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1 Introduction

The prevalence of cancer in 2022, according to World Health Organization (WHO)
data, is 20 million new cases and 9.7 deaths. The comparison of death rates based on gender
is that 1 in 9 men and 2 in 12 women die from cancer (WHO, 2024). New cancer cases in the
United States (US) in 2024 will be 2,001,140, with 611,720 resulting in death (Siegel
et al., 2024).

Cancer is one of the leading causes of death worldwide, with the rate of adoption of new
drugs likely to be slower in clinical practice than expected. New drug development takes a
long time, with an average of 13 years at a cost of ~USD 2–3 billion (Zhang et al., 2020). This
condition has global health and financial burdens (Roth et al., 2018). Discovery and
development of new drugs to overcome this need to be done.

The drug repurposing method is a promising approach that will accelerate the research
and development cycle. This approach is more effective in terms of cost and time than drug
research and development using the de novo drug discovery approach (Tran and Prasad,
2020). Ibrexafungerp, approved by the FDA in 2021 as an antifungal derived from natural-
product-based small compounds, has excellent potential to be developed using repurposing
techniques to become a drug with other functions (Xu et al., 2022). The success of
repurposing techniques in the development of anticancer drugs that have been
approved by the FDA, such as a combination of aspirin, the antibiotic doxycycline,
mifepristone, and the amino acid lysine, is used to prevent cancer metastasis (Wan
et al., 2015).

The method used in this opinion article is a literature review. The literature review
process uses Pubmed, Scopus, and Springer databases with criteria for articles
published from 2015–2024. The article search method uses the query “repurposing
therapy” AND/OR “ibrexafungerp” AND/OR “vulvovaginal candidiasis” AND/OR
“cancer” AND/OR “computational screening” AND/OR “glucan synthase inhibitor”
AND/OR “triterpenoid” AND/OR “ROS” AND/OR “siRNA” AND/OR “cancer
mechanism” AND/OR “Tools” AND/OR “Computational” AND/OR “Artificial
Intelligence” AND/OR “In Silico” AND/OR “Deep Learning” AND/OR “Machine
Learning” AND/OR “bioinformatics.”
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2 Mechanism ibrexafungerp for
anticancer

Ibrexafungerp has antifungal activity by inhibiting (1,3)-β-D-
glucan synthase (Apgar et al., 2021). This mechanism gives

Ibrexafungerp a good toxicity profile in host cells. The
pharmacokinetic profile of Ibrexafungerp is well-classified, with
the ability to penetrate tissues and organs, such as the liver,
lungs, and skin. This pharmacokinetic profile is influenced by the
structure of Ibrexafungerp, which has a core phenanthropyran

FIGURE 1
(A) Mechanism of Ibrexafungerp in inhibiting the neddylation process and (B) Mechanism of Ibrexafungerp as a ROS modulator.
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carboxylic acid ring system at position 15 and 2-amino-2,3,3-
trimethyl-butyl ether at position 14, both of which are derivatives
of the naturally occurring hemiacetal triterpene glycoside
enfumafungin. The pharmacokinetic profile in animals shows
that Ibrexafungerp has a 30%–50% bioavailability when
administered orally and has poor penetration into the central
nervous system. In vitro studies show hydroxylation metabolism
by the CYP3A4 isoenzyme with primary excretion via bile. The
steady-state volume of distribution (Vss) profile in humans averages
600 L with high binding to protein, mainly albumin (Apgar et al.,
2021; Angulo et al., 2022).

The potential of Ibrexafungerp as a cancer therapeutics is based
on the use of antifungals, which have been used as anticancer agents.
Antifungals with anticancer activity include itraconazole,
rapamycin, griseofulvin, clotrimazole, ciclopirox, and nannocystin
A (Li et al., 2022; Mohi-ud-din et al., 2023). The mechanisms of
antifungal drugs that act as anticancers include the function of
increasing autophagy, reducing angiogenesis, increasing tumor
regression, and reducing metastasis (Mohi-ud-din et al., 2023).

Ibrexafungerp has a mechanism as a non-competitive glucan
synthase inhibitor and the exact mechanism as echinocandins as an
antifungal (Jallow and Govender, 2021; Shi et al., 2023; Kumar et al.,
2024). Ibrexafungerp’s activity includes a broad-spectrum anti-
candida fungicide against species resistant to azole drugs.
Capable Candida species associated with ibrexafungerp activity

include auris, dubliniensis, glabrata, guilliermondii, keyfr, krusei,
lusitaniae, parapsilosis, and tropicalis (Phillips et al., 2023). Activity
as a broad-spectrum antifungal, such as Candida species, indicates
that ibrexafungerp may have anticancer activity. The anticancer
activity of broad-spectrum antifungals such as the triazole group,
namely, itraconazole, is related to the mechanism of molecular
smoothened (SMO) D477G mutations, sterol carrier protein 2
(SCP2), voltage-dependent anion channel 1 (VDAC1), and
Niemann-Pick Type C 1 (NPC1) (Weng et al., 2023).

The mechanism of ibrexafungerp has the same action as
micafungin, which is one of the echinocandin classes of
antifungal agents. The mechanisms of action of Ibrexafungerp
and micafungin as antifungals may have mechanisms similar to
anticancer. The predicted mechanism of ibrexafungerp is to inhibit
the neddylation process by stabilizing ubiquitin-conjugating enzyme
2 M (UBE2M). This enzyme is essential in molecular mechanisms
such as DNA damage, apoptosis, and cell proliferation (Mamun
et al., 2023a). The prediction of the Ibrexafungerp mechanism can be
seen in Figure 1A (Mamun et al., 2023b; Mamun et al., 2023a; Yu
et al., 2020b; Zheng et al., 2021; Zhou et al., 2023).

Prediction of the mechanism of ibrexafungerp as a UBE2M
inhibitor can inhibit the neddylation pathway which can reduce
tumor-promoting factors and increase levels of tumor suppressors
thereby improving the occurrence of tumors and prognosis (Zheng
et al., 2021). Anticancers that target UBE2M in the neddylation

TABLE 1 Computational tools in cancer research.

Tools Function Web link Reference

The cancer proteome Atlas V3.0
(TCPA V3.0)

Supports research to visualize and analyze Reverse phase protein arrays
(RPPA) data

http://tcpaportal.org Chen et al. (2019)

DemixTallmaterial Supports research to estimate the proportion of specific cell types
(tumor, stromal and immune cells) simultaneously

https://github.com/wwylab/
DeMixTallmaterials

Wang et al. (2018)

The Cancer Genom Atlas
(TCGA)

Supports research as a Platform that has a catalog of analysis data in
large groups to study cancer genetics

https://www.genome.gov/Funded-
Programs-Projects/Cancer-Genome-Atlas

Tomczak et al.
(2015)

Tumor MAP Supports research for visualization and interactive analysis in exploring
patterns between tumor cells arranged relative to each other based on

their molecules

https://tumormap.ucsc.edu/ Gabriel et al.
(2020)

SurvNet Using one of the artificial intelligence (AI) methods, namely, Deep
Neural Network (DNN), which is used to analyze lung cancer survival

https://bioinformatics.mdanderson.org/
SurvNet/

Wang et al. (2021)

METABRIC, HapMap, Lincs,
KEGG, DrugBank

Identification of drug repurposing results of the best analysis for each
breast cancer subtype

Not Available (NA) Firoozbakht et al.
(2022)

shinyDeepDR The study of personalization of cancer treatment through analysis of
drug response to differences in genomic attributes

https://shiny.crc.pitt.edu/shinydeepdr/ Wang et al. (2024)

iODA Tools used for heterogeneous multi-omics data analysis http://www.sysbio.org.cn/iODA Yu et al. (2020a)

MLSP Bioinformatic analysis tools in breast cancer research to predict
molecular subtypes and prognosis

https://sujiezhulab.shinyapps.io/BRCA/ Zhu et al. (2022)

DEBay A tool that can be used in cancer research related to gene expression
through quantitative PCR data deconvolution

https://sourceforge.net/projects/debay Devaraj and Bose
(2020)

The HPV Induced Cancer
Resource (THInCR)

Tools used to explore the impact of HPV on cellular gene expression
(mRNA and microRNA), changes in gene methylation, and their

relationship to patient survival and features of the immune landscape

https://thincr.ca/ Salnikov et al.
(2022)

DAX-Net The model that utilizes Convolutional Neural Network (CNN) and
Transformer network for multiclass cancer classification

https://github.com/QuIIL/DAX-Net Bui et al. (2024)

ExplORRNet Tool for research related to miRNA expression profiles https://mirna.cs.ut.ee Lawarde et al.
(2024)
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process play a role in posttranslational modification mechanisms
and target protein activity. The neddylation process begins with
NEDD8 which is activated by E1 NEDD8-activating enzyme (NAE-
consists of NAE1 and UBA3). This activation process results in the
formation of the thioester-linked E1-NEDD8 complex which is then
transferred to the NEDD8-conjugating enzyme (E2)/UBE2M (Yu
et al., 2020b; Zheng et al., 2021). Ibrexafungerp inhibits the
NEDD8 mechanism in UBE2M so that it cannot proceed to the
next stage, namely, transferring NEDD8 from charged E2 to lysine
residues in its target (Zhou et al., 2023).

Ibrexafungerp has a structure that belongs to the triterpenoid
class (Angulo et al., 2022; Kumar et al., 2024). The triterpenoid
group has the potential to be a cancer chemotherapy agent with a
mechanism as a reactive oxygen species (ROS) modulator that can
regulate cell survival and function. The impact of ROS on cancer
cells is the mechanism of autophagy and ferroptosis (Endale et al.,
2023; Jiang et al., 2021; Lee et al., 2023; Ling et al., 2022; Zeng et al.,
2023). Autophagy works by causing cellular lipid accumulation and,
ultimately, cell death. Another mechanism is inducing ferroptosis,
which can cause increased chemosensitivity to chemotherapy drugs
that are used to treat cancer cells. The mechanism of ibrexafungerp
as a ROS modulator can be seen in Figure 1B (Ling et al., 2022).

3 Computational approaches
ibrexafungerp

The development of ibrexafungerp as a cancer therapeutic can be
done through 2 methods: experimental screening and computational
(virtual) screening (Oliveira et al., 2023; Prada Gori et al., 2023; Weth
et al., 2024). Experimental screening involves in vivo and in vitro
research with drug-based phenotypic screens and target-based high
throughput assays. Computational (virtual) screening methods
include signature matching (-omics data), artificial intelligence
(machine learning and deep learning), GWAS disease/target
associations, and chemical similarity and molecular docking (Weth
et al., 2024). A virtual screening server that can be used in
computational approaches in the development of drug repurposing
research, namely, DrugRep. The use of DrugRep in drug repurposing
research uses receptor-based and ligand-based screening systems
(Gan et al., 2023). Several tools can be used to develop anticancer
from Ibrexafungerp, some of which can be seen in Table 1.

4 Conclusion

Ibrexafungerp is predicted to have two anticancer mechanisms.
The anticancer mechanism is obtained by inhibiting the neddylation

stage by stabilizing UBE2M, and Ibrexafungerp acts as a ROS
modulator, which acts through cell death mechanisms with
autophagy and ferroptosis.
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