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Agranulocytosis, induced by non-chemotherapy drugs, is a serious medical
condition that presents a formidable challenge in predictive toxicology due to
its idiosyncratic nature and complex mechanisms. In this study, we assembled a
dataset of 759 compounds and applied a rigorous feature selection process prior
to employing ensemble machine learning classifiers to forecast non-
chemotherapy drug-induced agranulocytosis (NCDIA) toxicity. The balanced
bagging classifier combined with a gradient boosting decision tree (BBC +
GBDT), utilizing the combined descriptor set of DS and RDKit comprising
237 features, emerged as the top-performing model, with an external
validation AUC of 0.9164, ACC of 83.55%, and MCC of 0.6095. The model’s
predictive reliability was further substantiated by an applicability domain analysis.
Feature importance, assessed through permutation importance within the BBC +
GBDT model, highlighted key molecular properties that significantly influence
NCDIA toxicity. Additionally, 16 structural alerts identified by SARpy software
further revealed potential molecular signatures associated with toxicity, enriching
our understanding of the underlying mechanisms. We also applied the
constructed models to assess the NCDIA toxicity of novel drugs approved by
FDA. This study advances predictive toxicology by providing a framework to
assess and mitigate agranulocytosis risks, ensuring the safety of pharmaceutical
development and facilitating post-market surveillance of new drugs.
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1 Introduction

Agranulocytosis, as a severe form of neutropenia, is classically defined by an absolute
neutrophil count <0.5 × 109/L. It has been reported that medications serve as the primary
trigger for agranulocytosis, accounting for 70%–97% of all cases (Garbe, 2007). Medication-
induced agranulocytosis can be categorized into two main types: one associated with
cytotoxic chemotherapy drugs, referred to as chemotherapy-induced agranulocytosis; and
the other linked to non-chemotherapeutic medications, known as idiosyncratic drug-
induced agranulocytosis or non-chemotherapy drug-induced agranulocytosis (NCDIA)
(Andrès and Maloisel, 2008).

Chemotherapy often triggers high rates of agranulocytosis in cancer patients,
demanding careful monitoring and prompt action. High-risk patients typically receive
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post-chemotherapy treatment with granulocyte colony-stimulating
factor (G-CSF) or granulocyte-macrophage colony-stimulating
factor (GM-CSF) to prevent, alleviate, and shorten
agranulocytosis, thereby reducing the risk of infection and fever
(Rattay and Benndorf, 2021). Conversely, non-chemotherapy drug-
induced agranulocytosis lacks early intervention and prevention
strategies due to the limited understanding of its mechanisms and
occurrence, presenting challenges in anticipating and averting
adverse reactions. Several studies have shown the annual
incidence of NCDIA ranges from 1.6 to 15.4 cases per million
population (Andres and Mourot-Cottet, 2017). The low incidence
does not mitigate the severity of NCDIA as a potentially life-
threatening adverse drug reaction. Patients affected by NCDIA
may initially be entirely asymptomatic but can rapidly progress
to severe complications such as pneumonia, septicemia, or septic
shock. In a single-center study involving 203 patients with NCDIA,
over 38% of cases exhibited life-threatening infections, such as
extensive pneumonia, septicemia, or septic shock, with 18.2%
necessitating intensive care (Andres et al., 2017).

Currently, various non-chemotherapeutic drugs have been
reported to potentially induce agranulocytosis (Curtis, 2017).
However, the precise mechanism underlying NCDIA remains
incompletely elucidated. Based on clinical observations and
laboratory research, two possible mechanisms have been
proposed: (1) drug-related immune-mediated destruction of
circulating neutrophils, such as pyrimethamine, amodiaquine and
flecainide; (2) direct toxic effects on bone marrow granulocyte
precursors, such as chlorpromazine, procainamide, dapsone, and
clozapine (Lorenzo-Villalba et al., 2020). Among these mechanisms,
an immune-mediated mechanism is considered the primary
pathway in NCDIA toxicity (Johnston and Uetrecht, 2015; Rattay
and Benndorf, 2021). Although the mechanisms behind
agranulocytosis induced by certain non-chemotherapeutic drugs
are somewhat understood, elucidating the precise mechanisms for
most non-chemotherapy drugs remains challenging. In clinical
practice, some drugs’ metabolites rapidly undergo reactions after
formation, resulting in low titers of antibodies to metabolites that are
difficult to detect in tests. Furthermore, the influence of genetic
polymorphisms may cause drug metabolites to form only under
specific disease-related conditions in certain individuals, thereby
contributing to a lower and less predictable incidence of
agranulocytosis induced by non-chemotherapeutic drugs (Rattay
and Benndorf, 2021). Hence, as of now, there has not been an
established systemic assessment model, either in vivo or in vitro, for
studying non-chemotherapy drug-induced agranulocytosis. Due to
the aforementioned constraints and the rigorous participant
inclusion criteria in drug clinical trials (ranging from Phase I to
Phase III), instances of NCDIA are typically only identified during
post-marketing adverse reaction monitoring. Therefore, there is an
urgent need to develop new models to evaluate the toxicity of non-
chemotherapy drug-induced agranulocytosis, particularly during
the drug molecule design phase and early clinical trials.

Recently, computational predictive modeling approaches have
emerged as rapid and cost-effective alternatives to traditional
experimental methods for assessing drug toxicity (Yang et al.,
2018; Vo et al., 2020; Uesawa, 2024). These methodologies are
capable of predicting various adverse effects, including
hepatotoxicity, nephrotoxicity, cardiotoxicity, teratogenicity,

respiratory toxicity, among others (Zhang et al., 2017; Cai et al.,
2018; Jaganathan et al., 2021; Shi et al., 2021; Jaganathan et al., 2022).
Importantly, these models have demonstrated satisfactory
performance, offering promising avenues for toxicological
research and drug development. Computational toxicity
assessment presents notable advantages, including rapid
processing and prediction of large drug datasets, preemptive
toxicity evaluation prior to compound synthesis, and the
derivation of inherent rules of drug toxicity from a diverse array
of molecules, thus facilitating mechanistic studies (Shi et al., 2021).
However, to our knowledge, no studies have yet explored in silico
models for NCDIA toxicity evaluation.

In this study, we aim to pioneer the development of a machine
learning model for predicting NCDIA toxicity in vitro. Following a
meticulous process of data verification and preparation, we
assembled a comprehensive dataset comprising 759 distinct
compounds. Various feature selection techniques were employed
to identify the optimal subset of features associated with NCDIA
toxicity. To address data imbalance and enhance the robustness and
accuracy of toxicity prediction, ensemble classification models were
constructed using nine different ensemble machine learning
methods. Internal 10-fold cross-validation and external validation
were employed to thoroughly assess the predictive capability of the
established models. Additionally, the applicability domain (AD) was
defined to verify the reliability of the best model. Furthermore,
permutation importance and structural alert analysis were
conducted to provide insightful glimpses into the mechanism
underlying NCDIA toxicity. Finally, we extended our model to
evaluate the risk of agranulocytosis associated with novel drugs
approved by FDA from 2019–2024, thus enhancing its utility in
pharmaceutical safety assessment. The overall workflow of this study
is depicted in Figure 1.

2 Materials and methods

2.1 Data collection and preparation

Non-chemotherapy drugs associated with agranulocytosis were
compiled from several reviews as the positive dataset (Andersohn
et al., 2007; Garbe, 2007; Andrès and Maloisel, 2008; Andres and
Mourot-Cottet, 2017; Andres et al., 2019; Coates, 2023). A listing of
all case reports of agranulocytosis included in the 2007 systematic
review is available at: www.adverse-effects.com/agranulocytosis/
case_reports.html (Andersohn et al., 2007). The negative dataset
was constructed by extracting drugs devoid of neutropenia or
agranulocytosis-related toxicity from the Side Effect Resource
(SIDER) dataset, with further exclusion of chemotherapy drugs
based on their ATC codes (Kuhn et al., 2016). To ensure data
quality, the collected drugs underwent meticulous verification and
preparation through the following steps: (1) elimination of
biological drugs, mixtures, inorganic, and organometallic
compounds; (2) processing using the Molecular Operating
Environment software (MOE, version 2015.10), which included
protonation of strong bases, deprotonation of strong acids,
removal of inorganic counter ions, and addition of explicit
hydrogen via the “wash” function; (3) exclusion of compounds
with molecular weights below 30 or above 1,000; (4) elimination
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of duplicate or contradictory molecules based on label and
InChIKey. Finally, a total of 759 compounds were obtained,
consisting of 219 NCDIA toxicants and 540 NCDIA non-
toxicants. This dataset was randomly partitioned into a training
set, comprising 607 compounds, and an external validation set,

comprising 152 compounds, at an 8:2 ratio. Detailed information on
the training and external validation sets can be found in the
Supplementary Table S1. Table 1 presents a concise summary of
the datasets.

2.2 Calculation of molecular descriptors and
fingerprints

To quantify molecular properties and represent molecular
structures, we employed three sets of molecular descriptors and
twelve sets of molecular fingerprints. Details of the molecular
descriptor and fingerprint sets can be found in Table 2. One-
and two-dimensional descriptors of MOE, DS, and RDKit were
computed using MOE software (version 2022.02), Discovery Studio
2019 software, and the RDKit package (version 2022.9.5) in Python,
respectively. All fingerprints were calculated using PaDEL-
Descriptor software (version 2.21).

2.3 Data preprocessing and feature selection

Data preprocessing and feature selection are pivotal stages in
machine learning modeling, playing a crucial role in enhancing data
quality, reducing computational complexity, and improving learning
capacity by removing irrelevant, noisy, and redundant information. The
workflow of this procedure is illustrated in Figure 2. In the data
preprocessing pipeline, missing or null values were initially excluded
from the dataset. Subsequently, the remaining feature values underwent
z-score normalization, centering them around their mean and scaling

FIGURE 1
Illustration of the overall workflow.

TABLE 1 Summary of the datasets utilized in this study.

Datasets NCDIA Toxicants NCDIA Non-Toxicants Total

Training set 181 426 607

External validation set 38 114 152

Total 219 540 759

TABLE 2 Details of the molecular descriptor and fingerprint sets.

Type Descriptor/Fingerprint Set Bits

Molecular descriptors MOE 209

DS 440

RDKit 208

Molecular fingerprints CDK fingerprint (FP) 1,024

CDK extended fingerprint (ExtFP) 1,024

CDK graph only fingerprint (GraphFP) 1,024

Estate fingerprint (EstateFP) 79

MACCS fingerprint (MACCSFP) 166

Pubchem fingerprint (PubchemFP) 881

Substructure fingerprint (SubFP) 307

Substructure fingerprint count (SubFPC) 307

Klekota-Roth fingerprint (KRFP) 4,860

Klekota-Roth fingerprint count (KRFPC) 4,860

Atom Pairs 2D fingerprint (AP2DFP) 780

Atom Pairs 2D fingerprint count (AP2DFPC) 780
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them by their standard deviation (only for descriptors). Following this, a
variance threshold algorithmwas applied to eliminate features with zero
variance, effectively reducing the dataset’s dimensionality. Additionally,
to mitigate redundancy in the feature space, molecular descriptors
exhibiting a mutual correlation exceeding 0.9 were pruned by
discarding one of the highly correlated features.

Following the data preprocessing stage, we employed three
distinct feature selection techniques—filtering, wrapping, and
embedding methods—to streamline the feature space and identify
the most informative subset of features. (1) Filter method: This is a
feature selection technique independent of machine learning
algorithms, primarily relying on statistical test scores and
correlation metrics to filter features. In this study, we utilized the
F-test and mutual information (MI) technique to eliminate irrelevant
features concerning the label. Specifically, the F-test selected features
significantly correlated with the label (p-value less than 0.05), while
the mutual information technique selected features with mutual
information values greater than 0 (Bommert et al., 2020). (2)
Wrapper method: In addition to filter methods, a wrapper method
was employed to identify the best-performing subset of features
tailored to the specified machine learning algorithm. We utilized
the recursive feature elimination with cross-validation (RFECV)
technique to systematically select the most salient features (Guyon
et al., 2002; Darst et al., 2018). This involved iteratively eliminating the
least important features while training the balanced random forest
(BRF) classifier (Chen et al., 2004). (3) Embedding method:
Furthermore, we employed an embedded tree-based feature
selection method, specifically utilizing the BRF model. This
method leverages the feature importance scores obtained from the
trained model to identify significant features. In our study, we set a
threshold for the trained model’s feature importance to be greater
than or equal to 0.003.

Data preprocessing and feature selection procedures were
conducted using Scikit-learn (version 1.1.3), a Python-based
machine learning library (Pedregosa et al., 2011).

2.4 Ensemble learning algorithms for
handling data imbalance

The distribution of classes in the training set is imbalanced, with
a limited number of instances of NCDIA toxic drugs. This imbalance
presents a challenge for classification modeling, potentially leading
to bias towards the majority class and poor performance on the
minority class (Krawczyk, 2016). To tackle this issue, we utilized
three ensemble learning methods offered by the imbalanced-learn
package (version 0.11.0) in Python, namely, the balanced random
forest classifier, balanced bagging classifier, and easy ensemble
classifier (Maclin and Opitz, 1997; Chen et al., 2004; Liu et al.,
2009; Lemaître et al., 2017).

2.4.1 Balanced random forest classifier
The balanced random forest classifier (BRF) extends the random

forest algorithm to address the challenge of class imbalance. In the
balanced random forest approach, each decision tree within the
ensemble is constructed using a modified sampling technique.
Initially, bootstrap samples are drawn from the minority class.
Subsequently, an equal number of instances are randomly drawn
with replacement from the majority class, resulting in a balanced
sample from which each tree is derived. Predictions are made
through a majority vote. BRF effectively combines the down-
sampling technique for the majority class with the concept of
ensemble learning, artificially adjusting the class distribution to
ensure equal representation in each tree.

2.4.2 Balanced bagging classifier
The balanced bagging classifier (BBC) is derived from the

bagging algorithm and is designed to address imbalanced class
distributions in training samples used for training each base
classifier. In BBC, multiple base classifiers are trained using
bootstrap sampling, where samples are randomly selected with
replacement from the original dataset. Throughout the sampling

FIGURE 2
The flowchart of data preprocessing and feature selection.
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process, BBC guarantees that each bootstrap sample contains an
equal number of instances from each class. This balancing technique
ensures that the base classifiers learn from both classes equally,
thereby enhancing their capability to handle imbalanced data.

2.4.3 Easy ensemble classifier
The easy ensemble classifier (EEC) operates by generating

numerous subsets of the majority class. It trains an ensemble of
classifiers using adaptive boosting (AdaBoost) on each of these
subsets, and subsequently combines the predictions of all the
weak classifiers to generate the final output. This methodology
ensures that each base classifier effectively learns the
characteristics of the minority class.

These ensemble methods offer a more balanced representation
of both classes without discarding any samples, unlike
undersampling and oversampling techniques, which may lead to
the loss of valuable information and overfitting, respectively (Jian
et al., 2016; Megahed et al., 2021). Additionally, they leverage the
ensemble approach by integrating the predictions of multiple base
classifiers, thereby enhancing the robustness and accuracy of the
classification model (Feng et al., 2018; Yang et al., 2020).

2.5 Model development and optimization

To develop classification models for predicting NCDIA toxicity,
nine machine learning models were developed as follows: balanced
random forest (BRF), easy ensemble classifier (EEC), and balanced
bagging classifier (BBC) with base estimators consisting of extreme
gradient boosting (XGBoost), gradient boosting decision tree
(GBDT), light gradient boosting machine (LightGBM), support
vector machine (SVM), multi-layer perceptron (MLP), k-nearest
neighbors (KNN) and logistic regression (LR) (Cover and Hart,
1967; Murtagh, 1991; Boser et al., 1992; Maclin and Opitz, 1997;
Friedman, 2001; Chen et al., 2004; Liu et al., 2009; Hosmer Jr et al.,
2013; Chen and Guestrin, 2016; Ke et al., 2017). The base classifiers
GBDT, SVM, MLP, KNN, and LR were implemented using the
respective modules from Scikit-learn (version 1.1.3):
“GradientBoostingClassifier,” “SVC,” “MLPClassifier,”
“KNeighborsClassifier,” and “LogisticRegression.” LightGBM was
implemented using the “LGBMClassifier” module from the
lightgbm package (version 3.3.5), and XGBoost was implemented
using the “XGBClassifier” module from the xgboost package
(version 1.6.1).

Tuning the parameter values of machine learning algorithms is a
highly effective approach for enhancing their performance. In this
study, we utilized Hyperopt (version 0.2.7), a python package that
employs the tree-structured parzen estimator (TPE) method, to
optimize the hyperparameters of the algorithms (Bergstra et al.,
2013). The performance of each model was assessed using the
matthews correlation coefficient (MCC) metric to determine the
optimal parameters.

2.6 Model validation and evaluation metrics

In this study, both internal and external validations were
utilized to evaluate the predictability and reliability of the

developed models. Internal validation was performed using a
10-fold cross-validation method, while external validation
involved assessing the model’s predictions against an
independent external validation set. Various statistical
parameters were employed to evaluate the model’s
performance, including accuracy (ACC), sensitivity (SEN),
specificity (SPE), and the matthews correlation coefficient
(MCC). These parameters are defined as follows:

ACC � TP + TN
TP + TN + FN + FP

SEN � TP
TP + FN

SPE � TN
TN + FP

MCC � TP × TN − FP × FN
������������������������������������
FP + TN( ) FP + TP( ) FN + TN( ) FN + TP( )√

where true positive (TP), true negative (TN), false positive (FP),
and false negative (FN) represent the counts of correctly
identified NCDIA toxicants, correctly identified NCDIA non-
toxicants, falsely identified NCDIA toxicants, and falsely
identified NCDIA non-toxicants, respectively. SEN refers to
the prediction accuracy for NCDIA toxicants, while SPE
represents the prediction accuracy for NCDIA non-toxicants.
The MCC serves as a suitable metric for evaluating the
effectiveness of binary classifications, especially when dealing
with imbalanced datasets. It ranges from −1 to 1, with a value of
1 indicating perfect prediction, 0 indicating random prediction,
and −1 indicating complete disagreement in prediction (Chicco
and Jurman, 2020). Additionally, we constructed a receiver
operating characteristic (ROC) curve to visually represent the
classification model’s performance. The ROC curve illustrates the
model’s ability to differentiate between the two classes by
adjusting the classification threshold systematically. It plots
the true positive rate (sensitivity) against the false positive rate
(1-specificity) at various classification thresholds. Moreover, we
calculated the area under the ROC curve (AUC) to provide a
comprehensive evaluation of the model’s capacity to classify
positive and negative instances, even in the presence of data
imbalance. A perfect classifier achieves an AUC value of 1,
indicating optimal performance, while a completely random
classifier yields an AUC value of 0.5, indicating no
discriminatory ability (Majnik and Bosnić, 2013; Halimu
et al., 2019).

2.7 Applicability domain definition

According to the principles outlined by the Organization for
Economic Co-operation and Development (OECD) for SAR
models, a precise definition of the applicability domain (AD) is
crucial (Co-operation and Development, 2014). Defining the AD of
a predictive model is essential for assessing its reliability and
ensuring that the model’s predictions are valid only for
compounds falling within this specified domain. In our study, we
utilized the Euclidean Applicability Domain 1.0 software to
characterize the model’s AD (Kar et al., 2018). This software
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employs the euclidean distance method, a commonly used technique
in AD, to quantify compound similarity. By computing the
normalized mean distance score of drug molecules in the training
set, we established an AD boundary ranging from 0 to 1, with
0 indicating the least diversity and 1 indicating the highest diversity
among compounds in the training set. If a drug molecule’s
normalized mean distance score falls within this range defined by
the training set, it indicates that the molecule is within the model’s
AD, and the prediction results are considered reliable. Conversely, if
the score falls outside this range, the prediction results are deemed
unreliable.

2.8 Structural alerts analysis

To delve deeper into a pivotal structural fragment associated
with NCDIA toxicants, we utilized SARpy software to identify
structural alerts (SAs) responsible for this toxic effect (Ferrari
et al., 2013). In essence, SARpy autonomously extracts sets of
rules by systematically generating and selecting substructures
based solely on their prediction performance on a designated
dataset, without any prior knowledge. The statistical parameter
employed to ascertain the precision of a fragment in predicting
the activity under investigation is the likelihood ratio (LR),
computed for each SA as follows:

LR � TP
FP

×
negatives
positives

True positive (TP) represents the count of correctly identified
NCDIA toxicants, while false positive (FP) represents falsely
identified NCDIA toxicants. “Negatives” and “positives” refer to
the number of non-toxic and toxic compounds present in the
dataset, respectively. We executed SARpy on the entire dataset to
comprehensively extract SAs for NCDIA toxicity. In the SARpy
implementation, the atom number was confined between 2 and 18,
the precision was set to OPTIMAL, the minimum occurrences were
set to 5, and only positive rules were extracted.

3 Results and discussion

3.1 Data analysis

After meticulous filtering and preparation, we extracted
219 NCDIA toxicants and 540 NCDIA non-toxicants from
literature sources and the SIDER dataset, respectively. To develop
a robust model, we analyzed the diversity of drug molecules in both
the training and external validation sets. We investigated the
chemical space distribution by calculating molecular weight and
AlogP (octanol/water partition coefficient), as depicted in Figure 3.
The molecular weight values varied between 58.08 and 995.20, while
AlogP values ranged from −14.99 to 10.25. From the scatter diagram
distributions, it can be inferred that the two separate sets share a
similar chemical space.

Moreover, in order to investigate the chemical diversity of the
dataset utilized in this study, we computed the Tanimoto similarity
index based on ECFP_4 fingerprints, yielding an average similarity
of 0.033. A lower Tanimoto similarity index indicates a higher
degree of structural diversity among the molecules. The heatmap
illustrating the distribution of the similarity index for all compounds
is presented in Figure 4. Predominantly blue, the heatmap suggests
substantial structural diversity across the entire dataset.

3.2 Selection of optimal descriptors and
fingerprints

In this study, we evaluated various feature descriptors to
determine the optimal one for constructing a high-performing
NCDIA prediction model. We computed MOE, DS, RDKit
molecular descriptors, and 12 types of fingerprints, as detailed in
Table 2. All molecular descriptors and fingerprints underwent
feature preprocessing, involving the removal of null values,
redundancy and irrelevant features. For molecular descriptors,

FIGURE 3
Chemical space distribution of compounds in the training and
external validation sets.

FIGURE 4
Heat map illustrating the molecular similarity of the molecules
within the entire dataset, plotted by Tanimoto similarity index
calculated using ECFP_4 fingerprints. The x-axis and y-axis represent
the number of molecules utilized in the dataset.
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after preprocessing, we employed two filtering methods (F-test and
MI) as well as wrapping (RFECV) and embedding techniques to
conduct feature selection on individual descriptors and combined
descriptor sets. For molecular fingerprints, only feature
preprocessing was performed. To evaluate the efficacy of the
selected descriptors and fingerprints, these feature selection
approaches were integrated with a BRF classifier and assessed
using the MCC metric.

The number of descriptors selected by each individual feature
selection approach, along with a comparison of their performance, is
presented in Supplementary Table S2. Table 3 displays the optimal
descriptor subset selected from each set and their corresponding
prediction performance results. For molecular descriptors, the BRF
classifier utilizing the combined descriptor set of DS and RDKit,
consisting of 237 features (DS + RDKit_237) achieved solely
through feature preprocessing, demonstrates the highest
performance in terms of the MCC metric (0.5263). This subset is
considered the optimal feature subset. The DS + RDKit_237 feature
subset is further detailed in Supplementary Table S3. Following
closely behind is the combined descriptor set of MOE and RDKit,
comprising 196 descriptors (MOE + RDKit_196) after MI feature
selection, with an MCC value of 0.5252. Overall, models utilizing
molecular descriptors as features demonstrate superior performance
compared to those employing molecular fingerprints. However,
among the molecular fingerprints, the SubFPC-based model

shows the best performance, with an MCC value of 0.5224 and
the highest AUC value among all models at 0.8459. All three feature
subsets exhibit AUC values surpassing 0.84 and MCC values
exceeding 0.52. Given their comparable performance, these three
feature subsets are selected for constructing subsequent ensemble
machine learning models.

3.3 Prediction performance evaluation of
ensemble learning classification models

To address the inherent data imbalance in our dataset and
enhance the robustness and accuracy of our classification model,
we developed nine ensemble machine learning models: BRF, EEC,
and BBC with base estimators consisting of XGBoost, GBDT,
LightGBM, SVM, MLP, KNN, and LR. Additionally, we
employed Hyperopt to fine-tune the hyperparameters of the nine
constructed machine learning models, aiming to identify the most
effective configurations based on the MCC metric as our evaluation
benchmark. The performance of the nine ensemble machine
learning models for the three optimal feature subsets in 10-fold
cross-validation is presented in Table 4.

For the DS + RDKit_237 feature subset, it clearly indicates
that the BBC + LR classifier exhibits poor performance across all
metrics. Following closely is the BBC + KNN classification

TABLE 3 Optimal feature subsets and prediction performance results.

Feature Set Optimal no. Of Descriptors AUC ACC (%) SEN (%) SPE (%) MCC

DS 100a 0.8301 77.11 80.10 75.84 0.5203

MOE 123b 0.8264 76.94 79.89 75.68 0.5178

RDKit 59a 0.8225 75.95 82.61 73.11 0.5194

DS + MOE 205b 0.8394 76.79 80.58 75.18 0.5170

DS + RDKit 237b 0.8446 76.77 82.36 74.40 0.5263

MOE + RDKit 196c 0.8429 76.28 83.85 73.07 0.5252

MOE + DS + RDKit 328b 0.8288 76.79 78.77 75.94 0.5093

FP 1019b 0.7906 71.68 76.50 69.63 0.4269

ExtFP 1007b 0.7936 71.19 75.82 69.22 0.4173

GraphFP 969b 0.7674 70.53 71.74 70.02 0.3810

EstateFP 41b 0.7869 72.52 72.39 72.57 0.4191

MACCSFP 133b 0.8149 75.46 77.67 74.52 0.4814

PubchemFP 391b 0.8061 73.99 78.03 72.28 0.4604

SubFP 127b 0.8327 75.13 77.86 73.97 0.4797

SubFPC 125b 0.8459 76.10 83.06 73.14 0.5224

KRFP 1149b 0.8046 74.65 75.51 74.28 0.4666

KRFPC 1084b 0.8209 74.64 78.39 73.04 0.4758

AP2DFP 263b 0.7687 71.67 67.40 73.49 0.3795

AP2DFPC 241b 0.7791 71.49 75.04 69.99 0.4137

aFeature selection with RFECV.
bFeature preprocessing by removing null values, redundancy and irrelevant features.
cFeature selection with MI technique.
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method. With the exception of these two models, all others
achieve a model accuracy exceeding 76%, MCC above 0.50,
and an area under the ROC curve greater than 0.80. In terms
of 10-fold cross-validation, the BBC + GBDT model surpasses all
other classification models, boasting an ACC of 80.08% and MCC
of 0.5557. Additionally, it achieves an AUC of 0.8438, ranking
second among the models with only marginal difference, just
behind the BRF model’s 0.8446. While BRF exhibits the best
performance in terms of AUC (0.8446) and SEN (82.36%), its SPE
is only 74.40%, resulting in a computed MCC value of 0.5263. On
the other hand, BBC + SVM demonstrates the best performance
in terms of SPE, reaching 85.60%. However, its SEN performs
poorly, standing at only 64.33%. This suggests that this model’s
predictive ability for NCDIA toxicants is quite poor. Based on the

above analysis, for the DS + RDKit_237 feature subset, when
evaluating the composite model based on AUC, ACC, and
especially MCC, the BBC + GBDT model stands out as the
most promising candidate for optimal performance.

Overall, as indicated in Table 4, models utilizing the DS +
RDKit_237 feature subset demonstrate superior performance
compared to those using the MOE + RDKit_196 feature subset,
as well as the SubFPC-based model. Among the MOE + RDKit_
196 feature subset, the BRF classifier emerges as the best performer,
exhibiting an AUC of 0.8429, accuracy of 76.28%, and MCC of
0.5252 in 10-fold cross-validation. For the SubFPC-based models,
the BBC + GBDT model stands out as the top performer, achieving
an AUC of 0.8416, accuracy of 78.75%, and MCC of 0.5256.
However, it is worth noting that these two models exhibit a

TABLE 4 Comparison of different models for the three optimal feature subsets on 10-fold cross-validation.

Feature Subset Model Name 10-fold CV

AUC ACC (%) SEN (%) SPE (%) MCC

DS + RDKit_237 BRF 0.8446 76.77 82.36 74.40 0.5263

EEC 0.8406 77.11 81.34 75.31 0.5239

BBC + XGBoost 0.8248 78.10 73.26 80.16 0.5151

BBC + GBDT 0.8438 80.08 75.78 81.90 0.5557

BBC + LightGBM 0.8295 79.58 75.91 81.14 0.5490

BBC + SVM 0.8089 79.25 64.33 85.60 0.5055

BBC + MLP 0.8185 76.61 77.17 76.37 0.5040

BBC + KNN 0.8281 74.64 78.86 72.85 0.4772

BBC + LR 0.7850 71.52 69.05 72.57 0.3926

MOE + RDKit_196 BRF 0.8429 76.28 83.85 73.07 0.5252

EEC 0.7806 71.99 73.27 71.45 0.4150

BBC + XGBoost 0.8058 76.28 75.11 76.78 0.4932

BBC + GBDT 0.8041 78.43 73.09 80.69 0.5183

BBC + LightGBM 0.8194 77.11 72.62 79.01 0.4965

BBC + SVM 0.7869 76.43 68.69 79.72 0.4679

BBC + MLP 0.8019 75.95 74.24 76.68 0.4839

BBC + KNN 0.8318 74.62 78.59 72.93 0.4732

BBC + LR 0.7666 69.70 72.68 68.43 0.3859

SubFPC BRF 0.8459 76.10 83.06 73.14 0.5224

EEC 0.7614 69.20 77.27 65.76 0.3963

BBC + XGBoost 0.8061 75.29 70.76 77.21 0.4547

BBC + GBDT 0.8416 78.75 73.71 80.89 0.5256

BBC + LightGBM 0.8237 76.78 74.28 77.84 0.4961

BBC + SVM 0.7764 73.96 68.31 76.36 0.4271

BBC + MLP 0.7909 75.80 68.64 78.84 0.4552

BBC + KNN 0.7963 73.79 71.38 74.82 0.4336

BBC + LR 0.7554 69.72 68.10 70.41 0.3588
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certain gap when compared to the BBC + GBDTmodel based on the
DS + RDKit_237 feature subset.

To evaluate the robustness and generalizability of the models,
the top eight performing models based on the MCC metric were
assessed using an external validation dataset consisting of 152 drug
compounds. As depicted in Table 5, the BBC + GBDT model based
on the DS + RDKit_237 feature set demonstrated superior
performance in terms of AUC (0.9164), ACC (83.55%), and
MCC (0.6095). The model accurately predicted 31 toxicants out
of 38, achieving a sensitivity (SEN) of 81.58%, and 96 non-toxicants
out of 114, resulting in a specificity (SPE) of 84.21%. Among all
models, the top four models, ranked according to MCC, are BBC +
GBDT, BBC + LightGBM, BRF based on DS + RDKit_237 feature
subset, and BBC + GBDT based on SubFPC. These models maintain
their respective rankings in both 10-fold cross-validation and the
external validation set, reaffirming their strong predictive
performance across different datasets. The detailed
hyperparameters for the top eight performing models, along with
their corresponding optimal parameter combinations, are provided
in Supplementary Table S4.

Therefore, the BBC + GBDT model, utilizing the DS +
RDKit_237 feature subset (hereafter referred to as the BBC +
GBDT model), consistently demonstrated its ability to effectively
discriminate between NCDIA toxicants and non-toxicants. This
performance consistency was observed not only in the training
set but also in the external validation set. Following thorough
analyses, we confidently designate the BBC + GBDT model with
the DS + RDKit_237 feature subset as the optimal classifier for
predicting NCDIA toxicity.

3.4 Applicability domain assessment

To further ensure the reliability of the prediction results, we
conducted an analysis of the applicability domain (AD) of the BBC +
GBDT model. The Euclidean distance method was selected for AD
assessment. The statistical outcomes derived from the AD analysis
are presented in Supplementary Table S5, offering insights into the
distribution and characteristics of the distance scores.
Complementing these findings, Figure 5 provides a visual
representation of the scatter plot, illustrating the distribution of

the normalized mean distance scores for molecules in the training
and external validation sets. Remarkably, all molecules in the
external validation set demonstrated normalized mean distance
scores within the predefined range of 0–1, as established by the
training set. This consistency across datasets underscores the
robustness and generalizability of the BBC + GBDT model’s
prediction. By rigorously defining and analyzing the applicability
domain, we bolster confidence in the reliability and accuracy of the
NCDIA toxicity prediction model, particularly when applied to
unseen data.

3.5 Assessing feature importance in the
ensemble model

The ensemble nature of the BBC + GBDTmodel limits its ability
to directly provide feature importance. This is because the BBC +
GBDT model aggregates predictions from multiple base estimators,
making it challenging to isolate the impact of individual features.
However, the permutation importance method offers a solution by
assessing feature importance effectively (Altmann et al., 2010). The
permutation importance method evaluates the significance of each
feature by measuring how shuffling its values affects the model’s

TABLE 5 Top eight performing models evaluation on the external validation set.

Feature Subset Model Name External Validation

AUC ACC (%) SEN (%) SPE (%) MCC

DS + RDKit_237 BRF 0.8842 76.32 86.84 72.81 0.5231

EEC 0.8446 72.37 73.68 71.93 0.4041

BBC + GBDT 0.9164 83.55 81.58 84.21 0.6095

BBC + LightGBM 0.8910 80.92 76.32 82.46 0.5445

MOE + RDKit_196 BRF 0.8691 76.97 78.95 76.32 0.4943

BBC + GBDT 0.8663 77.63 73.68 78.95 0.4804

SubFPC BRF 0.8909 76.97 84.21 74.56 0.5192

BBC + GBDT 0.8989 79.61 76.32 80.70 0.5229

FIGURE 5
Normalized mean distance scores of drug molecules in the
training and external validation sets.

Frontiers in Pharmacology frontiersin.org09

Huang et al. 10.3389/fphar.2024.1431941

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1431941


performance. This approach allows us to directly quantify the
contribution of each feature to the model’s accuracy, highlighting
the crucial role of permutation importance in identifying important
features despite the ensemble model’s complexity.

Therefore, this study employs the permutation importance
method provided by scikit-learn (version 1.1.3) to extract
important features from the BBC + GBDT model, aiding in
understanding how crucial molecular properties influence the
toxicity of non-chemotherapeutic drugs leading to
agranulocytosis. Figure 6 illustrates the top 10 important features
identified by the BBC + GBDT model, with detailed descriptions of
these features provided in Table 6.

These 10 important features can be categorized into four groups:
structural features (fr_Ar_N, N_Count), electronic state and charge
distribution (MinAbsEStateIndex, PEOE_VSA4, PEOE_VSA2,
VSA_EState9), lipophilicity (SlogP_VSA10, SlogP_VSA8,
MolLogP), and polar surface area (QED_PSA). The bar plots in
Figure 7 portray the distribution of these 10 features. We present not
only the median and interquartile range (IQR), but also the p-values
calculated through the Mann-Whitney U test. This statistical
approach was chosen due to the non-normal distribution of the

data associated with these features. The examination encompasses
both NCDIA toxicants and NCDIA non-toxicants, offering a
comprehensive understanding of their distribution patterns.

Among the 10 features, fr_Ar_N, MinAbsEStateIndex, PEOE_
VSA4, SlogP_VSA10, MolLogP, QED_PSA, SlogP_VSA8, and N_
Count exhibit significant differences (p-value <0.05) between
NCDIA toxicants and NCDIA non-toxicants. The lack of
statistical significance in the remaining two features (PEOE_
VSA2 and VSA_EState9) should be noted. It is crucial to
understand that in machine learning models, the absence of
statistical significance in a feature does not necessarily indicate its
insignificance (Shmueli, 2010). Even when lacking statistical
significance, a feature may still offer valuable insights within the
model, enhancing its performance and predictive capacity.
Therefore, evaluating feature importance should not solely rely
on statistical significance tests but also consider the impact and
contribution of features within the model.

Specifically, fr_Ar_N, recognized as the pivotal feature,
represents aromatic amines found in compounds like
procainamide and aminoglutethimide. These compounds have
been shown to cause agranulocytosis, as they undergo oxidation
within myeloperoxidase (MPO), leading to the formation of free
radical metabolites. This process conceptually results in the
generation of protein radicals within MPO. Consequently, the
free radical modification of MPO or other neutrophil proteins in
vivo potentially leads to the production of antineutrophil antibodies
and subsequent granulocyte death via immune-mediated
mechanisms (Siraki et al., 2007; Siraki et al., 2008; Siraki et al., 2010).

Nevertheless, it is imperative to acknowledge that NCDIA is a
complex endpoint. Explaining the mechanism of NCDIA toxicity
solely through individual simple chemical descriptors is challenging.
Considering the multifaceted nature of NCDIA, assessing its toxicity
involves intricate interactions beyond the scope of individual
descriptors.

3.6 Identification of structural alerts for
NCDIA toxicity

To explore the privileged fragments linked to NCDIA toxicity and
enhance our comprehension of NCDIA’s toxicological mechanisms
through toxicity fragments, we employ SARpy software to extract
structural alerts. As a result, our study has identified 16 molecular
fragments as potential structural alerts. Notably, among the 151 drug
structures with these fragments, 118 were NCDIA toxicants, achieving a
classification accuracy of 78.15%. It is intriguing to note that only
33 NCDIA non-toxicants contained any identified substructures,
indicating that 507 out of the 540 NCDIA non-toxicants (93.89%)
lacked such substructures. This stark contrast highlights the
significantly higher prevalence of these substructures in NCDIA
toxicants compared to non-toxicants, emphasizing their effectiveness
in distinguishingNCDIA toxicants. Therefore, these fragments could be
considered as the structural alerts responsible for NCDIA toxicity. All
the privileged substructures were listed in Table 7, arranged in
descending order of likelihood ratio.

Fragments 1 and 2 are primarily found in penicillin and
cephalosporin antibiotics, recognized for their role as haptens in
eliciting the production of autoantibodies and triggering immune

FIGURE 6
Top 10 important features identified by the BBC + GBDT model
via permutation importance.

TABLE 6 List of top 10 important descriptors with brief descriptions.

Descriptor Name Description

fr_Ar_N Number of aromatic nitrogens

MinAbsEStateIndex Returns a tuple of EState indices for the molecule

PEOE_VSA4 MOE Charge VSA Descriptor 4 (−0.20 ≤ × < −0.15)

PEOE_VSA2 MOE Charge VSA Descriptor 2 (−0.30 ≤ × < −0.25)

SlogP_VSA10 MOE logP VSA Descriptor 10 (0.40 ≤ × < 0.50)

MolLogP Wildman-Crippen LogP value

QED_PSA Polar surface area contribution to the QED score

SlogP_VSA8 MOE logP VSA Descriptor 8 (0.25 ≤ × < 0.30)

VSA_EState9 VSA EState Descriptor 9 (7.00 ≤ × < 11.00)

N_Count The number of nitrogen atoms
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reactions that lead to NCDIA (Johnston and Uetrecht, 2015). This
mechanism is well-established. In fact, the characteristics of NCDIA
toxicity closely align with an immune-mediated mechanism (Johnston
and Uetrecht, 2015; Rattay and Benndorf, 2021). Beta-lactam drugs

themselves are chemically reactive and do not require metabolic
activation to covalently bind to proteins. However, for many drugs,
triggering idiosyncratic drug reactions typically necessitates metabolism
into active metabolites. The formation of these metabolites is frequently

FIGURE 7
Distributions of top 10 important molecular properties of NCDIA toxicants and NCDIA non-toxicants.
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TABLE 7 Structural alerts associated with NCDIA toxicity identified by SARpy software.

Id Structure LR Representative Structure

1 inf

2 inf

3 inf

4 inf

5 39.45

6 19.73

7 14.79

8 11.1

(Continued on following page)
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implicated in inducing toxicity, usually through protein interactions
that result in covalent modification (Zhou et al., 2005). Protein
modification can lead to immune activation and initiate cellular
apoptosis or necrosis (Park et al., 2011). Many drugs associated with
NCDIA undergo rapid oxidation to form reactive metabolites via the
myeloperoxidase system, rather than through the cytochrome P450

(CYP) enzymes, which are primarily responsible for drugmetabolism in
the liver. This is because the concentration of CYP in neutrophils and
their precursors is relatively low. Drugs such as amodiaquine
(containing fragment 4), clozapine (containing fragment 6), and
aromatic amines (e.g., fragment 8) have been demonstrated to
trigger NCDIA toxicity through this mechanism (Siraki et al., 2010;

TABLE 7 (Continued) Structural alerts associated with NCDIA toxicity identified by SARpy software.

Id Structure LR Representative Structure

9 11.1

10 8.63

11 6.58

12 5.75

13 4.68

14 4.32

15 4.11

16 2.47
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Lobach, 2014; Sernoskie et al., 2023). The mechanism by which
aromatic amines induce NCDIA has been discussed in the
preceding section. In brief, the formation of protein radicals induced
by free radical metabolites of aromatic amines can be a potential toxicity
mechanism of drug-induced agranulocytosis. For amodiaquine and
clozapine, it has been established that they are respectively converted to
reactive nitrenium ions and quinone imines. These reactive metabolites
are believed to play a significant role in the development of
agranulocytosis associated with these drugs. Fragment 3, a
phenothiazine structure found in phenothiazine-derived
antipsychotics, is exclusively present in NCDIA toxicants. Studies on
chlorpromazine and thioridazine reveal that they undergo cytochrome
P450-mediated bioactivation in liver microsomes. Initially,
hydroxylation occurs at the seven-position of the phenothiazine
nucleus, followed by P450-catalyzed oxidation to form electrophilic
iminoquinonemetabolites, whichmay contribute to drug toxicity (Wen
andZhou, 2009). It is worth noting that the phenothiazine structure was
identified as a structural alert in drug-induced autoimmune diseases,
suggesting that drugs containing this substructure may potentially
mediate NCDIA toxicity through autoimmune mechanisms (Guo
et al., 2022). Both Fragment 5 and 7 contain acrolein substructure,
a highly reactive unsaturated aldehyde. Exposure to acrolein at the
cellular level can lead to a range of toxic effects, including DNA and
protein adduction, oxidative stress, mitochondrial disruption,
membrane damage, endoplasmic reticulum stress, and immune
dysfunction. Consequently, acrolein has been associated with various
disease states, such as spinal cord injury, multiple sclerosis, Alzheimer’s
disease, cardiovascular disease, diabetes mellitus, and neuro-, hepato-,
and nephro-toxicity (Moghe et al., 2015). Given the diversemechanisms
of acrolein-induced toxicity, it is not surprising that substructures
containing this moiety can induce NCDIA toxicity. Fragment 12,
known as hydrazine, is found in drugs like isoniazid, hydralazine,
and phenylhydrazine. Analysis of the in vivo biotransformation of
hydrazine derivatives indicates that these drugs readily produce free
radical species. These highly reactive radicals induce oxidative stress and
bind irreversibly to cellular macromolecules, leading to the inhibition of
cellular functions and causing significant cellular damage. Therefore, it
is possible that the toxicity of some hydrazine derivatives leading to
NCDIA toxicity may also occur through the same mechanism of
generating free radical species (Sinha and Mason, 2014).

At present, only a small fraction of NCDIA toxicants have fully
elucidated toxicological mechanisms. Nevertheless, through the
analysis of structural alerts, we can speculate and explore
potential toxicity mechanisms for drugs sharing similar toxic
fragments. This offers valuable insights for further investigation
into the toxicological mechanisms of these drugs. Furthermore,
comprehending these toxic substructures is instrumental in
predicting toxicity and crafting safer compounds in drug
development.

3.7 Assessment of NCDIA toxicity risk in
novel drugs approved by FDA

The safety assessment of new drugs post-market launch is
critical. If significant adverse reactions occur across a wide
demographic, there’s a high chance of the drug undergoing
reassessment or even withdrawal from the market. Therefore, in

our study, we utilized two BBC + GBDTmodels based on molecular
descriptors and fingerprints, namely, DS + RDKit_237 feature
subset and SubFPC, to evaluate the NCDIA toxic risk of recently
introduced drugs. We compiled newly approved monomeric small
molecule drugs from the FDA (accessed on 30 April 2024), spanning
the period from 2019 to 2024. Using the two BBC + GBDT models,
we predicted NCDIA toxicity for these drugs, providing medication
alerts for their clinical application.

Through meticulous data collection, we compiled a dataset of
95 newly approved monomeric drugs, excluding chemotherapy
agents. Upon reviewing adverse reaction data for these drugs via
Micromedex (accessed on 30 April 2024), we found that only two
drugs (lumateperone and ceftobiprole medocaril) listed
agranulocytosis as an adverse reaction in their labels. The two
BBC + GBDT models successfully predicted the agranulocytosis
toxicity of lumateperone and ceftobiprole medocaril. Additionally,
these models jointly predicted another 12 drugs as potentially posing
a risk of agranulocytosis. The predictive results for these 95 drugs are
shown in Supplementary Table S6, while 14 drugs with potential
agranulocytosis toxicity are shown in Figure 8.

Additionally, structural alerts were analyzed for 14 novel drugs.
The results revealed that six structural alerts were present in seven of
the potential NCDIA toxicants, as depicted by red lines in Figure 8.
Cefiderocol and ceftobiprole medocaril are novel cephalosporin
antibiotics, each featuring alert fragment 2. Amisulpride,
identified by fragment 4, also boasts an aromatic amine
substructure. Mitapivat, similarly containing an aromatic amine
substructure, but it additionally includes a piperazine ring,
denoted as fragment 13. Ponesimod includes fragment 7,
characterized by an acrolein substructure. Nifurtimox resembles a
hydrazine-like substructure, designated as fragment 12.
Mavacamten exhibits a pyrimidine ring structure, recognized as
an NCDIA alert structure associated with fragment 10. The
structures of the other seven new drugs, namely, lumateperone,
fexinidazole, ritlecitinib, vadadustat, leniolisib, abrocitinib, and
finerenone, do not include NCDIA alert fragments. However,
both models predict these drugs to potentially possess NCDIA
toxicity. Therefore, caution should be exercised regarding the
potential side effects of these drugs during clinical application.

In summary, our study underscores the valuable application of
BBC + GBDT models in assessing the NCDIA toxicity of newly
approved drugs, thereby providing essential medication alerts for
safe clinical utilization. Additionally, the identification of potential
agranulocytosis risk and structural alerts offers significant insights
into enhancing pharmaceutical safety and emphasizes the
importance of continuous vigilance in drug development and
monitoring. Given the low incidence rate of NCDIA toxicity and
its susceptibility to various factors such as genetic polymorphisms,
extensive clinical monitoring is essential to ascertain whether these
newly predicted drugs will cause agranulocytosis.

4 Conclusion

In this study, we compiled a reliable dataset comprising
219 NCDIA toxicants and 540 non-toxicants. We computed
three sets of molecular descriptors and twelve sets of molecular
fingerprints to quantify molecular properties and represent
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molecular structures. After thorough data preprocessing and
employing three distinct feature selection techniques, we
pinpointed the optimal chemical descriptors and fingerprints.
The combined descriptor sets of DS + RDKit_237 and MOE +
RDKit_196, along with the fingerprint-type SubFPC, demonstrated
the highest performance and were consequently chosen as the
optimal feature subsets for constructing machine learning
models. Subsequently, we developed and validated nine ensemble
machine learning classifiers for NCDIA toxicity using 10-fold cross-
validation and external validation. Among these models, the BBC +
GBDT model based on the DS + RDKit_237 feature subset
demonstrated the most promising performance, achieving an
AUC of 0.8438, ACC of 80.08%, and MCC of 0.5557 in 10-fold
cross-validation, and an AUC of 0.9164, ACC of 83.55%, and MCC
of 0.6095 in the external validation set. Furthermore, our analysis of
the applicability domain definition confirmed the reliability of the
BBC + GBDT model’s predictive ability. Moreover, we conducted

permutation importance analysis to extract crucial features from the
BBC + GBDT model, providing insights into how molecular
properties influence the toxicity of non-chemotherapeutic drugs
leading to agranulocytosis. Additionally, we identified 16 structural
alerts, offering a novel perspective on the molecular basis of NCDIA
toxicity. Finally, we employed two BBD + GBDT models based on
the DS + RDKit_237 feature subset and SubFPC to assess the
NCDIA toxicity of 95 non-chemotherapy novel drugs approved
by the FDA from 2019 to 2024. The results indicated that 14 drugs
were predicted to potentially exhibit agranulocytosis toxicity,
including 2 drugs already confirmed to possess this toxicity.

To our knowledge, this study has established the first machine
learning model for predicting NCDIA toxicity in vitro. Our
predictive model has rendered this previously challenging-to-
predict toxicity more predictable, thus offering an assessment
tool for evaluating agranulocytosis risk in new drug design and
post-market clinical monitoring. Moreover, it provides novel

FIGURE 8
14 novel drugs with potential agranulocytosis toxicity jointly predicted by the two BBC + GBDT models based on DS + RDKit_237 feature subset
and SubFPC.
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insights and perspectives for comprehending the toxicological
mechanisms underlying NCDIA.

Themain limitation of our study lies in the limited number of drugs
exhibiting NCDIA toxicity, as well as the lack of additional validation
sets to assess the generalizability of our models. This constraint impacts
the robustness and reliability of our predictive models, as a broader and
more diverse dataset could enhance the accuracy and applicability of
our findings. Furthermore, the dataset used in this study excluded
inorganic compounds, metalorganic compounds, mixtures, and salts.
Therefore, our models cannot provide predictions for these types of
compounds. For example, antithyroid drugs like potassium perchlorate
and potassium thiocyanate, which are classified as inorganic
compounds, are known to induce agranulocytosis (Andres and
Mourot-Cottet, 2017). The exclusion of these classes of compounds
may result in an incomplete representation of the chemical space
associated with NCDIA toxicity, potentially limiting the applicability
of our models to a wider range of drugs. Additionally, the current
models are based on the assumption that the structural and
physicochemical properties captured by the selected descriptors and
fingerprints are sufficient to predict NCDIA toxicity. However, drug-
induced agranulocytosis is a complex and multifactorial adverse effect,
influenced by various factors such as genetic predisposition, metabolic
pathways, and immune responses, which are not fully represented in
our dataset. This limitation highlights the need for integrative
approaches that combine computational predictions with
experimental and clinical data to improve the understanding and
prediction of idiosyncratic drug reactions. Moving forward, efforts
should concentrate on expanding the dataset, enhancing model
generalizability, and integrating these findings with clinical data to
augment the utility of predictive models in the drug
development pipeline.
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