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Given that there is currently no clinically approved drug or vaccine for
parainfluenza 3 (PIV3), we applied a drug repurposing method based on
disease similarity and chemical similarity to screen 2,585 clinically approved
chemical drugs using PIV3 potential drugs BCX-2798 and zanamivir as our
controls. Twelve candidate drugs were obtained after being screened with
good disease similarity and chemical similarity (S > 0.50, T > 0.56). When
docking them with the PIV3 target protein, hemagglutinin-neuraminidase
(HN), only oseltamivir was docked with a better score than BCX-2798, which
indicates that oseltamivir has an inhibitory effect on PIV3. After the distance (Zdc)
between the drug target of 14 drugs and the PIV3 disease target wasmeasured by
the network proximity method based on the PIV3 disease module, it was found
that the Zdc values of amikacin, oseltamivir, ribavirin, and streptomycin were less
than those of the control. Thus, oseltamivir is the best potential drug because it
met all the above screening requirements. Additionally, to explore whether
oseltamivir binds to HN stably, molecular dynamics simulation of the binding
of oseltamivir to HN was carried out, and the results showed that the RMSD value
of the complex tended to be stable within 100 ns, and the binding free energy of
the complex was low (−10.60 kcal/mol). It was proved that oseltamivir screened
by our drug repurposing method had the potential feasibility of treating PIV3.
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Introduction

There is no specific antiviral treatment for parainfluenza (PIV) illness. Most people with
PIV illness will recover on their own. However, PIVs can also cause more serious illnesses in
children and adults older than 65 years, including bronchitis, bronchiolitis, and pneumonia
(Moscona, 2005; Schmidt et al., 2011). Among PIVs, parainfluenza 3 (PIV3) is the most
prevalent subtype, and it is not only a most common cause of acute respiratory infections in
infants, but it also causes severe respiratory symptoms in older adults,
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immunocompromised patients, and transplant recipients (Branche
and Falsey, 2016). Despite causing serious health problems, there is
currently no clinically approved drug or vaccine for PIV3 (Contreras
et al., 2021; Rafeek et al., 2021). PIV3 infects its target cells through
the coordinated action of the hemagglutinin-neuraminidase
receptor-binding protein (HN) and the fusion envelope
glycoprotein, which together comprise the molecular fusion
machinery (Palmer et al., 2014; Van Den Bergh et al., 2022).
Peptide-fusion protein inhibitors that target the fusion envelope
glycoprotein are challenging to utilize in clinical settings because of
limitations such as high manufacturing costs, low oral
bioavailability, and severe injection site reactions caused by the
immunogenicity of virus-derived peptides (Aggarwal and Plemper,
2020). Current preclinical development and clinical trials for
treating PIV3 primarily focus on inhibitors that target the HN
protein (Chibanga et al., 2019; Rota et al., 2023).

At present, the common PIV3 drug research and development is
carried out on HN inhibitors using virtual screening by molecular
docking. Molecular docking is one of the most commonly used
strategies in structure-based drug design (Parihar et al., 2022; Tayubi
andMadar, 2023) and has been widely employed in the development
of anti-PIV3 drugs (Indumathi et al., 2019; Bhasin et al., 2022).
Zanamivir successfully docked with HN, and it has been proven to
have anti-PIV3 effects in vitro, but is not suitable for clinical use due
to its relatively high IC50 (Bailly et al., 2016). In the current clinical
studies of PIV3, BCX-2798 has been shown to inhibit HN in mouse
models, and this research has only recently progressed to the clinical
stage. Further trials are necessary before it can be practically applied
(Alymova et al., 2005). However, these classical screening methods
often ignore the progression of the disease, and drug safety also
needs to be fully assessed.

Recently, drug repurposing strategies, with the advantage of
drug safety, have become strong approaches to the research and
development of antiviral drugs (Kumar et al., 2021; Sonkar et al.,
2021). The disease similarity and chemical similarity were calculated
to uncover associations between diseases and drugs for use in drug
repurposing (Li et al., 2018; Yin et al., 2023; Pushpakom et al., 2019).
Interestingly, zanamivir and BCX-2798 are both derived from
Neu5Ac2en, the neuraminidase (NA) inhibitor (Alymova et al.,
2004). Their ability to inhibit PIV3 suggests that structurally
similar compounds often share similar physicochemical
properties and biological activities (Durai et al., 2020). Apart
from structure-based virtual screening (Khan et al., 2023), the
network-based drug-disease proximity method that uncovers the
relationship between drug targets and disease modules is widely
used (Yildirim et al., 2007; Zhou et al., 2020), and it is utilized not
only for predicting the potential side effects but also for repurposing
approved drugs for new indications (Guney et al., 2016; Wang et al.,
2021; Xi et al., 2023).

Therefore, this research focuses on the following: 1) multi-
similarity methods to understand the intrinsic link between
diseases and drugs, 2) the structural characteristic link of
potential drugs, and 3) the network proximity of disease targets
and drug targets to understand drugs related to the occurrence and
onset of diseases. We combined disease and chemical similarity
methods to screen candidate drugs against PIV3. Molecular docking
and network proximity methods were used to identify the best anti-
PIV3 drug. Finally, the binding ability and stability of candidate

drugs and key disease targets in a dynamic environment were
evaluated using molecular dynamics simulation.

Methods

Our approach involves collecting data, calculating disease
similarity to PIV3, and assessing chemical similarity to potential
existing drugs for PIV3. We further screen through molecular
docking and assess network proximity between the drug and
PIV3. Finally, we conduct molecular dynamics simulations and
calculate the binding free energy. The workflow is shown in Figure 1.

Data collection

The Medical Subject Headings (MeSH) for PIV3 were obtained
from https://nlmpubs.nlm.nih.gov/projects/mesh/2022/meshtrees/
and were used to calculate the disease similarity of PIV to all
other diseases in the MeSH database that contain Medical
Subject Headings. We obtained the approved drugs (molecular
weight <500) from the DrugBank database (https://go.drugbank.
com) as candidate drugs for drug repurposing. Zanamivir and BCX-
2798 (potential therapeutic drugs for PIV3) were considered
two controls.

Disease targets associated with PIV3 were obtained by using
“parainfluenza”as a search term from GeneCards (https://www.
genecards.org/), OMIM (https://www.omim.org/), and DisGeNET
(https://www.disgenet.org/), excluding non-coding RNA proteins.
The drug targets were sourced from the DrugBank database and
DGIdb (https://dgidb.org). All data were downloaded on 26 March
2024. Disease genes and drug targets were sorted out with the same
format in UniProt using Python 3.9.

Multi-similarity analysis

Multi-similarity analysis, including disease therapy similarity
and drug chemical similarity, was used to virtually screen all
candidate drugs. The disease therapy similarity is calculated
based on the directed acyclic graph (DAG), which is constructed
using grid descriptors (Wang et al., 2007). The disease PIV3 are
represented byDAG(H) � TH, EH{ }, where TH is the set of ancestor
nodes containing node PIV3 and EH represents the set of edges
from the parent node to the child node. InDAG(H), the contribution
of a certain node N to PIV3 (SVH(n)) is calculated as Equation 1:

SVH n( ) � 1 if n � H
max Δ*SVH n′( )∣∣∣∣n′ϵchildren of n{ } if n ≠ H{ (1)

The semantic similarity of PIV3 and disease A (S(H,A)) is
calculated by Equation 2. If S(H,A) >0.5, it indicates that there is
a good similarity between these two diseases.

S H,A( ) �
∑n∈N H( )∩N A( ) SVH n( ) + SVH A( )( )

SV H( ) + SV A( ) (2)

The Tanimoto coefficient (T ) was calculated to assess the
chemical similarity of all drugs. After the MACCS fingerprints of
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all drugs described by PaDEL (Yap, 2011), T is calculated using
Equation 3:

T � c
a + b − c

(3)

where a and b are the numbers of MACCS fingerprint bits of drug A
and B, respectively, and c is the number of fingerprint bits that two
drugs have the same value on the MACCS fingerprint bits. If one
drug has bigger T, the drug is a potential candidate.

The drugs obtained through the multi-similarity method are the
initial candidates for the next round of screening.

Molecular docking

After the candidates were screened by multi-similarity analysis,
we employed molecular docking to assess the docking and
interaction between the screened drugs and the key target HN
(PDB ID: 1V2I) (Indumathi et al., 2019). We utilized a literature-
based method to identify the binding sites due to the absence of
binding ligands in the original PDB structure. The key amino acids
ARG192, ASP216, GLU409, ARG424, ARG502, TYR530, and
GLU549 were designated as active sites (Lawrence et al., 2004;
Mizuta et al., 2014; Bhasin et al., 2022). Molecular docking
analyses were conducted on the selected candidates and two
controls with HN using Discovery Studio 2019 (DS 2019).

Network proximity analysis

Meanwhile, the network proximity calculation will be performed
to assess the shortest path lengths between the candidate drug
targets and PIV3 disease module (Wang et al., 2022; Tang et al.,
2023). This evaluation will determine if the candidate drugs have the
potential to treat PIV3.

PIV3 disease targets were distributed throughout the
protein–protein-interaction (PPI) network (Menche et al., 2015;
Dai et al., 2020), forming the PIV3 disease module and constructing
the largest connected component (LCC) within the PIV3 disease

module. The shortest path length (dc, Equation 4) of the
PIV3 disease target set (V) and drug target set (T) is as follows:

dc V, T( ) � 1
T| |∑t∈T

minv∈V d v, t( ) (4)

Using the average μd(V,T) and standard deviation σd(V, T) of
the reference distribution between randomly selected protein
groups, the calculated distance is converted into the average
relative distance between drugs and PIV3 diseases. Equation 5 is
for calculating the relative average shortest distance between V and
T. If Zdc <0, which means that the distance between the test drug
and the PIV3 disease module is less than the value of the reference
distance, then the test drug is a potential candidate for anti-PIV3
(Morselli Gysi et al., 2021).

Zdc � dc − μdc V, T( )
σdc V, T( ) (5)

Molecular dynamics simulation

After completing the aforementioned screening methods, we
identified drugs that met all the screening requirements and
conducted molecular dynamics (MD) simulations of the drugs
and HN complexes using GROMACS 2022.3.

Our simulation utilized the CHARMM36 force field and
TIP3P solvent (Nayar et al., 2011), with the addition of a
0.15 mol/L NaCl solution to mimic physiological conditions.
The steepest descent method was chosen for energy minimization
(Koulgi et al., 2021). To replicate a physiological environment, a
Langevin thermostat with a pressure of 1 atm and a temperature
of 310 K was applied. The particle mesh Ewald (PME) algorithm
was employed for calculating long-range interactions (Darden
et al., 1993; Gu et al., 2011). Moreover, the simulation employed a
step size of 2 fs/step, with a total of 50,000,000 steps, resulting in a
simulating duration of 100 ns. Post-simulation, an analysis was
conducted on the root-mean-square deviation (RMSD), root-
mean-square fluctuation (RMSF), and radius of gyration (RG) of
the complex.

FIGURE 1
Workflow of PIV3 drug repurposing.
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Additionally, the binding free energy for each frame trajectory in
the last 10 ns (90–100 ns) of the MD simulation was computed using
the MMPBSA.py script and the MMGBSA.py (Valdés-Tresanco
et al., 2021). The total binding energy is denoted as ΔG, and the
Equations 6–8 for calculating ΔG are as follows:

ΔGsol � ΔGNP + ΔGP (6)
ΔEMM � ΔGvdw + ΔGele + ΔGint (7)
ΔGTOTAL � ΔG sol + ΔEMM (8)

where ΔGsol represents the solvation free energy and ΔEMM
represents the gas phase energy. ΔEMM is also equal to the sum
of van der Waals energy (ΔGvdw), internal energy (ΔGint), and
electrostatic energy (ΔGele), whereas ΔGsol is equal to the sum of
polar solvation free energy (ΔGP) and non-polar solvation free
energy (ΔGNP).

Results

Data collection

In this research, 2,585 approved drugs were obtained from the
DrugBank database (see Supplementary Table S1A) as candidates.
Subsequently, the chemical similarity between the controls
(zanamivir and BCX-2798) and the 2,585 candidates were
calculated, respectively. The results are listed in Supplementary
Table S1B, C. At the same time, 324 PIV3 targets were compiled
from the GeneCards, OMIM, and DisGeNET databases (see
Supplementary Table S2).

Multi-similarity analysis

First, we calculated the semantic similarity of 1,364 diseases to PIV3
(see Supplementary Table S3). Only three diseases were identified with
an S > 0.5 to PIV3, including respiratory syncytial virus (RSV) (S =
0.78), Ebola virus (S = 0.55), andOrthomyxoviridae (S = 0.51). Till now,
to treat these three diseases, there were only four clinically approved
drugs, which are zanamivir, oseltamivir, ribavirin, and peramivir.

After the chemical similarity of 2,585 candidates to the two controls
were calculated, it was found that only 12 drugs had T > 0.50, as shown
in Table 1 and Supplementary Figure S1. It means that only 12 drugs
had higher structure similarity to the controls. From Table 1, the
chemical similarity between zanamivir and BCX-2798 is significant (T=
0.77). When we observed their molecular structures, in Supplementary
Figure S1, it was noticed that they share the same pyranic acid core,
polyhydroxy side chain, and amide side chain. Similar to the control,
most of the screened drugs contain oxygen-containing hexatomic rings,
carboxyl groups, and amide structures. These functional groups may
serve as crucial structures for inhibiting the activity of PIV3 andwarrant
further exploration.

Therefore, because two of the four candidates belonged to the 12,
there were 14 selected candidates based on disease similarity
(S(H,A) >0.5) and chemical similarity (T > 0.56) (as shown
in Table 1).

Drug candidates docking to HN

The 14 candidates were molecularly docked with HN (PDB ID:
1V2I), and their docking energy values are listed in Table 1. It was

TABLE 1 Results of drug repurposing.

No. Drug T (zanamivir) T (BCX-2798) CE (kcal/mol) Zdc

1 Streptomycin 0.67 0.56 −19.26 −0.95

2 Acarbose 0.64 0.60 — −0.11

3 Cytarabine 0.64 0.56 −7.59 2.40

4 Streptozocin 0.63 0.72 −19.26 −0.69

5 Amikacin 0.63 0.59 — −2.47

6 Fosdenopterin 0.63 0.56 −22.88 1.21

7 N-acetylglucosamine 0.61 0.57 −21.62 0.80

8 Oseltamivir 0.61 0.57 −24.69 −1.45

9 Plazomicin 0.61 0.59 — −0.27

10 Peramivir 0.61 0.50 −18.90 —

11 Telbivudine 0.60 0.56 −8.05 —

12 Riboflavin 0.59 0.56 −14.98 0.12

13 Regadenoson 0.57 0.56 10.01 1.21

14 Ribavirin 0.54 0.57 10.85 −2.27

a Zanamivir a1.00 0.77 −31.10 −0.93

a BCX-2798 0.77 a1.00 −23.05 —

aRepresents the control, and CE is CDOCKER energy calculated by DS.
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found that only oseltamivir (CE = −24.69 kal/mol) had a lower
docking energy value than BCX-2798 (CE = −23.05 kal/mol), which
indicated that oseltamivir bound to HNmore stably than BCX-2798.
Among all complexes, the top three drugs with stronger interactions
were zanamivir, oseltamivir, and BCX-2798, so oseltamivir was the
best among all the candidates. Visualization was carried out using
DS 2019 and PyMol 2.5.0, as illustrated in Figure 2. We observed
that all three compounds were stably bound to the pocket groove.
Zanamivir was located in the shallow part of the binding pocket,
revealing good flexibility and more options for binding poses. It was
the same for BCX-2798. Oseltamivir occupied the deeper areas of the
binding pocket, showing that oseltamivir had low flexibility, but it
formed a more tightly bound complex. Oseltamivir was a good
potential inhibitor of HN.

Furthermore, the intermolecular interactions of three complexes
were observed and analyzed, and the contribution of key amino acid
residues in binding pockets was explored Figures 2A, 3A. As shown
in Figure 2A, in the three complexes, there were hydrogen bonding,
electrostatic attraction, hydrophobic interaction, and some other

intermolecular forces between small-molecule compounds and key
amino acid residues, which promoted the stability of intermolecular
binding. Most of the hydrogen bonds and electrostatic attraction in
the oseltamivir–HN complex were contributed by ARG and GLU
residues, similar to the two control–HN complexes. Especially, the
amino of oseltamivir was bound to GLU276, amide was bound to
THR426, and carboxyl groups were bound to ARG192 and
ARG424 of HN. Compared with the controls, since the alkylation
of oseltamivir increased the hydrophobicity of the carboxyl side
chain, it can be found that there were some Pi–alkyl interactions
with ILE474 and PHE372 in oseltamivir, leading to more stable
binding. Therefore, it can be concluded that oseltamivir has a strong
bond–bond interaction with amino acids around the HN protein-
binding pocket.

Oseltamivir was a successful classical drug designed case when it
was considered a neuraminidase (NA) enzyme inhibitor in influenza
viruses (Davies, 2010). Then, we compared the molecular docking
results of oseltamivir and NA (PDB ID: 2HTR) (Russell et al., 2006)
to explore the interaction between oseltamivir and PIV3. As shown

FIGURE 2
Interactionmodes of the three drugs docked to different proteins. (A) Interaction diagram of three small molecules with HN (PDB ID:1V2I). a) Pocket
diagram of zanamivir, BCX-2798, and oseltamivir at the same binding site. Pink areas represent amino acids in pockets as hydrogen bond donors. The
green area represents the amino acid in the pocket as the hydrogen bond acceptor. The red stick is zanamivir, the yellow stick is BCX-2798, and the blue
stick is oseltamivir. b) Interaction between three small molecules and key amino acid residues in binding pockets. The green stick is the key amino
acid residue. The green dotted line represents hydrogen bonds, the orange dotted line represents electrostatic attraction, and the pink dotted line
represents hydrophobic interaction. c) Chemical structure diagram of three molecules. (B) Interaction diagram of oseltamivir with NA (PDB ID:2HTR).
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in Figure 2B, the side-chain amides, carboxyl groups, and amino
groups of oseltamivir played crucial roles in inhibiting HN, similar
to inhibiting NA (Laborda et al., 2016). Particularly, the acetamido
fragment was well-accommodated within the cavity-binding
domain both in HN and NA (Guillon et al., 2014). Thus,
oseltamivir has the potential to inhibit PIV3.

Based on the contribution of amino residues binding to the
pocket in Figure 3A and the common parent nucleus of three
compounds (zanamivir, oseltamivir, and BCX-2798), the
structural formula of potential lead compounds is derived, as
shown in Figure 3B. From Figure 3B, the main structural
differences among the three compounds are in R1, R2, R3, and
R4. Among them, R1 mainly formed hydrogen bonds through
residue binding, R2 formed hydrogen bonds and electrostatic
interactions, and R3 and R4 could form hydrogen bonds and
hydrophobic interactions with residues, respectively. From the
analysis of the binding situation of the three molecules, for
example, at the R1 position, BCX-2798 and zanamivir both have
oxygen substitution groups, which can form a strong binding effect,
while oseltamivir does not, indicating that the contribution to the
binding energy here is little. R2 and R4 exhibited good binding
affinity, in which the functional groups at the R2 position of the
three drugs differed but all contained amines, and all substituted
functional groups were alkyl at the R4 position. It indicated that
R2 and R4 both made great contributions, but there were few
differences among the three drugs. However, at the R3 position,
they are all oxygen-substituted long-chain fatty acid groups with
good binding affinity. However, it is an alkoxy group in oseltamivir,

while the others have hydroxyl groups, making it easy to form more
hydrophobic interactions. This indicates that the contribution of this
position is greater than that of R1 when the leading needs
optimization for designing drugs. The side-chain amide and
carboxyl groups of oseltamivir, along with the two controls, play
a crucial role in facilitating complex binding. Various substituents
(guanidine, azide, and amino) at the C4 position (R2) interact with
crucial amino acids to facilitate intermolecular binding. As shown in
Figure 3B, the guanidine group of zanamivir, the azide group of
BCX-2798, and the amino group of oseltamivir are strongly bound
to GLU549, GLN215, and GLU276 through hydrogen bonding or
electrostatic interactions, respectively. In addition, as shown in
Figure 2B, oseltamivir docks to neuraminidase (NA) at the
amino acid residue that also binds to these key groups (amino,
carboxyl, and amides). Thus, oseltamivir may be a good choice for
anti-PIV3 treatment with good docking results.

Network proximity analysis of the
candidates to PIV3

To further explore the potential candidates, we applied network
proximity analysis to confirm it. A total of 324 disease targets were
identified, with 314 targets prominently located in the PPI, to form
the PIV3 disease module (Z = 18.71, P< 0.0001, randomly
1,000 times). In the PIV3 disease module, 231 targets formed the
core disease module, and a total of 223 targets with Z = 6.66 and
p-value = 3.6 × 10-10 formed the largest connected component

FIGURE 3
Amino residues and structural contributions of three drugs’ docking with HN. (A) Key amino acids combine with three kinds of small molecules to
produce various interactive contributions. (B) Contribution of important chemical structures and groups to the formation of various interactions.
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(LCC), as shown in Supplementary Figure S2. It indicates that the
localization of the LCC is significant in this disease module, which
guarantees the formed PIV3 module is of good quality. Hence,
network proximity analysis was based on this PIV3 disease module.

The targets of these 14 drugs were collected from the DrugBank
and DGIdb databases to calculate network proximity (see
Supplementary Figure S4). Then, the network proximity of the
14 candidates to the PIV3 disease module was calculated
separately, and the results are also listed in Table 1. Because
BCX-2798 has not yet been approved for clinical use, the related
targets have not yet been identified, and the drug targets of
telbivudine and peramivir cannot be located in the PPI, only
12 candidates had Zdc values. Table 1 shows only four drugs,
streptomycin, amikacin, oseltamivir, and ribavirin, with lower Zdc
than that of zanamivir (the control, Zdc = −0.93). It means that these
four drugs including oseltamivir were better candidates for anti-
PIV3 treatment according to the network proximity analysis.

Molecular dynamics simulation analysis

Combining the above three screening methods, we arrived at the
results, of which only oseltamivir met all the aforementioned anti-
PIV3 drug screening requirements. We used RMSD to assess the
binding stability of the complexes formed by oseltamivir, zanamivir,
and BCX-2798 with 1V2I over a period of 100 ns. As shown in

Figure 4A, the RMSD of the oseltamivir–1V2I complex gradually
stabilized after 40 ns, and the average RMSD of the oseltamivir–1V2I
complex (0.22 nm) was significantly lower than that of the
zanamivir–1V2I complex (0.25 nm) in the control group,
indicating that it exhibited better structural stability. All
complexes including oseltamivir–1V2I demonstrate good
structural stability.

To assess the compactness of the complex structure, the RG
values were also calculated for the three above complexes and listed
in Figure 4B. As shown in Figure 4B, each set of complexes remained
significantly compact throughout the 100-ns simulation. The
average RGs of the oseltamivir–1V2I complex and the two
control complexes were the same, 2.11 nm. The oseltamivir–1V2I
complex was similar to the two control complexes with a smaller RG
in higher density, which led to a more stable system structure. As
shown in Figure 4C, the RMSF illustrates the flexibility of the
molecule (Awan et al., 2024), and the average RMSF of
zanamivir is 0.11 nm, while the mean RMSFs of both BCX-2798
and oseltamivir were 0.10 nm. Furthermore, in Figure 4C, the three
complexes show similar fluctuations in residue levels in different
regions, leading to improved conformational optimization during
substrate binding. Lower RMSF values may indicate active sites or
binding sites, as these regions tend to become more stable after
binding ligands. In oseltamivir–HN, the RMSF values of the key
residues GLU276 (0.12 nm), GLU409 (0.13 nm), ARG424
(0.08 nm), THR426 (0.10 nm), and ARG502 (0.10 nm) at the

FIGURE 4
Molecular dynamics simulation analysis diagram of the complex at 100 ns. (A) RMSD analysis; (B) RG analysis; (C, D) RMSF analysis (red represents the
bcx-2798–1V2I complex, yellow represents the zanamivir–1V2I complex, blue represents the oseltamivir–1V2I complex, and purple represents the
oseltamivir–2HTR complex).
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binding pocket were very close to the average RMSF (0.10 nm),
indicating that the binding between oseltamivir and the protein was
relatively stable. Both the RMSD and RG of oseltamivir–HN indicate
that the system is stable. The RMSF also shows stable residues near
the ligand binding site, leading us to consider the complex binding to
be stable.

Simultaneously, the binding free energies of the three complexes
were calculated by using MM/PBSA and MM/GBSA, thereby
determining the ligands’ binding affinity at the protein active site
(Bashir et al., 2023), and the results are shown in Table 2. The
binding energy values obtained from the two algorithms are quite
similar. The total binding free energies of oseltamivir–1V2I
(−10.60 kal/mol) and the two controls were less than −9.55 kal/
mol (normal threshold for strong binding), indicating strong
binding ability for both compounds. Therefore, oseltamivir was a
good candidate according to results of molecular dynamics
simulation.

Discussion

In this article, we explored an integrated drug repurposing
method, including disease similarity and chemical similarity as
multi-similarity analysis approaches, molecular docking and
molecular dynamic simulation methods as structure-based
screening approaches, and network proximity analysis, in which
we quantified the network distance between the disease module of
PIV3 and the drug targets to probe the potential anti-PIV3 drugs. In
addition, according to this drug repurposing protocol, we confirm
that oseltamivir is the best potential anti-PIV3 drug.

In our research results, a similar pattern was observed when
oseltamivir inhibited PIV3 and influenza A. As is known, zanamivir
is a successful structural design drug for NA inhibitor, and
oseltamivir is designed using zanamivir as the lead compound.
Among them, the side-chain amides, carboxyl groups, and amino
groups play a crucial role in inhibiting the influenza A virus
(Laborda et al., 2016; Tao et al., 2022), and the acetamido
fragment can be well-accommodated within the cavity-binding
domain (Guillon et al., 2014). In our study, oseltamivir showed
good chemical similarity to zanamivir and BCX-2798. Their shared
side-chain amide and carboxyl group result in similar interactions
when bound to HN using molecular docking, respectively. HN can
accommodate larger acyl groups in the C5 binding region (Guillon
et al., 2014), and the amides of all three complexes provide hydrogen
bonds for protein binding. In the oseltamivir–HN complex, the
amide also forms hydrogen bonds with THR426, which greatly
contributes to the stable binding of the complex. This advantage
distinguishes it from other complexes. The carboxylic acid side chain
of oseltamivir forms hydrogen bonds with the surrounding arginine
(ARG192 and ARG424), which enhances the binding stability
between molecules.

Though some unique structures of oseltamivir can also facilitate
its binding to HN, various substituents at position C4 (e.g.,
guanidine, azido, amide, and amino group) can enter the cavity
around the residue of the active site of PIV3, thereby inhibiting the
activity of PIV3 (El-Deeb et al., 2014; Rota et al., 2023). Specifically,
the guanidine group of zanamivir is tightly bound to the hydrogen
bond of GLU549, and the azido group of BCX-2798 can form
hydrogen bonds with GLN215. The addition of the azido group
significantly inhibits the activity of PIV (Chibanga et al., 2019). The
amino group at the C4 position of oseltamivir enhances the electron-
donating capability of nitrogen ions. This enhancement allows for
the formation of an electrostatic attraction with GLU276 and
GLU409, thereby increasing the charge attraction and binding
force between molecules. Esterification of the oseltamivir side-
chain carboxyl group leads to the elongation of the backbone,
enabling it to penetrate deeper into the grooves of the binding
site, thereby increasing the tightness of the binding complex.
Therefore, the utilization of the chemical similarity method can
offer more effective information for the development of anti-PIV3
drugs. Additionally, employing molecular docking in conjunction
with molecular dynamics simulation methods can enhance the
exploration of the structural interactions.

Searching for drugs based solely on chemical structure makes it
difficult to consider the genetic regulatory processes of the disease
itself. The synergistic functions of a large number of genes during
disease initiation and progression were considered in this study. The
association between PIV3 and oseltamivir based on genes was
explored using network proximity analysis. The proximity can
also be used to define the similarity between two drug candidates
and covered several drug–disease associations. If a drug is proximal
to the PIV3 disease, it is more likely to be effective than a distant
drug. It indicated that the oseltamivir targets are more closely linked
to the PIV3 disease module than those of the control (zanamivir).
The network proximity of candidate targets to the PIV3 disease
genes provides special insights into the candidate mechanism of
action, uncovering the patho-biological components targeted by

TABLE 2 Binding energies of three complexes (kcal/mol).

Parameters Zanamivir BCX-2798 Oseltamivir

MMPBSA

ΔGvdw −32.95 −12.65 −20.70

ΔGele −144.42 −83.30 −20.87

ΔGP 163.58 86.40 35.16

ΔGNP −3.63 −1.98 −4.19

ΔGgas −177.37 −95.95 −41.57

ΔGsol 159.95 84.43 30.97

ΔGTOTAL −17.42 −11.52 −10.60

MMGBSA

ΔGvdw −33.17 −14.76 −21.42

ΔGele −139.74 −93.21 −13.80

ΔGP 154.27 94.82 24.82

ΔGNP −4.56 −2.55 −4.60

ΔGgas −172.92 −107.97 −35.22

ΔGsol 149.70 92.27 20.22

ΔGTOTAL −23.21 −15.71 −15.00
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candidates, and improves the feasibility and interpretability for drug
repurposing.

However, if some drugs cannot be localized within the PPI
network due to the incomplete human interactome network, these
drugs may not be screened by network proximity. Repurposed drugs
may skip phase-I clinical trials, but they still need to undergo phase-
II and phase-III trials to assess their efficacy against new diseases.
Although there are some limitations to this study, this approach
allows for the rapid identification of potential therapeutic agents to
mitigate the effects of emerging epidemics.

While computational methods are robust, clinical data or
experimental validation of oseltamivir’s inhibitory effect on
PIV3 would significantly strengthen the findings. The clinical
data were collected from the Second Affiliated Hospital of
Chongqing Medical University, the Third Affiliated Hospital of
Chongqing Medical University, and the Children’s Hospital of
Chongqing Medical University by searching on Yidu Cloud
(https://www.yiducloud.com.cn/, from January 2016 to June
2024). There were 539 PIV3 cases, including 479 cases of
children and infants under 6 years of age, 14 cases of individuals
aged 7–17 years, 18 cases of individuals over 60 years old, and only
28 adult cases. Till now, there were no clinically approved antiviral
drugs for treating PIV3 infection. Among 539 PIV3 patients, most
mainly received expectorant cough medicine and nebulizer therapy
without antiviral treatment, 203 patients received ribavirin
treatment, and 17 patients were treated with oseltamivir. Of
those 17 patients who were administered off-label oseltamivir, the
patients did not undergo further treatment according to the medical
records. This suggests that oseltamivir has a certain efficacy in
treating PIV3 in clinical settings, aligning with the findings of
our result. Given that most PIV3-infected patients are children,
ribavirin can lead to severe adverse clinical reactions such as
hemolytic anemia and teratogenic mutations (Sinclair et al.,
2017). Oseltamivir is deemed safe for children over 1 year of age
as an influenza treatment and has been FDA-approved for infants
and young children over 14 days old for enhanced safety (Malosh
et al., 2018). Therefore, we recommend considering oseltamivir for
clinical application.

Conclusion

Oseltamivir is screened as a potential anti-PIV3 drug through a
variety of drug repurposing methods as it has been considered an
effective drug in clinical off-label medications for anti-PIV3
treatment in some children’s hospitals in recent years.
Oseltamivir exhibited high similarity to potential PIV3 inhibitors
(zanamivir and BCX-2798), demonstrated strong binding ability to
the key target protein HN, and was closely related to the
PIV3 disease module. Therefore, oseltamivir fulfilled all the
screening requirements and emerged as the most effective anti-
PIV3 drug. The molecular docking results revealed that oseltamivir
and PIV3 were bound through hydrogen bonding, electrostatic
attraction, and hydrophobic interactions. In particular, the
amides, carboxyl, and amino groups in oseltamivir are important
structures for inhibiting PIV3. This multi-similarity drug
repurposing method will be a feasible reference for other disease
and drug repurposing research.
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