figure 6.
Similarly, Peaks 74 and 78 were tentatively identified as cassythidine
and dauricine based on fragment patterns.

As documented in the literature, the main fragment patterns of
the benzylisoquinoline alkaloids were as follows. Benzylisoquinoline
alkaloids, with isoquinoline or tetrahydroisoquinoline as the parent
nucleus, are a class of alkaloids with a benzyl group attached to the 1-
position of the nucleus. Therefore, they are susceptible to displaying
α-cleavage. Moreover, the loss of neutral fragments, such as CH3OH,
OCH3, and (CH3)2NH, are also the main fragment patterns. Peak
48 gave (M)+ ions at m/z 314.1751 (C19H24NO3) and
(M-C12H16NO2)

+ ions at m/z 107.0496 by α-cleavage. The
fragment ions at m/z 269.1173 (M-(CH3)2NH)+ and 237.0909
(M-(CH3)2NH-CH3OH)+ were further obtained, indicating that
Peak 48 was presumed to be magnocurarine. Accordingly, other
peaks were tentatively identified as higenamine, lotusine, sanjoinine
K, N-methylhigenamine7-glucopyranoside, oblongine, 3,4-dihydro-
1-[(4-hydroxyphenyl)-methyl]-7-methoxy-2-methyl-6-
isoquinolinol, and tembetarine (Sun et al., 2016; Xian et al., 2014;
Yang et al., 2021).

3.1.4 Terpenoids in HSD
A total of 57 terpenoids were detected, containing 13 iridoids,

one sesquiterpenoid, 39 triterpenoids, and their derivatives. In order
to comprehensively investigate the MS/MS fragmentation pattern of
iridoids, two reference standards—rehmannioside D (Peak 26) and
geniposidic acid (Peak 34)—were first characterized. The MS2 mass
spectra and the fragmentation pathways of geniposidic acid are
depicted in Supplementary Figure 7. The primary fragmentation
pattern of iridoids was the loss of glycosidic units from the parent
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nucleus, such as glucose (Glc) and rhamonose (Rha). Then, the
residual aglycone ions tended to easily lose CO2 or H2O because of
hydroxyl and carboxyl groups. For instance, Peak 34 provided the
intense deprotonated ion at m/z 373.1141 (C16H22O10), and
generated product ions 211.0612 (M-H-Glc)− and 167.0713
(M-H-Glc-CO2)

− resulting from decarboxylation, 149.0607
(M-H-Glc-CO2-H2O)

− from the condensation reaction of
hydroxyl and protons, and 123.0451 (M-H-Glc-CO2-
H2O-C2H2)

−. Fragment ions of (M-H-CO2)
− and (M-H-H2O)

−

could be considered as the characteristic ions of iridoids.
Therefore, other peaks were tentatively identified as iridoids
based on the above proposed fragmentation pathway (Li et al.,
2017; Song et al., 2016; Wang et al., 2013; Zhu et al., 2014).

Triterpenoids were identified in HSD. Taking Peaks 249 and
252 as examples, both provided a precursor ion at m/z 485.1823
(C26H30O9) and 485.1820(C26H30O9) and generated the same
product ions at m/z 345.17 (M-H-C6H4O4)

−, 317.18
(M-H-C7H4O5)

−, 205.09 (M-H-C14H16O6)
−, 161.10

(M-H-C15H16O8]
−, and 129.06 (M-H-C20H20O6)

−. Based on MS/
MS fragmentation patterns and the literature, they were tentatively
identified as rutaevine and its isomer. Peaks 254, 293, and 319 were
tentatively identified as oleanolic acid, limonin, and obacunone from
the literature.

We identified 34 triterpenoid saponins in HSD. The majority of
these metabolites are found in ginsenosides. Therefore, to investigate
the MS/MS fragmentation pattern of triterpenoid saponins, three
reference standards of ginsenoside Rb1 (Peak 270), ginsenoside Re
(Peak 218), and ginsenoside Rg1 (Peak 216) were precisely
identified. Peak 218 gave an [M-H]− ion at 945.5422 (C48H82O18)
and produced fragment ions at m/z 783.4907 (M-H-Glc)-, 637.4339
(M-H-Glc-Rha)−, and 475.3798 (M-H-2Glc-Rha)−, which was
consistent with the fragment patterns of the reference standards
and was identified as ginsenoside Re (Supplementary Figure 8). Peak
216 observed an [M + COOH]− adduct ion at m/z 845.4920
(C43H73O16) and an [M-H]− ion at m/z 799.4860 (C42H72O14).
Predominant fragment ions at the MS2 spectrum were 637.4330
(M-H-Glc)−, 475.3802 (M-H-2Glc)−, and 391.2874 (M-H-2Glc-
C6H12)

−, respectively. Consequently, Peak 216 was identified as
ginsenoside Rg1 by comparison with a standard.

Peak 296 produced an [M-H]− ion at 925.4816 (C47H74O18). The
characteristic fragment ions were 763.4269 (M-H-Glc)−, 701.4291
(M-H-Glc-H2O-CO2)

−, 595.3568 (M-H-Glc-H2O-Ara-H2O)
−,

551.3733 (M-H-Glc-H2O-Ara-H2O-CO2)
−, and 455.3524

(M-H-Glc-Ara-Glua)−, suggesting that it was chikusetsusaponin
IV. Other triterpenoid saponins exhibited similar fragment
patterns; detailed information is summarized in Supplementary
Tables S1, S2 (Jinbiao et al., 2022; Li et al., 2010; Lin et al., 2021;
Tang et al., 2015; Wang et al., 2013).

3.1.5 Coumarins and lignans in HSD
In this study, 27 lignans were identified in HSD in positive ion

mode. To comprehensively explore MS/MS characteristic
dissociation rules of lignans, six reference standards—gomisin J
(Peak 324), schisandrin B (Peak 363), schisandrol B (Peak 317),
schizandrin A (Peak 355), schisandrol A (Peak 305), and angeloyl
gomisin H (Peak 334) —were used. First, because of the different
substitutions on the biphenyl ring, the fragment ions [M-H-15]−,
[M-H-18]−, [M-H-30]−, and [M-H-31]− corresponding to the loss of

CH3, H2O, CH2O, and OCH3 could be identified as characteristic
ions of lignans. Moreover, the loss of neutral fragments such as C4H8

and C3H6 generated by biphenyl ring opening was also observed in
positive ion mode. In this mode, several main fragment ions at m/z
417.2273 (C24H32O6), 402.2037 (M + H-CH3)

+, 386.2092 (M +
H-CH3-O)

+, 347.1488 (M + H-CH3-C4H7)
+, 316.1307 (M + H-CH3-

O-C4H8-CH2)
+, and 301.1072 (M + H-CH3-O-C4H8-CH2-CH3)

+

were obtained in the MS2 spectrum of Peak 355. By comparing the
retention time and fragment patterns with those of the standards,
Peak 355 was precisely identified as schizandrin A (Supplementary
Figure 9). Moreover, MS2 mass spectra and the fragmentation
pathways of schisandrol A are depicted in Supplementary
Figure 10. Similarly, via the above fragment rules, other peaks
were identified (Wang et al., 2020; Yang et al., 2017; Zou et al., 2015).

In addition, ten coumarins were identified in HSD. The
characteristic fragmentation pattern of the coumarins was the
consecutive loss of CO and CO2 due to the presence of a lactone.
Moreover, it is also noteworthy that coumarins displayed intense
molecular ion peaks in the mass spectra. For instance, Peaks 240 and
246 were assigned as isomers since they gave the same (M +H)+ ions
at m/z 187.0390 with the molecular formula C11H6O3. Both then
displayed similar fragment ions at m/z 159.04 (M-H-CO)−, 143.05
(M-H-CO2)

−, 131.05 (M-H-2CO)−, and 115.05 (M-H-CO-CO2)
−.

Therefore, by comparing the retention time and fragment ions of the
standards, they were exactly determined to be angelicin and psoralen
(Supplementary Figure 11). Based on similar mass spectra profiles,
other coumarins are tentatively identified and summarized in
Supplementary Tables S1 and S2.

3.1.6 Organic acids in HSD
In this study, 58 organic acids were detected, including aliphatic

organic acids, phenolic acid derivatives, quinic acid, and derivatives.
In order to explore the fragmentation pathway of quinic acid and
derivatives, four reference standards—1,5-dicaffeoylquinic acid
(Peak 204), chlorogenic acid (Peak 85), neochlorogenic acid
(Peak 53), and cryptochlorogenic acid (Peak 82) —were
unambiguously identified. Taking chlorogenic acid as an
example, Peaks 53, 82, and 88 were isomers and gave an [M-H]-

ion at m/z 353.0881, 353.0880, and 353.0880 with a molecular
formula of C16H18O9. The MS/MS spectrum also showed the
same ion at m/z 191.06 (M-H-caffeoyl)−, 179.04
(M-H-C7H10O5)

−, 173.05 (M-H-C9H8O4)
−, 135.05

(M-H-C7H10O5-CO2)
−, and 93.03 (M-H-C9H8O4-2H2O-CO2)

−.
Therefore, three isomers were sequentially detected by
comparison with standards. MS2 mass spectra and the
fragmentation pathways of chlorogenic acid are depicted in
Supplementary Figure 12. According to the mass spectra of the
above standards, the main fragment patterns of quinic acid and its
derivatives are as follows. First, the fragment ions were mainly
generated through the breakage of ester and glycosidic bonds.
Moreover, fragment ions such as (M-H-C10H8O3),
(M-H-C9H6O3), (M-H-C6H10O5), (M-H-H2O), and (M-H-CO2)
could be regarded as the characteristic ions. Consequently, the
remaining peaks were tentatively identified using Sun et al.
(2016), Wang et al. (2021), and Zhang et al. (2018).

As for the phenolic acid derivatives, their characteristic
fragmentation involves successive losses of neutral groups such as
CO2, H2O, CH3, and Glc. Peaks 68, 28, 94, and 142 were
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unequivocally characterized as phthalic, gallic, caffeic, and ferulic
acids by contrast with reference standards. Peak 28, for example,
displayed a quasi-molecular ion at m/z 169.0142 (C7H6O5) and
representative ions at m/z 125.0244(M-H-CO2)

-,
97.0295(M-H-C3H4O3)

−, and 69.0347(M-H-CO2-2CO)
−. Peak

142 gave an [M-H]− ion at m/z 193.0505 with a molecular
formula C10H10O4, and predominant ions appeared at m/z
178.0271 (M-H-CH3)

−, 149.0608 (M-H-CO2)
−, and 134.0374

(M-H-CO2-CH3)
−, which were deemed to be ferulic acid.

Detailed information on other metabolites is summarized in
Supplementary Tables S1 and S2.

For aliphatic organic acids like phenolic acid, (M-H-CO2)
−,

(M-H-COOH)−, and (M-H-H2O)
− were identified as

characteristic ions. Peak 171 has a precursor ion at m/z 187.0975
(C9H16O4) and generated product ions m/z 169.0870 (M-H-H2O)

-,
143.1077 (M-H-CO2)

−, and 125.0972 (M-H-H2O-COOH)−. Based
on exact molecular masses and MS/MS fragmentation patterns in
the literature, Peak 171 was tentatively identified as azelaic acid.
Similarly, Peaks 263, 327, 279, and 320 were tentatively identified as
palmitic acid, decanoic acid, 10,12-octadecanedioic acid, and 9-
Hpode (Xie et al., 2023).

3.1.7 Phenylethanoid glycosides in HSD
This study detected 36 phenylethanoid glycosides in negative ion

mode. Peak 116, for example, yielded [M-H]− at m/z 785.2524
(C35H46O20), and predominant ions appeared at m/z 623.2195
(M-H-caffeoyl)−, 477.1642 (M-H-caffeoyl-Rha)−, and 315.1101
(M-H-caffeoyl-Rha-Glc)−. By comparing their chromatographic
retention times and fragmentation patterns with those of the
standards, Peak 116 was exactly identified as echinacoside, a
representative metabolite of phenylethanoid glycosides
(Supplementary Figure 13). By analyzing the structures of
phenylethanoid glycosides and the literature, fragment ions of
[M-H-146]−, [M-H-162]− and [M−H-18]− due to the loss of
C6H10O4 (rhamnose residue), C9H6O3 or C6H10O5 (glucose
residue, caffeoyl group), and H2O could be regarded as
diagnostic cracking pathways in the spectra of phenylethanoid
glycosides. A similar fragment pattern was observed in Peaks
152 and 158, which gave [M-H]− at m/z 827.2631(C37H48O21)
and 623.1994 (C29H36O15), respectively. In the MS/MS spectrum,
Peak 162 showed the ion atm/z 665.2318 (M-H-caffeoyl)−, 623.2224
(M-H-caffeoyl-C2H2O)

−, and 477.1624 (M-H-caffeoyl-
C2H2O-Glc)

−, and Peak 168 showed the ion at m/z 461.1646
(M-H-caffeoyl)−, 315.1086 (M-H-caffeoyl-Rha)−, 179.0348
(Caffeoyl-H)−, 161.0244 (Caffeoyl-H-H20)

−, and 135.0452
(M-H-caffeoyl-Rha-Glc-H2O)

−. According to the cracking
patterns obtained, Peaks 152 and 158 were identified as
tubuloside A and acteoside. Detailed information is summarized
in Supplementary Tables S1 and S2 (Han et al., 2012; Li et al., 2015;
Song et al., 2016).

3.1.8 Amino acids in HSD
Eight Amino acids were identified in HSD in positive ion mode.

Phenylalanine (Peak 27) was first identified to explore the
fragmentation pathway. By comparison with MS/MS
fragmentation of the standards, the characteristic fragmentation
was successive losses of COOH and NH3. Peak 27 gave an [M + H]+

ion at m/z 166.0864 (C9H11NO2) and further yielded the ion at m/z

149.0594 [M+H-NH3]
+, 120.0810 [M+H-COOH]+, 103.0546[M+H-

NH3-COOH]+ suggesting that it should be phenylalanine. Its
fragmentation pathways are depicted in Supplementary Figure 14.
Similarly, other peaks were tentatively identified as arginine (Peak
1), adenine (Peak 9), proline (Peak 16), L-pyroglutamic acid (Peak
20), leucine (Peak 21), tyrosine (Peak 22), and tryptophan (Peak 33).

3.1.9 Steroids in HSD
Seven steroids were identified in HSD. Peak 141 exhibited a

quasi-molecular ion [M + H]+ at m/z 481.3162 (C27H44O7) and
produced ions at 463.3061 (M + H-H20)

+, 371.2219 (M +
H-C4H14O3)

+, 319.1910 (M + H-C8H18O3)
+, and 301.1805 (M +

H-C8H18O3-H2O)
+, which were considered to be β-ecdysterone by

comparing retention times and MS/MS spectra with those of the
reference standards. Similarly, other peaks were tentatively
identified as polypodine B (Peak 115), stachysterone C (Peak
140), 25R-achyranthes bidentata (Peak 149), 25S-achyranthes
bidentata (Peak 153), 25R achyranthes dioscin (Peak 255), and
cyasterone (Peak 298) (Ma et al., 2021; Yang et al., 2021).

3.1.10 Other metabolites in HSD
Metabolites other than those mentioned above were also detected,

such as phthalides, nucleosides, and stilbenes. There were three
nucleosides identified in HSD. For example, Peak 19 was
unambiguously identified as adenosine by comparison with a
reference standard, giving precursor ions [M + H]+ at m/z 268.1039
(C10H13N5O4) and formed ions atm/z 136.0619 [M+H-C5H8O4]

+ and
119.0356 [M + H-C5H8O4-NH3]

+. Peak 166 (tetrahydroxystilbene
glucoside) displayed a precursor ion [M-H]− at m/z 405.1194
(C20H22O9) and yielded the ion at m/z 243.0663 (M-H-Glc)−,
225.0559 (M-H-Glc-H2O)

−, 215.0714 (M-H-Glc-CO)−, 137.0244
(M-H-Glc-C7H5O)

−, and 93.0346 (M-H-Glc-C7H5O-CO)
−.

For the phthalides, two reference standards—ligustilide (Peak
333) and levistilide A (Peak 362) —were identified. Levistilide A
produced a deprotonated molecular ion atm/z 381.2060 (C24H28O4)
in the positive ion mode and diagnostic ions at m/z 191.1068 (M +
H-C12H14O2)

+, 173.0962 (M + H-C12H14O2-H2O)
+, 149.0598 (M +

H-C12H14O2-C3H6)
+, and 135.0441 (M + H-C12H14O2-

C4H8)
+(Supplementary Figure 15). Due to the ring-opening

reaction, the fragment ions at m/z [M + H-H2O]
+ and [M +

H-CO]+ could be regarded as characteristic. Based on the similar
fragmentation pathways, other peaks were identified as
senkyunolide J (Peak 95), 4,7-dihydroxy-3-butylphthalide (Peak
143), senkyunolide F (Peak 161), butylidene phthalide (Peak
232), senkyunolide (Peak 235), butylphthalide (Peak 266),
senkyunolide A (Peak 309), and senkyunolide P (peak 353).
Detailed information on other peaks is summarized in
Supplementary Tables S1 and S2 (Liu et al., 2009; Wang et al.,
2023; Zhang et al., 2014; Zhu et al., 2014).

3.2 Sequential metabolism experiments
of HSD

3.2.1 Stability in artificial gastric juice
Artificial gastric juice stability is a crucial determinant of the

subsequent potency and efficacy of the composition since
metabolites with high lipophilicity or low solubility could be
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degraded by metabolic enzymes in the stomach after oral
administration. The stability results were obtained by comparing
the MS/MS spectra before and after incubation. Notably, 178 peaks
were identified from the sample after incubation, indicating that
HSD was found to be quite stable upon digestion of gastric juice
(Supplementary Table S3). It is also an essential prerequisite for
pharmacodynamic studies.

3.2.2 Identification of absorbed metabolites
Metabolites are mostly absorbed, metabolized in the small

intestine and liver, and excreted in the urine and feces after
passing through the stomach. In this study, in order to obtain a
comprehensive dynamic process of HSD, different but
complementary surgical methods were performed to collect
plasma samples (intestinal metabolism, liver metabolism, and
systemic metabolism), urine samples, and fecal samples. The
results showed that 135 metabolites were absorbed into plasma,
indicating that they could be potential functional metabolites. In
addition, 102 peaks were from the fecal sample and 91 were from the
urine sample. Detailed information is summarized in
Supplementary Table S3.

3.3 Deep learning model analysis

3.3.1 Validation of the deep learning model
We used the drugBAN model to predict senolytic activities; the

code is available on GitHub (Liu et al., 2023). We trained the model
using our collected senolytic dataset by training and testing on
80–20 splits. A value of 0.9772 was found for auPRC, which
measures the model’s ability to correctly identify a senolytic
compound. As a result, the model could identify senolytic
metabolites in our training set more accurately than a random
initial model (auPRC of 0.1313). Figure 4 shows the precision-recall
curve. Different benchmarks of model performance, such as

AUROC and F1 score, indicated better performance for the
DrugBAN model (Table 2).

3.3.2 Prediction of deep learning model
Our model performed well, so we retrained it using our entire

dataset to predict the senolytic activities of metabolites in HSD. We
selected several different aging protein targets to pair with each
metabolite in HSD and predicted the interaction score. The
metabolites exhibited a range of prediction scores, from 0.08 to
1, indicating that our model is capable of discriminating between
actives and inactives. Detailed information on the top 40 is
summarized in Supplementary Table S4.

3.4 Bioactivity validation

3.4.1 Candidatemetabolites improve the viability of
D-gal-induced PC12 cells

We used the CCK8 method to assess the cytotoxicity and
protective effects of five metabolites on senescent PC12 cells. In
Figure 5B, no significant cytotoxicity was recorded at various
concentrations. Proliferative effects on PC12 cells in a dose-
dependent manner were observed, especially for ginsenoside Rc
and jionoside B1.

High levels of D-gal could generate oxidative stress by producing
ROS and accelerate cell aging. A model of aging based on D-gal is a
widely used anti-aging study; we used cells induced by D-gal to study
the protective effect of metabolites. As shown in Figure 5A, 40, 60,
and 80 mg/mL of D-gal significantly reduced cell viability compared
with the control group in a dose-dependent manner. Of note, 60 mg/
mL of D-gal decreased cell viability by 45.81% within 24 h (p < 0.01).
This concentration was chosen for further investigation. As shown
in Figure 5C, compared with the model group, the candidate
metabolites could protect cells from D-gal-induced decrease in
cell viability. Jionoside B1, although the degree is not statistically
significant, also showed some extent of protective effect
(approximately 62.07–65.72%).

3.4.2 Impact of candidate metabolites on D-gal-
induced oxidative stress in PC12 cells

It is well-accepted that aging is associated with oxidative
stress—a pivotal mechanism that drives cell senescence.
Therefore, the markers of oxidative stress—LDH, MDA, SOD,
and CAT—were determined in the aging cell model. As

FIGURE 4
Precision–recall curve of the trained DrugBAN and the initial
random model.

TABLE 2 Model performance.

Metric Trained model Random initial model

AUROC 0.9901 0.5450

AUPRC 0.9772 0.1313

F1 score 0.9729 —

Sensitivity 0.9865 —

Specificity 0.9600 —

Accuracy 0.9832 —

Threshold 0.2706 —
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presented in Figure 6, the model group increased the production of
MDA and LDH and decreased the activities of SOD and CAT
compared with the control group (p < 0.01). However, LDH and
MDA levels were dose-dependently reduced after treatment with

metabolites (p < 0.05). The antioxidant activity of SOD and CAT
was also increased compared to the model (p < 0.05). Overall, these
results indicate that metabolites significantly alleviate oxidative
stress in cellular aging models.

FIGURE 5
Effects of candidates on D-gal-induced PC12 cell senescence. (A) Impact of D-gal treatments on PC12 cells for 6, 12, 24, and 48 h. (B)Cell viability of
PC12 cells treated with candidates. (C) Cell viability of senescence PC12 cells treated with candidates.
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FIGURE 6
Effects of candidates on oxidative stress indicators (SOD, LDH, CAT, and MDA) in PC12 cells. (A) Ginsenoside Rg1. (B) Ginsenoside Rg2. (C)
Ginsenoside Rc. (D) Pseudoginsenoside F11. (E) Jionoside B1. Data are presented as mean ± SD from each group. *p < 0.05, **p < 0.01, and ***p <
0.001 were contrasted with control and model groups.
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FIGURE 7
Effects of candidates on the ROS level and cell senescence in PC12 cells. (A) Representative photographs of ROS levels in PC12 cells, Scale bar =
50 μm. (B) Typical photographs of SA-β-gal-stained PC12 cells. Scale bar = 50, 20 μm. (C)Mean fluorescence intensity of the ROS level. (D) Ratio of SA-β-
gal-stained cells. Data are presented as mean ± SD from each group. *p < 0.05, **p < 0.01, and ***p < 0.001 were contrasted with control and
model groups.
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3.4.3 ROS measurement and SA-β-gal
staining results

Given that increased ROS levels could induce senescence, we
performed a ROS assay to investigate the effects of metabolites on
the level of cellular ROS. As shown in Figures 7A and C, compared
with the control group the model group showed a 2.72-fold increase
in ROS content in senescent PC12 cells (p < 0.001). Notably,
pretreatment with 10 μM of metabolites could considerably
decrease ROS (p < 0.01), with the exception of jionoside B1.

A biomarker of cellular senescence is the upregulation of SA-β-gal
activity. SA-β-gal staining demonstrated that pretreatment with
metabolites could significantly decrease the proportion of SA-β-gal-
positive cells. As demonstrated in Figures 7B and D, 60mg/mL of D-gal
significantly induced senescence and increased the rate of SA-β-gal-
stained cells (p< 0.001), while administration of D-gal markedly
decreased the SA-β-gal staining rate by 5.48–9.72% (p < 0.01).

4 Discussion

Aging, a natural and complex life process, is primarily marked
by the gradual and inevitable deterioration of cells, tissues, and
organs, leading to impaired function and heightened risk of
mortality. The United Nations has predicted that by 2050, one in
six people worldwide will be 65 years of age or older (Cai et al., 2022).
Aging constitutes a significant risk factor for various diseases,
including metabolic, cardiovascular, and neurodegenerative
conditions (Kennerdell et al., 2018). Both the public and
academic community have shown significant interest in aging.

Although the molecular mechanisms underlying aging remain a
mystery, the free radical theory of aging (FRTA) has long been one of
themost influential theories for elucidating themechanisms underlying the
aging process. According to FRTA, the accumulation of oxidative damage
caused by excessive ROS, byproducts of normal aerobic metabolism, is
among the primary contributors to aging (Bratic and Larsson, 2013;
Harman et al., 1956). In summary, an imbalance between the
generation and elimination of ROS leads to severe oxidative damage in
various cell types, accelerating the aging process. As a common nutrient
and reducing sugar,D-galactose is frequently used to establish agingmodels
in vitro and in vivo. Normally, D-gal can bemetabolized into glucose by the
liver. However, at higher concentrations, it is converted to aldose and
hydroperoxide by galactose oxidase, leading to the generation of ROS,
changes in cell osmotic pressure, cell swelling, andmembrane lipid damage
(signs of aging) (Azman and Zakaria, 2019). Additionally, D-gal also could
induce protein glycation reactions, ultimately forming advanced glycation
end products (AGEs), the accumulation of which is a common feature of
many age-related neurodegenerative diseases. Thus, PC12 senescent cells
induced by D-gal were selected as a model for an activity assay.

AMPK is a highly conserved intracellular energy sensor present in all
eukaryotic organisms, and it plays a pivotal role in cell senescence,
oxidative stress, and inflammatory response. Several studies have
demonstrated that activation or overexpression of AMPK can extend
the lifespan of C. elegans, nematodes, and aging mice. Notably, AMPK
has been found to activate peroxisome proliferator-activated receptor-
gamma coactivator, resulting in the expression of scavenging enzymes
(SOD, CAT) and an extended lifespan (González et al., 2020). Similarly,
Sirt6, a NAD + -dependent histone deacetylase, had similar protective
effects in oxidative stress and regulating longevity (López-Otín et al.,

2013). Consequently, a deep learningmodel was employed to screen five
candidates based on their interaction with AMPK and Sirt6.

SOD and CAT are pivotal antioxidant enzymes that maintain a
normal antioxidant–oxidant balance in the defense system, which could
convert superoxide to water and oxygen (Olson et al., 2018). MDA is a
common product of unsaturated lipid degradation caused by ROS and
is considered a marker of aging (Zhang et al., 2022). In this study,
PC12 cells induced byD-gal exhibited decreased SODandCAT activity,
along with increased MDA levels. Nevertheless, treatment with
candidate metabolites resulted in significant antioxidant activity. The
SA-β-gal staining experiment showed that the number of positive cells
was significantly lower than in the model group. The intracellular ROS
level also exhibited similar results. In addition, we measured the release
of LDH and NO content. The activity of LDH was also decreased after
incubation with metabolites, indicating the protective effect on intact
membranes. However, in the NO assay, although there was a slight
downward trend was observed between the model and treatment
groups, it was not statistically significant (Supplementary Figure 18).

We also conducted metabolic sites based on sequential metabolism
experiments. In this study, we collected and tested six samples of HSD
both in vitro and in vivo, including gastric (metabolized by artificial gastric
juice), intestinal (metabolized by intestinal enzymes), liver (metabolized
by intestinal enzymes and liver), systemic sample (oral route of
administration), urine, and fecal samples. Compared to identifying
metabolites solely based on oral administration (i.e., a systemic
sample), accurate identification of metabolic sites could provide a
comprehensive understanding of the metabolic profile, thus avoiding
omission of metabolites due to low oral bioavailability or content. At the
same time, it could serve to optimize dosage form and prodrug design.

The result of the in vitro stability experiment showed that all
metabolites were essentially stable and resistant to digestion in the
artificial gastric juice except for ginsenoside Rg2. However, only
ginsenoside Rg1 and Rc were detected in liver samples due to the
liver metabolism. No metabolites were detected in the systemic sample,
which may be attributable to the influence of intestinal microflora or
relatively low content. Interestingly, all metabolites were detectable in the
intestinal sample. This suggests that the five candidates could be absorbed
by small intestinal epithelial cells into the bloodstream. Typically,
multiple metabolites have been characterized in many cases as
undetectable, as they were completely metabolized. However, limited
detection capacity also plays a significant role. Sequential metabolism
experiments allowed us to mitigate false negative results. Consequently,
five candidates were selected for the efficacy study. In this study, HSD
was studied in detail for the first time, especially concerning metabolic
sites. Therefore, under the guidance of the 4R rules, we conducted a
single-dose investigation, as this study aligns with the characteristics of
the early-stage exploratory study. The early exploratory research phase is
characterized by initial exploration and understanding of new fields. This
study provided a preliminary assessment of the material basis of HSD,
which could offer guidance for subsequent in-depth research. More
importantly, by following these rules, the use of single-dose investigations
also allowed us to reduce the number of animals through an efficient
experimental design, demonstrating our commitment to ethical
responsibility, methodological precision, and effective research.

The complexity and variability of metabolites are hallmarks of
TCM (Li et al., 2016). Therefore, an efficient screening strategy is useful
to find metabolites from TCM. In the present study, a deep learning
model was employed to autonomously select five candidatemetabolites.
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Several other metabolites, including achyranthoside D and C and
ginsenoside F2, were also present. However, these were not chosen
for further study due to their pharmacokinetic profiles, partly
influenced by extensive metabolism in vivo. Nevertheless, innovative
design, synthesis of prodrugs, and drug delivery systems offer promising
avenues for the discovery of bioactive small molecules. Given that TCM
is a multi-component system, it is also of interest to explore the
synergistic effects of its metabolites, particularly in addressing aging,
which is influenced by complex mechanisms (Sun et al., 2019).

In this study, we employed a deep learning model to predict
potential anti-aging metabolites in HSD for the first time. Our deep
learning analysis yielded valuable biological insights by accurately
predicting the anti-aging activity of metabolites identified in our
research. Specifically, the model’s ability to accurately classify
metabolites based on their anti-aging properties highlighted its
potential for identifying drug candidates. By leveraging the
patterns and features learned from annotated data in PubChem,
our study demonstrated a promising approach to prioritizing
metabolites with therapeutic potential. However, we acknowledge
the limitations of our work, particularly the inherent weaknesses of
current deep-learning methodologies. These limitations include the
requirement for large and diverse datasets to ensure robust model
training, potential biases in dataset selection, and the interpretability
of complex models. Furthermore, while our approach shows
promise, additional validation and refinement will be necessary
to effectively translate these findings into clinical applications.

5 Conclusion

In this study, an integrated method involving a deep learning model
and sequential metabolism was used to describe the chemical profiles of
HSD both in vitro and in vivo and to screen potential anti-aging
metabolites, providing valuable references for the material basis of
HSD research. Additionally, the results of a bioactivity assay also
demonstrated that this integrated method could be an effective tool
for screening anti-agingmetabolites. First, 366metaboliteswere identified
or tentatively characterized in HSD. Then, based on the results of IPVS
and oral drug administration, we identified 135 metabolites absorbed in
plasma and the absorption process of HSD. A deep learning model and
bioactivity assessment assay were used to screen potential anti-aging
metabolites. Ginsenoside Rg1, Rg2, and Rc, pseudoginsenoside F11, and
jionoside B1 were selected as potential anti-aging metabolites. This
proposed approach could serve as a powerful tool for screening
potential anti-aging metabolites of botanical drugs.
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