Maintaining metabolic balance relies on accumulating nutrients during feeding periods and their subsequent release during fasting. In obesity and metabolic disorders, strategies aimed at reducing food intake while simulating fasting have garnered significant attention for weight loss. Caloric restriction (CR) diets and intermittent fasting (IF) interventions have emerged as effective approaches to improving cardiometabolic health. Although the comparative metabolic benefits of CR
This study employs a narrative review methodology, systematically collecting, synthesizing, and interpreting the existing literature on TRE and its metabolic effects. A comprehensive and unbiased search of relevant databases was conducted to identify pertinent studies, including pre-clinical animal studies and clinical trials in humans. Keywords such as “Obesity,” “Intermittent Fasting,” “Time-restricted eating,” “Chronotype,” and “Circadian rhythms” guided the search. The selected studies were critically appraised based on predefined inclusion and exclusion criteria, allowing for a thorough exploration and synthesis of current knowledge.
This article synthesizes pre-clinical and clinical studies on TRE and its metabolic effects, providing a comprehensive overview of the current knowledge and identifying gaps for future research. It explores the metabolic outcomes of recent clinical trials employing different TRE protocols in individuals with overweight, obesity, or type II diabetes, emphasizing the significance of individual chronotype, which is often overlooked in practice. In contrast to human studies, animal models underscore the role of the circadian clock in mitigating metabolic disturbances induced by obesity through time-restricted feeding (TRF) interventions. Consequently, we examine pre-clinical evidence supporting the interplay between the circadian clock and TRF interventions. Additionally, we provide insights into the role of the microbiota, which TRE can modulate and its influence on circadian rhythms.