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Ferroptosis represents a distinct form of cell death that is not associated with
necrosis, autophagy, apoptosis, or pyroptosis. It is characterised by intracellular
iron-dependent lipid peroxidation. The current literature indicates that a number
of botanical drugs and isolated metabolites can modulate ferroptosis, thereby
exerting inhibitory effects on lung cancer cells or animal models. The aim of this
review is to elucidate the mechanisms through which botanical drugs and
isolated metabolites regulate ferroptosis in the context of lung cancer,
thereby providing potential insights into lung cancer treatment. It is crucial to
highlight that these preclinical findings should not be interpreted as evidence that
these treatments can be immediately translated into clinical applications. In the
future, we will continue to study the pharmacology, pharmacokinetics and
toxicology of these drugs, as well as evaluating their efficacy and safety in
clinical trials, with the aim of providing new approaches to the development
of new agents for the treatment of lung cancer.
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1 Introduction

Recent statistics indicate that lung cancer is the leading cause of cancer-related
mortality on a global scale. The disease encompasses both non-small cell lung cancer
(NSCLC) and small cell lung cancer (SCLC). NSCLC represents the most prevalent
type, accounting for approximately 86% of cases (Barta et al., 2019). Despite recent
advances in the treatment of lung cancer, challenges remain due to factors such as drug
dose-limiting toxicity (Cannon et al., 2013), drug resistance (Lin and Shaw, 2016; Wang
et al., 2024). It is therefore imperative to explore and develop new drugs with enhanced
efficacy and reduced toxicity.

Ferroptosis, a newly identified cell death pathway distinct from necrosis, autophagy,
apoptosis, along with pyroptosis, relies on the buildup of ROS induced by iron-
mediated lipid peroxidation (Yin et al., 2022). It presents cellular, molecular, and
genetic features that set it apart from other cell death forms. Recent studies have
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indicated that the induction of ferroptosis may represent a
potential mechanism for tumour cell death (Friedmann Angeli
et al., 2019; Elgendy et al., 2020; Bell et al., 2024; Lei et al., 2024).
Consequently, these findings have become a focal point for
researchers engaged in the investigation of anti-tumour
therapies. Botanical drugs and isolated metabolites have
progressively become a burgeoning area of interest in anti-
tumor drug research (Xing et al., 2023; Zhang et al., 2024),
supported by recent in-depth studies highlighting their diverse
anti-tumor activities (Zhang et al., 2017b; Jiang H. et al., 2021).
Unprecedented strides have been made in studying ferroptosis
induction by botanical drugs and isolated metabolites in lung
cancer cells (Chen et al., 2020; Zhang R. et al., 2022). This review
provides an overview of the ongoing research progress
concerning established botanical drugs and isolated
metabolites targeting the ferroptosis pathway in lung cancer.

2 Role of botanical drugs and isolated
metabolites in regulating ferroptosis in
lung cancer

These peroxides adversely impact cell membrane integrity,
ultimately inducing ferroptosis. This distinctive type of cell
death, reliant on iron-mediated phospholipid peroxidation
(Wang et al., 2023), is intricately regulated by various cellular
metabolic processes involving redox balance, iron homeostasis,
mitochondrial function, as well as the metabolism of amino acids,
lipids, and sugars, along with multiple associated signaling

pathways relating to disease progression (Jiang X. et al., 2021;
Zhou et al., 2024) (Table 1).

2.1 System Xc−-GSH-GPX4

The system Xc− comprises transmembrane transport
proteins, including SLC7A11 and SLC3A2, located on
phospholipid bilayers (Conrad and Sato, 2012; Lewerenz et al.,
2013). System Xc− is the predominant aminoacid antiporter,
importing L-cystine in exchange for glutamate via the transporter
subunit SLC7A11 (Koppula et al., 2021a). Cystine is converted to
cysteine intracellularly through a NADPH-consuming reduction
reaction and can then be used to synthesize GSH, an important
cellular cofactor for antioxidant systems (Yang et al., 2014;
Jyotsana et al., 2022). GSH plays a critical role in protecting
cells from oxidative damage and the toxicity of xenobiotic
electrophiles, and maintaining redox homeostasis (Forman
et al., 2009). The main function of GPX4 is to use GSH as a
co-factor to resist lipid peroxidation, thereby protecting the
integrity of the membrane (Xie et al., 2023). GPX4 moonlights
as structural protein and antioxidase that powerfully inhibits
lipid oxidation. It is considered as a key regulator of ferroptosis,
which takes role in metabolism of lipids and amine acids (Liu
et al., 2023). The role of GPX4 as the main regulator in the
ferroptotic process is based on its unique function to reduce
complex hydroperoxides including phospholipid hydroperoxides
and cholesterol hydroperoxides to their corresponding
counterparts, thereby interrupting the lipid peroxidation chain
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TABLE 1 Botanical drugs and isolated metabolites regulate ferroptosis in lung cancer.

Botanical drugs Isolated metabolites Optimal dose Biological activity Ref.

Salvia miltiorrhiza Bunge [Lamiaceae;
Salviae miltiorrhizae radix et rhizoma]

Dihydroisotanshinone I A549: 30 μM (24 h)
H460: 30 μM (24 h)
Nude mice: 30 mg/kg every
2 days, i.p

Dihydroisotanshinone I can inhibit
GPX4 expression and subsequently induce
ferroptosis through lipid peroxidation, and
have an inhibitory effect on the growth of
A549 and H460 lung cancer cell lines

Wu et al.
(2021)

Panax ginseng C. A. Mey. [Araliaceae;
Red asian ginseng radix et rhizoma]

Red ginseng polysaccharide A549: 1600 μg/mL (48 h) Red ginseng polysaccharide induces LDH
release, downregulates GPX4 expression
and leads to the accumulation of ROS, thus
promoting ferroptosis in lung cancer cells

Zhai et al.
(2022)

Anemarrhena asphodeloides Bunge
[Asparagaceae; Anemarrhena
asphodeloides Bunge dry radix et
rhizome]

Timosaponin AIII H1299: 4 μM (48 h)
A549: 4 μM (72 h)
C57BL/6J mice: 50 mg/kg every
other day, i.p
Nude mice: 50 mg/kg every other
day, i.p

Timosaponin AIII targets
GPX4 degradation and promotes the
ubiquitination of GPX4 by binding and
complexing with HSP90, leading to ROS
and iron accumulation, malondialdehyde
production and GSH depletion, which in
turn induced ferroptosis in NSCLC cells

Zhou et al.
(2023)

Sanguinaria canadensis L.
[Papaveraceae; Sanguinaria canadensis
radix et rhizome]

Sanguinarine A549: 20 μM (48 h)
H3122: 20 μM (48 h)
Nude mice: 5 mg/kg/day, i.p

Sanguinarine increases Fe2+ concentration,
ROS levels and malondialdehyde content,
and decreases GSH content. Meanwhile,
Sanguinarine reduces the protein stability
of GPX4 through E3 ligase STUB1-
mediated ubiquitination and degradation
of endogenous GPX4, which in turn
inhibits the growth and metastasis of
NSCLC by promoting ferroptosis

Xu et al.
(2022)

Capsicum annuum L. [Solanaceae] Capsaicin A549: 300 µM (48 h)
NCI-H23: 300 µM (48 h)

Capsaicin induces ferroptosis by regulating
SLC7A11/GPX4 signaling

Liu et al.
(2022)

Ginkgo biloba L. [Ginkgoaceae; Ginkgo
biloba plant dried leaves]

Ginkgetin A549: 5 µM (48 h)
NCI-H460: 5 µM (48 h)
SPC-A-1: 5 µM (48 h)
Nude mice: 30 mg/kg/day, i.p

Ginkgetin mediates ferroptosis in NSCLC
through mechanisms such as increasing
iron in concentration, promoting lipid
peroxidation, inhibiting SLC7A11 and
GPX4 expression, and decreasing the GSH/
GSSG ratio

Lou et al.
(2021)

Brassicaceae burnett Sulforaphane NCI-H69(H69): 20 µM (96 h)
NCI-H82(H82): 20 µM (96 h)
NCI-H69AR(H69AR):
20 µM (96 h)

Sulforaphane-induced cell death is
mediated via ferroptosis and inhibition of
the mRNA and protein expression levels of
SLC7A11 in SCLC cells

Iida et al.
(2021)

Artemisia annua L. [Compositae] Dihydroartemisinin NCI-H23: 60 μM (48 h)
XWLC-05: 60 μM (48 h)
Nude mice: 30 mg/kg, s.c

Dihydroartemisinin through the PRIM2/
SLC7A11 axis inhibits proliferation,
cloning and inducing ferroptosis in lung
cancer cells

Yuan et al.
(2020)

Curcuma longa L. [Zingiberaceae;
Curcuma longa radix et rhizome]

Curcumin A549: 100 μM (48 h)
H1299: 100 μM (48 h)
C57BL/6 mice: 100 mg/kg/day, i.p

Curcumin can upregulate the protein levels
of ACSL4 in tumor tissues and significantly
downregulates SLC7A11 and GPX4 protein
levels. It also induces ferroptosis in NSCLC
through the activation of autophagy

Tang et al.
(2021)

Dendrobium chrysotoxum Lindl.
[Orchidaceae;Dendrobium
chrysotoxum radix et rhizome]

Erianin H460: 100 nM (72 h)
H1299: 100 nM (72 h)
Nude mice: 100 mg/kg/day, i.p

Erianin can induce ferroptosis in lung
cancer cells by activating the Ca2+/CAM
signaling pathway

Chen et al.
(2020)

Brassica oleracea L. [Brassicaceae] Sinapine H460: 20 μM (72 h)
A549: 20 μM (72 h)
SK: 20 μM (72 h)
H661: 20 μM (72 h)
BALB/c mice: 40 mg/kg, i.v

Sinapine induces ferroptosis in NSCLC
through upregulation of transferrin/
transferrin receptors and downregulation
of SLC7A11

Shao et al.
(2022)

Artemisia annua L. [Compositae] Artemisinin NA Artemisinin can suppress cystine/
glutamate transporter expression and
upregulate the mRNA levels of the
transferrin receptor, thus promoting
ferroptosis in NSCLC cells

Liu et al.
(2022c)

(Continued on following page)
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reaction (Seibt et al., 2019). Deficiency in GSH leads to
GPX4 dysfunction and the substantial accumulation of lipid
ROS, thereby initiating ferroptosis (Ursini et al., 1985; Yang
et al., 2014). An imbalance in the Xc−-GSH-GPX4 pathway
affects GPX4 homeostasis and ferroptosis activity (Figure 1).

2.1.1 Salvia miltiorrhiza Bunge [Lamiaceae; Salviae
miltiorrhizae radix et rhizoma]

Dihydroisotanshinone I (DT) is extracted from the dried roots
of Salvia miltiorrhiza Bunge. GPX4 is responsible for breaking down
small molecule peroxides and complex lipid peroxides in a GSH-
dependent manner, thereby safeguarding cells from ferroptosis
(Seibt et al., 2019). In instances of GPX4 inactivation or GSH
depletion, accumulated fatty acids and hydroperoxides undergo
catalysis to form lipid peroxyl radicals in the Fenton reaction
mediated by iron, ultimately resulting in cellular ferroptosis. Wu
et al. (2021) found that DT inhibited GPX4 expression and
subsequently induced ferroptosis through lipid peroxidation,
displaying an inhibitory effect on the growth of A549, H460, and

other lung cancer cell lines. DT can induce apoptosis and ferroptosis
in A549 and H460 cells.

2.1.2 Panax ginsengC. A.Mey. [Araliaceae; red asian
ginseng radix et rhizoma]

Red ginseng, known scientifically as Panax ginseng C. A. Meyer, is
extensively used in traditional Asian herbal medicine and is gaining
popularity inWestern countries (Helms, 2004). Ginseng polysaccharide
(GP) is among the active metabolites of red ginseng. Recent findings
indicate that red ginseng polysaccharide (RGP) shows potential as a
immune-stimulating modifier and may hold significant value in the
treatment of tumors (Zhou et al., 2014). Additionally, elevated levels of
red ginseng acidic polysaccharide (RGAP) have a notable correlation
with heightened immune system activity, indicating its role in activating
immune activity (Youn et al., 2020). Zhai et al. (2022) discovered that
RGP was observed to exert a significant inhibitory effect on cell
proliferation and promote GPX4 downregulation-induced ferroptosis
induction in A549 cells. These findings suggest that RGP may have
potential applications in cancer treatment.

TABLE 1 (Continued) Botanical drugs and isolated metabolites regulate ferroptosis in lung cancer.

Botanical drugs Isolated metabolites Optimal dose Biological activity Ref.

Artemisia annua L. [Compositae] Artesunate A549: 10 μM (72 h)
NCI-H1299: 10 μM (72 h)

Artesunate induces ferroptosis in
A549 cells by upregulating transferrin
receptor and downregulating system Xc−

Zhang et al.
(2021)

Zingiber officinale Roscoe
[Zingiberaceae; Zingiber officinale radix
et rhizome]

6-gingerol A549: 80 μM (48 h)
Nude mice: 0.5 mg/kg/day, p.o

6-gingerol decreases the expression of
USP14, which not only increases the
number of autophagosomes and the levels
of ROS, but also increases the
concentration of ferritin. This heightened
vulnerability of lung cancer cells leads to
their susceptibility to ferroptosis and
inhibits cell proliferation of lung cancer

Tsai et al.
(2020)

Curcuma wenyujin Y.H.Chen and
C.Ling [Zingiberaceae]

Curcumenol H1299: 400 μg/mL (24 h)
H460: 400 μg/mL (24 h)
Nude mice: 200 mg/kg/day, i.v

Curcumenol induces ferroptosis in lung
cancer cells through the lncRNAH19/miR-
19b-3p/FTH1 axis

Zhang et al.
(2022)

Andrographis paniculata (Burm.f.) Wall.
ex Nees. [Acanthaceae]

Andrographolide H460: 30 μM (24 h)
H1650: 30 μM (24 h)
C57BL/6 mice: 10 mg/kg/day, i.p

Andrographolide induces mitochondrial
dysfunction, evidenced by elevating levels
of mitochondrial ROS release,
depolarization of the mitochondrial
membrane potential, and decreasing
mitochondrial ATP. It also suppresses the
expression of ferroptosis-related proteins,
GPX4 and SLC7A11

Jiaqi et al.
(2023)

Brucea javanica (L.) Merr
[Simaroubaceae]

Brusatol A549: 50 nM (16 h)
NOG mouse: 0.5 mg/kg twice in
1 week, i.p

Brusatol induces ferroptosis through the
FOCAD-FAK signaling pathway to inhibit
lung cancer. And it inhibits NSCLC by
enhancing the tricarboxylic acid cycle as
well as Complex I activity within the
mitochondrial electron transport chain,
thereby increasing the susceptibility of
NSCLC cells to ferroptosis induced by
cysteine deprivation

Liu et al.
(2020)

Hedyotis diffusa Willd. [Rubiaceae;
Oldenlandia diffusa (Willd.) Roxb.]

Quercetin, Asperulosid, β-
Sitosterol

A549: 50 μg/mL (48 h)
H1975: 100 μg/mL (48 h)
Nude mice: 15 mg/kg/day, s.c

Hedyotis Diffusa Injection activates
VDAC2/3 channels by inhibiting Bcl-2 and
promoting Bax, resulting in the release of
significant amounts of intra-mitochondrial
ROS This increases intracellular ROS levels
and induces ferroptosis in lung
adenocarcinoma cells

Huang et al.
(2022)

i.p., intraperitoneal injection; p.o., peros; s.c., subcutaneous injection; i.v., intravenous injection; NA, not available.
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2.1.3 Anemarrhena asphodeloides Bunge
[Asparagaceae; Anemarrhena asphodeloides
Bunge dry radix et rhizome]

Timosaponin AⅢ (Tim-AⅢ), a steroid saponin, serves as the
primary active metabolite of Anemarrhena asphodeloides Bunge
(Zhou et al., 2023). HSP90, a chaperone protein, holds a critical
role in essential cellular processes and regulatory pathways such as
apoptosis, cell cycle control, protein folding and degradation, cell
signaling, and cell viability (Hoter et al., 2018). Zhou et al., (2023)
observed that Tim-AⅢ targeted GPX4 degradation and promoted
GPX4 ubiquitination by binding and complexing with HSP90,
resulting in ROS and iron accumulation, malondialdehyde
production, and GSH depletion, ultimately inducing ferroptosis
in NSCLC cells. Tim-AIII triggers cell death, inhibits cell
proliferation, and promotes cell cycle arrest at G2/M phase via
induction of ferroptosis in NSCLC cell lines.

2.1.4 Sanguinaria canadensis L. [Papaveraceae;
Sanguinaria canadensis radix et rhizome]

Sanguinarine (SAG), a natural benzophenanthridine alkaloid
derived from the root of Sanguinaria canadensis L., exhibits
promising anticancer activity. Xu et al. (2022) discovered that
SAG increased Fe2+ concentration, ROS levels, and
malondialdehyde content while reducing GSH content.
Additionally, SAG lowered the protein stability of GPX4 through

E3 ligase STUB1-mediated ubiquitination and degradation of
endogenous GPX4. This process inhibited the growth and
metastasis of NSCLC by promoting ferroptosis.

2.1.5 Capsicum annuum L. [Solanaceae]
Capsaicin (trans-8-methyl-N-vanillyl-6-nonanamide,

C18H27NO3) is the primary metabolite of Capsicum annuum L.
(Bley et al., 2012) and has been reported to possess various
functions such as antioxidant, anti-inflammatory, cardiovascular
disease prevention, and gastrointestinal mucosal protection (Luo
et al., 2011). Furthermore, several previous studies have
demonstrated the anti-cancer effects of capsaicin on various
malignant tumors, including NSCLC, liver cancer, and prostate
cancer (Huang et al., 2009; Chakraborty et al., 2014; Venier et al.,
2015). Capsaicin exerts anti-tumor effects by inhibiting cancer cell
proliferation, inducing cell cycle arrest, inhibiting tumor angiogenesis,
and promoting cancer autophagy (Chakraborty et al., 2014; Zheng et al.,
2015; Islam et al., 2021). SLC7A11 is believed to play a crucial role in
regulating ferroptosis, where its suppression initiates ferroptosis,
resulting in a significant reduction in the proliferation of malignant
cells (Daher et al., 2019; Lim et al., 2019). Liu (Liu X.-Y. et al., 2022)
revealed that capsaicin exerted an anti-proliferative effect on A549 cells
as well as NCI-H23 cells through SLC7A11/GPX4 signaling, ultimately
resulting in ferroptosis. These data suggest that capsaicin inhibits the
proliferation of A549 and NCI-H23 cells by inducing ferroptosis.

FIGURE 1
Botanical drugs and isolatedmetabolites through system Xc−-GSH-GPX4 pathway regulate ferroptosis in lung cancer (SLC7A11, solute carrier family
seven member 11; HSP90, heat shock protein 90; GSH, glutathione; GPX4, glutathione peroxidase 4).
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2.1.6Ginkgo biloba L. [Ginkgoaceae; Ginkgo biloba
plant dried leaves]

Ginkgetini is derived from Ginkgo biloba L. Lou et al. (2021)
discovered that Ginkgetin mediated ferroptosis in NSCLC by
increasing iron concentration, promoting lipid peroxidation,
inhibiting SLC7A11 and GPX4 expression, and reducing the
GSH/GSSG ratio. Ginkgetin trigger non-apoptotic cell death or
disrupts the redox homeostasis in A549 by inducing ferroptosis.

2.1.7 Brassicaceae burnett
Sulforaphane (SFN), an isothiocyanate abundant in

Brassicaceae, particularly in broccoli and broccoli sprouts,
exhibits a wide array of anticancer properties (Clarke et al.,
2008). Iida et al. (2021) found that SFN-induced cell death was
mediated via ferroptosis and inhibition of SLC7A11 mRNA and
protein expression levels in SCLC cells, leading to reduced GSH and
increased lipid ROS levels. Following the addition of SFN to the cell
culture, cell growth was significantly inhibited, and cell death was
shown in SCLC and multidrug-resistant H69AR cells.

2.1.8 Artemisia annua L. [Compositae]
Dihydroartemisinin (DHA) is a derivative of Artemisia annua L.

The PRIM2 is located on human chromosome 6p11.1-p12 and
encodes a 58 kDa protein containing a 4Fe-4S cofactor that
forms a heterodimeric DNA primase with PRIM1, a small
subunit of DNA primase. This protein, in conjunction with the
p49 subunit, forms the heterodimeric DNA primase enzyme. DNA
primase is crucial for initiating DNA replication and synthesizing
Okazaki fragments during the synthesis of lagging strand (Shiratori
et al., 1995; Yatsula et al., 2006). The β-catenin signaling pathway is
crucial in lung cancer carcinogenesis, particularly regarding the
downregulation of both SLC7A11 and β-catenin expression in
cells associated with PRIM2 loss. Yuan et al. (2020) discovered
that DHA inhibited the expression of PRIM2, leading to the
downregulation of SLC7A11 and β-catenin, key regulators of
ferroptosis in lung cancer cells. This resulted in decreased GSH,
increased ROS and malondialdehyde, ultimately inhibiting
proliferation, clone formation, and inducing ferroptosis
in A549 cells.

2.2 Lipid peroxidation

The sensitivity of ferroptosis is closely related to lipid
metabolism and directly affects the biosynthesis and storage of
lipid peroxidation (Yang and Stockwell, 2016). ACSL4 and
LPCAT3 play pivotal roles in PUFA-PL synthesis (Dixon et al.,
2015; Doll et al., 2017; Kagan et al., 2017). ACSL4 is one of a number
of fatty acid activating enzymes functioning by esterifying CoA to
free fatty acids in an ATP dependent manner (Seibt et al., 2019).
ACSL4 is responsible for shaping the cellular lipidome by acting as
an important node that determines sensitivity versus resistance to
this form of cell death. ACSL4-dependent modulation of
phospholipids, specifically that of PE, is a critical determinant of
sensitivity to ferroptosis (Doll et al., 2017; Kagan et al., 2017).
ACSL4 catalyses the ligation of free PUFAs, such as arachidonic
acids and adrenic acids, with CoA to generate PUFA-CoAs, which
are subsequently re-esterified and incorporated into PLs by

LPCAT3 to form PUFA-PLs (Doll et al., 2017; Kagan et al.,
2017). PUFA-PLs are particularly susceptible to peroxidation
under the catalysis of ROS produced by the Fenton reaction
initiated by iron, mitochondria or NOX, ultimately generating
lipid peroxides (Dixon et al., 2012; Yang and Stockwell, 2016;
Conrad and Pratt, 2019). ACC-catalysed carboxylation of acetyl-
CoA generates malonyl-CoA, which is required for the synthesis of
some PUFAs and therefore for ferroptosis (Dixon et al., 2015;
Shimada et al., 2016; Lee et al., 2020b; Li et al., 2020).
Inactivation of ACSL4, LPCAT3, or ACC blocks or attenuates
ferroptosis (Doll et al., 2017; Lee et al., 2020a). The enzymatic
reactions mediated by ALOX or Cytochrome P450 oxidoreductase
are also involved in facilitating lipid peroxides (Yang et al., 2016;
Wenzel et al., 2017; Zou et al., 2020; Koppula et al., 2021b; Yan et al.,
2021). A great diversity of aldehydes are formed when lipid
hydroperoxides break down in biological systems. Some of these
aldehydes such as 4-hydroxynonenal, 4-hydroxyhexenal, and
malonaldehyde are highly reactive and may be considered as
second toxic messengers which will cause the cross-linking
polymerization of life macromolecules such as proteins and
nucleic acids, and affect the activities of mitochondrial
respiratory chain complexes and key enzymes in mitochondria,
resulting in cell death (Esterbauer et al., 1991) (Figure 3).

2.2.1 Curcuma longa L. [Zingiberaceae; Curcuma
longa radix et rhizome]

Curcumin, a yellow polyphenolic metabolite commonly found
in Curcuma longa L., exhibits anticancer properties through various
mechanisms, including the inhibition of tumor proliferation,
invasion, and metastasis, as well as the regulation of apoptosis
and autophagy (Tomeh et al., 2019). Increasing evidence suggests
that ACSL4 is a critical factor for ferroptosis sensitivity (Doll et al.,
2017; Kenny et al., 2019). ACSL4 catalyzes the reaction of PUFAs
with CoA to generate PUFA-CoA derivatives, which contribute to
esterification into PUFA-PL. Subsequently, LPCAT3 specifically
inserts acyl groups into lysophospholipids to synthesize PUFA-
PL. Quantitative lipidomics analysis has revealed that PUFA-PL
containing arachidonic acid or adrenaline acid is critical and is
oxidized to PL-PUFA-OOH via the Fenton reaction, thereby driving
ferroptosis. Tang et al. (2021) discovered that Curcumin could
upregulate the protein levels of ACSL4 in tumor tissues and
significantly downregulated SLC7A11 and GPX4 protein levels. It
also found that Curcumin induced ferroptosis in NSCLC by
activating autophagy. Moreover, Curcumin has been observed to
deplete GSH and increase iron content in NSCLC cells.
Consequently, tumor cell proliferation was inhibited and
ferroptosis was promoted. As a result, curcumin significantly
suppressed the proliferation of tumor cells and promoted the
death of tumor cells.

2.3 Iron metabolism

Maintaining iron homeostasis is vital for sustaining
physiological cellular functions. However, excessive iron not
only induces the peroxidation of lipids through the mediation
of the Fenton reaction, but also acts as an essential cofactor for
enzymes that participate in lipid peroxidation (such as ALOX
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and POR) (Gaschler and Stockwell, 2017; Conrad and Pratt,
2019). The metabolism of irons is related with several stages
encompassing absorption, storage, utilization, and efflux,
rendering it a complex process. Imbalanced regulation of these
iron metabolism processes can promote or inhibit ferroptosis.
Typically, Fe3+ is internalized and carried to endosomes by means
of the transferrin receptor (Kawabata, 2019). Within this process,
the six-transmembrane epithelial antigen of the prostate three
changes Fe3+ into Fe2+ (Shi et al., 2023). Subsequently, divalent
metal transporters facilitate the discharge of Fe2+ from
endosomes into the cytoplasmic labile iron pool, serving as a
source for the Fenton reaction (Yanatori and Kishi, 2019). Excess
intracellular iron is typically sequestered within the ferritin
protein, which consists of two subunits: FTH1 and FTL (Yang
and Stockwell, 2008). NCOA4-mediated phagocytosis of ferritin
promotes the autophagic degradation of ferritin, leading to
increased intracellular iron levels during periods of iron
deficiency, ultimately driving the process of ferroptosis (Hou
et al., 2016). Ferroportin, the sole recognized mammalian protein
accountable for iron release, facilitates the transfer of cytoplasmic
Fe2+ into the bloodstream (Billesbølle et al., 2020). In addition, it
is reported that silencing iron response element binding protein

2 can increase the content of iron in cells through transferrin
receptor, and eventually induce ferroptosis (Dixon et al., 2012;
Reed and Pellecchia, 2012). Furthermore, Fe2+ can exit cells
through exosomes or undergo re-oxidation to Fe3+ via ferric
oxidases like ceruloplasmin or hephaestin (Torti and Torti,
2013; Brown et al., 2019) (Figure 2).

2.3.1 Dendrobium chrysotoxum Lindl.
[Orchidaceae;Dendrobium chrysotoxum radix
et rhizome]

Erianin is a natural product isolated from Dendrobium
chrysotoxum Lindl. CAM, a key intracellular Ca2+ binding
protein, regulates L-type voltage-dependent Ca2+ channels, which
are involved in both Ca2+ transportation and iron uptake (Zühlke
et al., 1999; Oudit et al., 2003). Elevated Ca2+ uptake leads to ROS
production and heightened levels of ferric iron ions. According to
Chen (Chen et al., 2020), treatment of lung cancer cells H460 and
H1299 with Erianin activated the Ca2+/CAM signaling pathway.
CAM increased cellular Ca2+ uptake by regulating L-type voltage-
dependent Ca2+ channels, resulting in elevated ROS production and
increased Fe2+ levels, ultimately inducing ferroptosis in lung
cancer cells.

FIGURE 2
Botanical drugs and isolated metabolites through iron metabolism pathway regulate ferroptosis in lung cancer (CaM, calmodulin; FTH1, ferritin
heavy chain 12; NCOA4, nuclear receptor coactivator 4; LVDCC, L-type voltage-dependent Ca2+ channels; LIP, lipid).
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2.3.2 Brassica oleracea L. [Brassicaceae]
Sinapine (SI), an alkaloid obtained from Brassica oleracea L.

and cruciferous plant species, possesses antioxidant (Boulghobra
et al., 2020), neuroprotective (Pohl et al., 2019), and anti-
inflammatory properties (Bhinu et al., 2009). Shao et al.
(2022) revealed that SI induced ferroptosis in NSCLC through
upregulation of transferrin/transferrin receptors and
downregulation of SLC7A11. SI selectively inhibited NSCLC
cell proliferation and growth in vivo.

2.3.3 Artemisia annua L. [Compositae]
Artemisinin, the primary active metabolite in Artemisia annua

L., has been found by Liu et al. (2022c) to upregulate transferrin
receptor mRNA levels and suppress cystine/glutamate transporter
expression, thereby promoting ferroptosis in NSCLC cells. Among
the anti-insect drugs, the derivatives of Artemisia annua L.,
artesunate (ART), a well-known anti-malarial drug, have been
shown to possess selective anti-cancer properties. Transferrin
receptor imports extracellular iron into cells, playing a catalytic
role in promoting ferroptosis (Lu et al., 2021). ART have been found
by Zhang et al. (2021) to induce ferroptosis in A549 cells by
upregulating transferrin receptor and downregulating system

Xc−. The results indicated that ART inhibited cell viability in a
dose-dependent manner in NSCLC cells.

2.3.4 Zingiber officinale Roscoe [Zingiberaceae;
Zingiber officinale radix et rhizome]

6-Gingerol is a naturally occurring phenol Zingiber officinale
Roscoe, which has been demonstrated to exhibit anti-inflammatory,
anti-tumor and antioxidant bioactivities (Zhang et al., 2017a; Koch
et al., 2017; de Lima et al., 2018). Deubiquitination of USP14 inhibits
autophagy, while ferritin promotes ferroptosis, and autophagy has
the ability to regulate ferroptosis through the degradation of ferritin
(Mancias et al., 2014; Hou et al., 2016; Xu et al., 2016). Tsai et al.
(2020) observed that 6-gingerol decreased the expression of USP14,
leading to an increase in the number of autophagosomes and ROS
levels, along with an elevation in ferritin concentration. This
heightened vulnerability of A549 cells led to their susceptibility
to ferroptosis and inhibited cell proliferation of lung cancer.

2.3.5 Curcuma wenyujin Y. H. Chen and C. Ling
[Zingiberaceae]

Curcumenol, an active metabolite of Curcuma wenyujin Y. H.
Chen and C. Ling, has been demonstrated to exert antitumor

FIGURE 3
Botanical drugs and isolated metabolites through lipid peroxidation and other pathways regulate ferroptosis in lung cancer (ACSL4, acyl-CoA
synthetase long-chain member 4; LPCAT3, lysophosphatidyl-choline acyltransferase 3; POR, cytochrome P450 reductase; ALOXs, arachidonate
lipoxyge-nases; PUFAs, polyunsaturated fatty acids; PUFA-PLs, polyunsaturated fatty acid phospholipids; ROS, reactive oxygen species; VDAC, voltage-
dependent anion channel; FAK, focal adhesion kinase; FACOD, focadhesin).
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potential in a number of cancer types. Overexpression of lncRNA
H19 significantly increased the expression levels of negative
regulators of ferroptosis, namely Nrf2, GPX4, FTH1, and
SLC7A11. Zhang et al. (2022) demonstrated that Curcumenol
could induce ferroptosis in lung cancer cells through the lncRNA
H19/miR-19b-3p/FTH1 axis. The expression of lncRNA
H19 decreased in cells after treatment with Curcumenol. IncRNA
H19 regulated FTH1 levels by targeting miR-19b-3p. Curcumenol
significantly increased the expression levels of HMOX-1 and
transferrin but decreased the expression levels of GPX4,
SLC40A1, SLC7A11, FTH1, Nrf2, and glutaminase in lung cancer
cells, resulting in elevated ROS levels and decreased GSH levels,
ultimately inducing ferroptosis in lung cancer cells. Curcumenol
dramatically inhibited the growth of xenograft tumors as well as
induced cell death and suppressed cell proliferation in
H1299 and H460 cells.

2.4 Other mechanisms

Apart from the aforementioned major regulatory mechanisms,
ferroptosis is also governed by additional mechanisms (Lei et al.,
2022), such as the DHODH–CoQH2 system, the GCH1-BH4
system, the Mitochondrial metabolism and so on (Figure 3).

A newly identified GPX4-independent mitochondria-localized
ferroptosis defense system, the DHODH–CoQH2 system can
compensate for GPX4 loss and detoxify mitochondrial lipid
peroxides (Mao et al., 2021). DHODH is an enzyme involved in
pyrimidine synthesis that can reduce CoQ to CoQH2 in the inner
mitochondrial membrane (Lei et al., 2022). When GPX4 is acutely
inactivated, the flux through DHODH is significantly increased,
resulting in enhanced CoQH2 generation that neutralises lipid
peroxidation and prevents ferroptosis in mitochondria (Mao
et al., 2021).

Recent studies revealed that the GCH1-BH4 system is another
critical inhibitor of ferroptosis (Kraft et al., 2020; Soula et al., 2020).
GCH1 mediates the rate-limiting reaction generating the
endogenous metabolite BH4, and BH4 is a cofactor of aromatic
amino acid hydroxylases and other enzymes (Thöny et al., 2000).
BH4 is another radical-trapping antioxidant capable of trapping
lipid peroxyl radicals (Soula et al., 2020). GCH1-mediated
BH4 synthesis reprograms lipid metabolism and inhibits
ferroptosis by selectively preventing two polyunsaturated fatty
acyl tails from depleting PLs (Kraft et al., 2020).

The mitochondrion is the major organelle to produce ROS
(Murphy, 2009), in which electron leakage from electron
transport chain complexes I and III generates superoxides.
And it is subsequently converted to hydrogen peroxide (H2O2)
through superoxide dismutase mediated dismutation (Murphy,
2009). H2O2 can react with ferrous ion (Fe2+) to generate
hydroxyl radicals (•OH), which then abstract the bis-allylic
hydrogen in PUFAs to generate PUFA radicals (PUFA•)
(Murphy, 2009; Zheng and Conrad, 2020). Moreover, electron
transport and proton pumping in mitochondria are important for
ATP production (Friedman and Nunnari, 2014; Vasan et al.,
2020), which also promotes ferroptosis (Lee et al., 2020a; Li et al.,
2020). Finally, mitochondria also have a biosynthetic role in
cellular metabolism which contributes to ferroptosis. The

underlying mechanisms of the TCA cycle in regulating
ferroptosis likely relate to their function in supporting
electron transport and fatty acid biosynthesis. The
mitochondrion houses the TCA cycle and various anaplerotic
reactions that replenish the TCA cycle, such as glutaminolysis
(Friedman and Nunnari, 2014), which may drive ferroptosis by
promoting ROS, ATP, and/or PUFA-PL generation (Heldt and
Piechulla, 2011; Gao et al., 2015; Gao et al., 2019). Therefore,
current studies suggest that the diverse roles of mitochondria in
bioenergetic, biosynthetic, and ROS regulation contribute to its
pro-ferroptosis function (Gan, 2021).

2.4.1 Andrographis paniculata (Burm.f.) Wall. ex
Nees. [Acanthaceae]

Andrographolide (ADE) is a diterpenoid lactone isolated
from Andrographis paniculata (Burm.f.). Mitochondria can
control the intracellular intake of iron, influencing its
availability, which plays a crucial role in ferroptosis. Li (Jiaqi
et al., 2023) found that ADE could induce mitochondrial
dysfunction, evidenced by elevated levels of mitochondrial
ROS release, depolarization of the mitochondrial membrane
potential, and decreased mitochondrial ATP. Additionally, it
suppressed the expression of ferroptosis-related proteins,
GPX4 and SLC7A11. The study validated that ADE could
restrain proliferation and metastases of NSCLC cells
(H460 and H1650) and mouse lung cancer cells (Lewis)
through induction of ferroptosis via potentiating
mitochondrial dysfunction.

2.4.2 Brucea javanica (L.) Merr [Simaroubaceae]
Brusatol, a triterpene lactone metabolite primarily derived from

the Brucea javanica (L.) Merr (Zhao et al., 2014; Yu et al., 2020), has
been observed to interact with Nrf2, a key regulator of cellular
antioxidant responses, redox homeostasis, as well as metabolic
homeostasis. The downstream targets of Nrf2 encompass crucial
genes such as HMOX1, GPX4, along with SLC7A11 (Ishii et al.,
2000; Osburn et al., 2006; Kerins and Ooi, 2018; Dodson et al., 2019),
all of which play pivotal roles in inhibiting lipid peroxidation and the
initiation of ferroptosis. Notably, Nrf2 exerts negative
transcriptional regulation over the FOCAD gene, which is
essential for modulating FAK activity. In instances where Nrf2 is
inhibited, heightened FOCAD expression suppresses colony
formation, migration, and invasive capacity of cancer cells
(Brockschmidt et al., 2012; Brand et al., 2020). Furthermore, it
has been established that the tricarboxylic acid cycle and the activity
of the mitochondrial electron transport chain are indispensable for
the production of lipid ROS in ferroptosis induced by cysteine
deprivation. Liu et al. (2020) have provided evidence that
Brusatol, functioning as an Nrf2 inhibitor, demonstrated
inhibitory effects in human NSCLC by instigating ferroptosis
through modulation of the FOCAD-FAK signaling pathway. The
upregulation of FOCAD facilitated the activation of FAK. Moreover,
Brusatol effectively managed NSCLC by augmenting the
tricarboxylic acid cycle as well as Complex I activity within the
mitochondrial electron transport chain, consequently enhancing the
susceptibility of NSCLC cells to ferroptosis induced by cysteine
deprivation. Brusatol suppresses colony formation, migration, and
invasive capacity of cancer cells.
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2.4.3 Hedyotis diffusa Willd. [Rubiaceae;
Oldenlandia diffusa (Willd.) Roxb.]

Hedyotis diffusa Willd. [Rubiaceae; Oldenlandia diffusa (Willd.)
Roxb.] (HDW) is the dried whole botanical drug of Hedyotis diffusa,
belonging to the Rubiaceae family. Its antitumor active metabolites
include Asperuloside, Quercetin, and β-sitosterol (Han et al., 2020).
The VDAC is a channel protein situated in the outer membrane of
the mitochondria, facilitating the movement of ions and metabolites
between the cytoplasm and mitochondria. Activating VDAC
facilitates the release of substantial intramitochondrial ROS,
subsequently increasing intracellular levels of ROS and
promoting ferroptosis (Maldonado et al., 2013; DeHart et al.,
2018; Lipper et al., 2019). Bcl2/Bcl-xl inhibits the activation of
VDAC2/3, exerting an inhibitory effect on cell death. Conversely,
Bax/Bak promotes the activation of VDAC2/3 channels, as well as
the release of cytochrome C and ROS, thereby promoting ferroptosis
(Tsujimoto and Shimizu, 2000). Huang (Huang et al., 2022)
observed that hedyotis diffusa injection (HDI) activated VDAC2/
3 channels by inhibiting Bcl2 and promoting Bax, leading to the
release of significant amounts of intramitochondrial ROS. This
elevation in intracellular ROS levels induced ferroptosis in lung
adenocarcinoma cells. Additionally, HDI-induced ferroptosis in
lung adenocarcinoma cells was found to be independent of the
GPX4 and PUFA-PLS pathways. In vitro experiments showed that
HDI could inhibit the viability of lung adenocarcinoma cells (H23,
A549 and H460 cells) and induce ferroptosis. In addition, this study
investigated only HDI, without assessing the role of monomers;
therefore, the effective monomeric components for an in-depth
study of the mechanism underlying ferroptosis to be isolated.

3 Botanical drugs and isolated
metabolites in lung cancer clinical trials

The process of clinical trials is imperative for the approval and
subsequent introduction of drugs into the market. Only when the
efficacy and safety of a drug are established through such trials can it
be considered for clinical use. Several botanical drugs and isolated
metabolites are currently undergoing clinical trials for the treatment
of lung cancer.

3.1 Artesunate [Compositae]

To assess the effectiveness and safety of chemotherapy using
artesunate in conjunction with the NP regimen (a vinorelbine and
cisplatin chemotherapy regimen) for advanced lung cancer,
120 patients with advanced NSCLC were allocated into a
chemotherapy group (control group, n = 60) as well as an
Artemisinin combined chemotherapy group (experimental group,
n = 60) in random. The control group underwent NP regimen,

comprising 25 mg/m2 vinorelbine once daily via intravenous
injection on the 1st and 8th day along with 25 mg/m2 cisplatin
once daily via intravenous drip from the 2nd to 4th day. The
experimental group received the standard NP therapy along with
120 mg Artesunate once daily via intravenous injection from the 1st
to the 8th day, for 8 days. No less than two 21-day cycles of treatment
were achieved. The primary endpoints examined included the short-
term survival rate, DCR, TTP, MST, as well as 1-year survival rate;
meanwhile, the toxicity and safety were also evaluated. The results
demonstrated that the incorporation of Artesunate alongside NP led
to the enhanced short-term survival rates along with the prolonged
TTP among patients with advanced NSCLC. These findings suggest
that Artesunate has an inhibitory effect on NSCLC (Zhang
et al., 2008).

Upon reviewing Clinical Trials (https://clinicaltrials.gov/), it was
noted that C. longa L. (NCT02321293) have been registered in
clinical trials for lung cancer. Although these treatments remain in
the research phase, the preliminary results appear
promising (Table 2).

4 Discussion and conclusion

The induction of ferroptosis in lung cancer cells by botanical
drugs and isolated metabolites represents a burgeoning and
promising area of oncological pharmacology. Our review of the
literature has highlighted that various natural compounds
demonstrate a capacity to induce ferroptosis through diverse
mechanisms. By using lung cancer cell lines and animal models,
we can assess whether ferroptosis inducers can reduce tumor growth
and improve survival rates. This is crucial for determining the
potential of these agents and justifying further development.

Despite promising preclinical data, the current research
landscape is fraught with several limitations and challenges. A
primary concern is the scarcity of comprehensive in vivo studies
and clinical trials. Most current evidence is derived from in vitro
studies using lung cancer cell lines, which, while informative, do not
fully replicate the complexity of tumor biology within an organism.
Furthermore, the pharmacokinetics, bioavailability, and potential
toxicity of these botanical compounds in humans are inadequately
understood. The absence of standardized protocols for extraction,
purification, and dosing further complicates the translation of
in vitro findings into clinical practice. Moreover, the mechanisms
by which these compounds induce ferroptosis remain incompletely
understood. Although key pathways and targets have been
identified, the intricate network of interactions and regulatory
mechanisms remains poorly elucidated. This gap in knowledge
hinders future clinical applications.

It is recommended that future studies investigate the potential
synergistic effects of botanical drugs in conjunction with existing
therapies, such as chemotherapy, immunotherapy and targeted

TABLE 2 Clinical trial in selected botanical drugs and isolated metabolites regulate ferroptosis in lung cancer.

Botanical drugs Year Project No. Results

Curcuma longa L 2014 A Open-label Prospective Cohort Trial of Curcumin Plus Tyrosine Kinase Inhibitors (TKI) for EGFR
-Mutant Advanced NSCLC (CURCUMIN)

NCT02321293 No results
posted
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therapy. Furthermore, the establishment of standardised protocols
for the extraction, purification and characterisation of botanical
drugs is essential for ensuring the reproducibility and comparability
of research findings. To ensure the consistency, safety, and efficacy
of these compounds, rigorous quality control measures are
imperative. Following successful preclinical evaluations, clinical
trials are crucial to determine the therapeutic potential, optimal
dosing regimens, and safety in human patients. As the old adage
goes, “It is always dark before the dawn.” Despite the lengthy and
challenging road ahead, we are optimistic that botanical drugs-
induced ferroptosis may pave the way for innovative new strategies
in the treatment of lung cancer.
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Glossary

ACC Acetyl-CoA carboxylase

ACSL4 Acyl-CoA synthetase long-chain member 4

ADE Andrographolide

ALOX Arachidonate lipoxygenase

ART Artesunate

Bax/Bak BCL2-Associated X/BAK antibody

Bcl2/Bcl-xl B-cell lymphoma-2/B-cell lymphoma-extra large

BH4 Tetrahydrobiopterin

CAM Calmodulin

CoA Coen-zyme A

CoQH2 Dihydroubiquione

C-raf C-rapidly accelerated fibrosarcoma

DCR Disease control rate

DHA Dihydroartemisinin

DHODH Dihydroorotate dehydrogenase

DT Dihydroisotanshinone I

FAK Focal adhesion kinase

FOCAD Focadhesin

FTH1 Ferritin heavy chain 1

FTL Ferritin light chain

FZGBF Fuzhenggubenfang

GCH1 GTP cyclohydroxylase 1

GPX4 Glutathione peroxidase 4

GSH Glutathione

HDI Hedyotis diffusa injection

HMOX1 Heme-Oxygenase 1

HSP90 Heat shock protein 90

LDH Lactate dehydrogenase

MST Mean survival time

NCOA4 Nuclear receptor coactivator 4

NOX NADPH oxidase

Nrf2 Nuclear factor erythroid2-related factor 2

NSCLC Non-small cell lung cancer

PL-PUFA-OOH Phospholipid hy-droperoxides

PRIM2 DNA primase subunit 2

PUFAs Polyunsaturated fatty acids

PUFA-PLS Polyunsaturated-fatty-acid-containing phospholipids

RGP Red ginseng polysaccharide

ROS Reactive oxygen species

SAG Sanguinarine

SCLC Small cell lung cancer

SFN Sulforaphane

SI Sinapine

SLC3A2 Solute carrier family three member 2

SLC7A11 Solute carrier family seven member 11

STUB1 STIP1 homologous and U box containing protein 1

TCA Tricarboxylic acid

Tim-AⅢ Timosaponin AⅢ

TTP Time to progression

USP14 Ubiquitin-specific protease 14

VDAC Voltage-dependent anion channel.
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