Skip to main content

REVIEW article

Front. Pharmacol.
Sec. Cardiovascular and Smooth Muscle Pharmacology
Volume 15 - 2024 | doi: 10.3389/fphar.2024.1430236
This article is part of the Research Topic Exploring Small Molecule Inhibitors in Cardiovascular and Cerebrovascular Diseases View all 3 articles

NLRP3 inflammasome in atherosclerosis: mechanisms and targeted therapies

Provisionally accepted
  • Shandong University, Weihai, Weihai, China

The final, formatted version of the article will be published soon.

    Atherosclerosis (AS) is the primary pathology behind various cardiovascular diseases and the leading cause of death and disability globally. Recent evidence suggests that AS is a chronic vascular inflammatory disease caused by multiple factors. In this context, the NLRP3 inflammasome, acting as a signal transducer of the immune system, plays a critical role in the onset and progression of AS. The NLRP3 inflammasome is involved in endothelial injury, foam cell formation, and pyroptosis in AS. Therefore, targeting the NLRP3 inflammasome offers a new treatment strategy for AS. This review highlights the latest insights into AS pathogenesis and the pharmacological therapies targeting the NLRP3 inflammasome, focusing on optimal targets for small molecule inhibitors. These insights are valuable for rational drug design and the pharmacological assessment of new targeted NLRP3 inflammasome inhibitors in treating AS.

    Keywords: NLRP3 inflammasome, Atherosclerosis, mechanisms, targeted therapies, small molecule inhibitors

    Received: 09 May 2024; Accepted: 17 Jul 2024.

    Copyright: © 2024 陈 and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Xia Li, Shandong University, Weihai, Weihai, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.