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Depression, a mood disorder characterized by a persistent low mood and lack of
enjoyment, is considered the leading cause of non-fatal health losses worldwide.
Neuroplasticity refers to the brain’s ability to adapt to external or internal stimuli,
resulting in functional and structural changes. This process plays a crucial role in
the development of depression. Traditional Chinese Medicine (TCM) shows
significant potential as a complementary and alternative therapy for
neurological diseases, including depression. However, there has been no
systematic summary of the role of neuroplasticity in the pathological
development of depression and TCM Interventions currently. This review
systematically summarized recent literature on changes in neuroplasticity in
depression and analyzed the regulatory mechanisms of active metabolites in
TCM and TCM formulas on neuroplasticity in antidepressant treatment.
Additionally, this review discussed the limitations of current research and the
application prospects of TCM in regulating neuroplasticity in antidepressant
research.
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1 Introduction

Depression is a mood illness marked by enduring feelings of sadness and lack of
enjoyment. The global average incidence rate is about 4.4%. By 2030, depression is expected
to become the leading cause of disease burden worldwide, being the primary contributor to
non-fatal health loss globally (Rehm and Shield, 2019; Bayes et al., 2020). Selective serotonin
reuptake inhibitors (SSRIs) and other Western medicine therapies are the mainstays of
treatment; however, most medications have delayed effects, high rates of non-
responsiveness, and significant side effects such as headaches, nausea, weight gain, and
chronic dysfunction (Wang et al., 2019; Qu et al., 2021; Wei et al., 2022).

Therefore, developing more effective and safer antidepressant drugs has become an
urgent problem to be solved. Traditional Chinese Medicine (TCM) has a long history of
understanding and treating depression. TCM is known for its multi metabolite, multi target,
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multi link, and multi pathway characteristics, which can act on
multiple aspects of the disease and have high efficacy and low
toxicity. This highlights the advantages and good prospects of
TCM in treating depression. Importantly, compared to Western
medicine, they have the advantages of easy use, good therapeutic
effects, minimal dosage, and fewer side effects. Due to the
shortcomings of existing antidepressants and the urgent market
demand, research on the antidepressant mechanism of TCM has
attracted much attention (Zhuang et al., 2023).

Neuroplasticity refers to the brain’s ability to respond to external
or internal stimuli from the environment or organs, resulting in
functional and structural changes (Vints et al., 2022).
Neuroplasticity is closely related to depression (Tartt et al., 2022),
and is a significant focus for the development of future
antidepressant drugs (Duman et al., 2016). However, there
remains a notable lack of a systematic overview regarding the
role of neuroplasticity in the pathological development of
depression and the intervention of TCM.

Based on the above findings, this review systematically
summarized the changes in neuroplasticity observed in clinical
and preclinical studies of depression by searching relevant
literature from recent years. Furthermore, it explored into the
pharmacological mechanisms through which TCM modulated
neuroplasticity to treat depression, providing scientific basis for
subsequent basic research and clinical applications.

2 Review methodology

To investigate how TCM exerted antidepressant effects by
regulating neuroplasticity, we conducted a comprehensive search
of articles in PubMed, Embase, Web of Science, and ScienceDirect
databases. The search keywords included “Traditional Chinese
Medicine,” “Chinese herbal medicine,” “herb,” “Traditional
Chinese Medicine formulas,” “Traditional Chinese Medicine
metabolites,” “depression,” “major depressive disorder,” “syntactic
plasticity,” and “neuroplasticity.” The retrieved articles were
reviewed by two independent reviewers based on their titles,
abstracts, and full texts, adhering to specific inclusion and
exclusion criteria. The inclusion criteria were: 1) Original articles
written in English; 2) Articles that examined the relevant
mechanisms of TCM in regulating neuroplasticity for the
treatment of depression. Exclusion criteria were as follows: 1)
Articles written in any language other than English; 2) Gray
literature; 3) Editorials; 4) Review articles; 5) Duplicate publications.

3 Overview of neuroplasticity

3.1 Definition of neuroplasticity

Neuroplasticity is a crucial concept in life sciences, describing
how the brain changes and adapts to environmental changes by
continually forming new neural connections (Price and Duman,
2020). It represents the adaptability of the nervous system, enabling
it to adjust to learning, memory, environmental changes, and
rehabilitation following brain injury. The main mechanisms
include the regulation of synaptic strength, structural remodeling,

and the regulation of intrinsic neuronal properties. These processes
are dynamic, involving changes in the number of brain nuclei and
structures, various functions, and numerous interactions (Xing and
Bai, 2020; Dzyubenko and Hermann, 2023). Neuroplasticity is
essential for understanding brain development, learning, and the
regulation of homeostasis in the central nervous system (CNS).

3.2 Classification of neuroplasticity

Neuroplasticity includes two primary types: structural plasticity
and functional plasticity. Structural plasticity refers to changes in
mechanisms that promote neurogenesis, the formation of dendritic
spines, and the growth and repair of axons. It includes changes in the
number and connectivity of synapses, the density of dendritic spines,
and modifications in neural processes like axons and dendrites, as
well as variations in the number of neuronal cells (De Paola et al.,
2006; Knott et al., 2006). On the other hand, functional plasticity
involves synaptic changes between neurons without modifying their
physical structure, such as long-term potentiation (LTP) and long-
term depression (LTD) effects (Castillo, 2012; Marsden, 2013;
Diering and Huganir, 2018). LTP and LTD are crucial
mechanisms that affect cognitive and emotional functions in
depression patients. Intense and sustained stimulation leads to an
increase in neuronal discharge, which in turn enhances the strength
of synapses. This process facilitates learning and memory, thereby
promoting LTP. In contrast, LTD is characterized by a decrease in
the efficacy and connectivity of neuronal synapses (Figure 1 showed
a schematic diagram of neurogenesis).

Neuroplasticity is regulated by several key mechanisms, one of
which is the brain-derived neurotrophic factor (BDNF)/tyrosine
kinase receptor B (TrkB) signaling pathway. The synthesis of BDNF
is triggered by the activation of cyclic adenosine monophosphate
(cAMP) responsive element binding protein (CREB). CREB is
pivotal in facilitating LTP and synaptic plasticity. When BDNF
binds to TrkB receptors, it triggers various signaling cascades, such
as the mitogen-activated protein kinase/extracellular signal-
regulated kinase (MAPK/ERK), phosphoinositide 3-kinase
(PI3K), and mammalian target of rapamycin (mTOR) pathways,
which are responsible for spine enlargement and increased
glutamate sensitivity (Figure 2 showed the regulatory
mechanism) (Bourtchuladze et al., 1994; Tanaka et al., 2008;
Tejeda and Díaz-Guerra, 2017).

4 Neuroplasticity and depression

4.1 Changes in neuroplasticity in depression

4.1.1 Clinical studies
Meta-analysis is a prominent method for evaluating the

effectiveness of public health interventions (Tanner-Smith and
Grant, 2018). In the pathophysiology of depression, impaired
neuroplasticity plays a crucial role, as indicated by a meta-
analysis conducted on the cerebrospinal fluid of individuals with
unipolar depression (Mousten et al., 2022). Studies have shown that
the increase in motor evoked potential amplitude, induced by paired
associative stimulation, weakens during severe depressive episodes
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and normalizes during remission. It suggests the presence of LTP
deficits in individuals with depression (Player et al., 2013; Kuhn
et al., 2016). Furthermore, compared to healthy subjects, patients
with depression, particularly those with refractory depression,
exhibit impaired neuroplasticity in the dorsolateral prefrontal
cortex. Female patients with depression also demonstrate
persistent LTD-like plasticity deficits (Noda et al., 2018; Yu et al.,
2020; Kaneko et al., 2024). Abnormal changes in neuroplasticity-
related proteins have been observed in depression patients (Hidese
et al., 2020). The ratio of BDNF to leptin levels has been associated
with treatment responses in depression and may also be related to
the neuroplasticity of depression, as evidenced by a 12-week follow-
up study (An et al., 2019).

4.1.2 Preclinical studies
4.1.2.1 Depression model induced by stress

Stress is recognized as a normal physiological and psychological
response to both positive and negative situations. Chronic stress, in
particular, plays a key role in the development of mental illnesses such
as depression (Ray et al., 2017; Beurel et al., 2020; Monroe and
Harkness, 2022). Prolonged exposure to chronic stress exacerbates
the phagocytosis of synaptic elements and results in defects in
neuroplasticity (Kokkosis et al., 2024). Synaptic pruning, as a
developmental process, is closely related to synaptic plasticity. In
models of depression induced by chronic unpredictable mild stress
(CUMS), excessive activation of microglia leads to exaggerated synaptic
pruning (Zhang et al., 2022a), accompanied by impairments in synaptic
plasticity (Li et al., 2021a; Yan et al., 2021). Early-life stress increases
susceptibility to depression in adolescent mice by regulating the miR-
34c-5p/synaptotagmin-1 (SYT1) axis and disrupting hippocampal
neuroplasticity (Yu et al., 2024). In a combined model, adult female
rats subjected to maternal-infant separation (MS) and CUMS exhibited
more severe depressive and anxiety-like behaviors, potentially linked to
compromised synaptic plasticity (Huang et al., 2021). In a depression
model where insomnia was induced by CUMS combined with sleep
deprivation, dendritic spines in the hippocampal dentate gyrus (DG)
region were damaged, neural networks were disrupted, and
neuroplasticity was inhibited (Li et al., 2022). Studies have also
demonstrated that the absence of bombesin receptor-activated
protein homologous protein affects hippocampal synaptic plasticity
and exacerbates CUMS-mediated behavioral changes (Yao et al., 2023).
Mechanistic research has revealed that CUMS alters synaptic plasticity
in the nucleus accumbens (NAc) by influencing Kv4.2 channels
through glycogen synthase kinase 3β (GSK3β)-dependent
mechanisms (Aceto et al., 2020). Additionally, CUMS can disrupt
the synaptic plasticity of regenerating neurons in the hippocampus
of ischemic rats via astrocytic glutamate transporter-1 (Yu et al., 2019).

4.1.2.2 Depression model induced by social isolation
Social isolation can induce fatigue, behavioral changes, substance

abuse, and various mental illnesses. These effects can be sustained and
irreversible, impacting both humans and animals and increasing the
risk of developing mental illness (Jaremka et al., 2014; Hueston et al.,
2017). Neuroplasticity-related signals play a crucial role in the impact of
induced isolation on sexual and neurological behavioral deficits (Liu
et al., 2020). Animals subjected to chronic social isolation (CSIS)
displayed depressive-like behavior (Perić et al., 2021), accompanied
by proteomic findings showing dysregulated expression of synaptic

plasticity-related proteins (Filipović et al., 2023). Moreover, animals
raised in isolation exhibited immature dendritic spines that appear
small and thin, with impaired neuroplasticity observed through LTP
testing (Medendorp et al., 2018). However, treatment with fluoxetine
has been shown to alleviate depressive-like behavior induced by CSIS
and regulate neuroplasticity-related proteins (Filipović et al., 2022).

4.1.2.3 Depression mode induced by corticosterone
The hypothalamic-pituitary-adrenal (HPA) axis is a vital

metabolite of the neuroendocrine system. When active, the anterior
pituitary gland releases adrenocorticotropin (ACTH) into the
bloodstream. This signal is received by the paraventricular nucleus
of the hypothalamus, which then produces corticotropin-releasing
hormone. ACTH, in turn, stimulates the adrenal cortex to release
cortisol (CORT) (Frankiensztajn et al., 2020). Excessive activation of the
HPA axis correlates significantly with sustained elevation of CORT
levels and depression. Elevated CORT levels observed in individuals
with depression closely correlate with the severity of depressive
symptoms and poor treatment outcomes (Karin et al., 2020).
Chronic exposure to CORT reduces the structural plasticity of
astrocytes in the hippocampus of mice, leading to hippocampal
atrophy (Zhang et al., 2015). Mice treated with CORT exhibit
depressive-like behavior accompanied by changes in synaptic
plasticity (Crupi et al., 2013; Freitas et al., 2016). Mechanistic studies
have shown that CORT reduces synaptic density and vesicle recycling
by downregulating BNIP3 like (BNIP3L)/NIX, thereby inhibiting
mitochondrial autophagy (Choi et al., 2021).

4.1.2.4 Lipopolysaccharide (LPS) induced depression model
LPS can be found in the outer wall of Gram-negative bacterial

cells, consisting of lipids and polysaccharides. Mouse models
induced with LPS to mimic depression-like symptoms are
commonly used to study the mechanisms of inflammation-
related depression and the therapeutic effects of various drugs
(Yin et al., 2023). Early reports indicated that LPS administration
could induce LTP and depression in the hippocampal CA1 area (Jo
et al., 2001). Recent studies have found that LPS mediates
depressive-like behavior by promoting neuroinflammation in the
basolateral amygdala (BLA), enhancing glutamatergic synaptic
transmission, and increasing the intrinsic excitability of BLA
projection neurons (Zheng et al., 2021). Wu et al. (2019),
through a combination of proteomics and metabolomics, found
that LPS intervention in mice disrupts glutamatergic transmission
and Ephrin receptor signaling, potentially leading to impaired
hypothalamic synaptic plasticity and depressive-like behavior.

4.2 Impact of antidepressant treatment on
neuroplasticity

4.2.1 Chemicals acting on the CNS
Fluoxetine, a widely used SSRI in clinical practice, exerts its

antidepressant effects by enhancing synaptic plasticity (Qian et al.,
2024). It alos modified mood behaviors and hippocampal
neuroplasticity by disrupting the nNOS-CAPON interaction that
links postsynaptic 5-HT1AR activation (Shi et al., 2022).
Additionally, fluoxetine enhances hippocampal neuroplasticity by
promoting axonal formation induced by growth-associated protein
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43 (GAP-43) (Zavvari et al., 2020). Pre-treatment with fluoxetine
has been shown to prevent stress-induced LTD and spatial memory
deficits in the hippocampus of rats (Han et al., 2015). Citalopram,
another SSRI, is composed of two enantiomers, R-citalopram and
S-citalopram, which inhibit serotonin (5-HT) reuptake in the brain,
thereby exerting an antidepressant effect (Yan et al., 2023a). When
combined with Punica granatum, citalopram can alleviate damage
to dendritic spines in the hippocampal DG region (Vega-Rivera
et al., 2023).

Agomelatine, a synthetic analogue of melatonin, exerts its
antidepressant effects by stimulating melatonin receptors
(MT1 and MT2) and antagonizing 5-HT2C receptors
(Maddukuri et al., 2021). Research indicates that agomelatine
improves pathological behavior in stressed mice by modulating
BDNF signaling, synaptic plasticity, and epigenetic remodeling
(Martin et al., 2017). It also demonstrates beneficial effects in
mitigating stress-induced brain damage, as it restores the activity
of hippocampal neurons affected by stress and promotes adult
hippocampal neurogenesis (Dagyte et al., 2010).

Ketamine, a non-competitive N-methyl-D-aspartate receptor
(NMDAR) antagonist, specifically inhibits GluN2B-containing
NMDARs on inhibitory GABAergic interneurons (Sato et al.,
2022). Its antidepressant mechanism involves modulating
neuroplasticity (Clarke et al., 2017), and low concentrations of

ketamine (20 μM) can induce postsynaptic enhancement in the
hippocampal CA1 (Kim and Monteggia, 2020). Its antidepressant
effects are mediated by increased neuroplasticity, including synaptic
actions (Kopelman et al., 2023), and it can “reset the system” by
participating in synaptic plasticity processes to reverse stress-
induced loss of key neural circuit connections (Aleksandrova
et al., 2020). In animal models with chronic pain and depression,
TIAM1-mediated synaptic plasticity is a crucial factor in the
antidepressant effect of ketamine (Ru et al., 2022). Ketamine may
also exert rapid antidepressant effects by enhancing neuroplasticity,
triggering autophagy, and preventing ferroptosis in the nucleus
(Zhang et al., 2022b). Studies have found that ketamine-induced
hippocampal synaptic plasticity during antidepressant treatment
depends on 4E binding proteins (Aguilar-Valles et al., 2021).

4.2.2 Other types of chemicals
Metformin is the first-line treatment for type 2 diabetes,

primarily acting by reducing liver gluconeogenesis and enhancing
glucose metabolism. It also exhibits pleiotropic effects (LaMoia and
Shulman, 2021). Beyond its antidiabetic role, metformin has been
investigated for its potential in treating depression. Studies indicate
that compared to other oral hypoglycemic drugs, metformin is
associated with a lower risk of depression and demonstrates
pleiotropic effects in depression management (Yu et al., 2022).

TABLE 1 Regulation of antidepressant chemicals on neuroplasticity.

Chemical Molecular
formula

CAS
NO.

Main mechanism of action Reference

Fluoxetine C17H18F3NO 5410-89-3 Enhanced synaptic plasticity Qian et al. (2024)

Modified mood behaviors and hippocampal neuroplasticity by disrupting the nNOS-
CAPON interaction that links postsynaptic 5-HT1AR activation

Shi et al. (2022)

Enhanced hippocampal neuroplasticity by promoting axonal formation induced by
GAP-43

Zavvari et al. (2020)

Preventing LTD and spatial memory deficits caused by stress Han et al. (2015)

Citalopram C20H21FN2O 59729-33-8 Combined use with Punica granatum can alleviate damage to dendritic spines in the DG
region of the hippocampus

Vega-Rivera et al.
(2023)

Agomelatine C15H17NO2 138112-
76-2

Modulating BDNF signaling, synaptic plasticity, and epigenetic remodeling Martin et al. (2017)

Restored the activity of hippocampal neurons affected by stress and promotes adult
hippocampal neurogenesis

Dagyte et al. (2010)

Ketamine C13H16ClNO 6740-88-1 Modulating neuroplasticity Clarke et al. (2017)

Inducing postsynaptic enhancement in the hippocampal CA1 region Kim and Monteggia
(2020)

Increased neural plasticity, including synaptic interactions Kopelman et al. (2023)

Prevent the loss of critical neural circuit connections caused by stress Aleksandrova et al.
(2020)

Metformin C4H11N5 657-24-9 Upregulation of the expression of plasticity markers such as synaptic proteins,
deacetylase-1, AMP activated protein kinase, and BDNF

Muñoz-Arenas et al.
(2020)

Improved the survival rate of hippocampal NeuN positive cells and increase the number
of BDNF positive cells stimulated by fluoxetine, thereby enhancing its effect on neural

plasticity

Mendonça et al. (2022)

Improving synaptic plasticity damage Zhou et al. (2021)

Improving the expression of synaptic plasticity markers Lv et al. (2023)

H2S H2S 7783-06-4 Improving synaptic plasticity in hippocampus Liu et al. (2024)
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Additionally, metformin can upregulate the expression of plasticity
markers such as synapsin, sirtuin-1, AMP-activated protein kinase,
and BDNF (Muñoz-Arenas et al., 2020). When combined with
fluoxetine, metformin enhances the survival of NeuN-positive
cells in the hippocampus and increases the number of BDNF-
positive cells stimulated by fluoxetine, thereby enhancing its
impact on neuroplasticity (Mendonça et al., 2022). Furthermore,
metformin has been shown to mitigate synaptic plasticity damage
induced by LPS in rats (Zhou et al., 2021) and improve the
expression of synaptic plasticity markers [anti-microtubule-
associated protein 2, synaptophysin (SYP), postsynaptic density
protein 95], thereby alleviating depressive-like behavior in mice
with allergic rhinitis (AR) (Lv et al., 2023). Hydrogen sulfide (H2S) is
recognized as the third endogenous gas transmitter and can be
produced in mammals through four enzyme pathways (Wu et al.,
2018). H2S has been found to improve hippocampal synaptic
plasticity in a Warburg-dependent manner, alleviating depression
related to Parkinson’s disease (PD) (Liu et al., 2024) (Table 1).

In summary, neuroplasticity undergoes alterations in patients
with depression and is also impaired in stress-induced, social
isolation-induced, CORT-induced, and LPS-induced depression
models. Substances like fluoxetine, ketamine, and metformin can
mitigate depressive symptoms by modulating neuroplasticity,
suggesting that targeted manipulation of neuroplasticity offers
potential for treating depression. However, fluoxetine carries
specific adverse effects in therapeutic contexts, including the
potential for hallucinations, hepatotoxicity, neurotoxicity, and
addiction, which may restrict its clinical application.

5 Pharmacological mechanisms of TCM

At present, the treatment of depression is a major issue in the
medical field, and neuroplasticity is closely related to depression.
Regulation based on neuroplasticity is one of the potential important
measures for the treatment of depression. However, the current
Western medicine for treating depression is mainly developed based
on the “monoamine neurotransmitter hypothesis” of depression, but
drug dependence and withdrawal reactions are common. Therefore,
the development of new antidepressant drugs has become a hot topic
at present. TCM has unique advantages in preventing and treating
depression, including its overall concept, syndrome differentiation,
and treatment methods, as well as the specific characteristics of its
multiple components and targets, which are beneficial to the overall
internal environment while treating depression (Zhuang et al.,
2023). Numerous studies have shown that the active metabolites
and herbal formulas in TCM are involved in regulating
neuroplasticity during the process of antidepressant treatment.

5.1 Active metabolites of TCM

5.1.1 Flavonoids
Engeletin, a flavonoid metabolite initially extracted from the

leaves of Astragalus mongholicus Bunge (Huang et al., 2011), is a
potent natural metabolite with antioxidant and anti-
inflammatory properties (Fang et al., 2023). Recent research
has shown that Engeletin exerts antidepressant effects by

activating the BDNF/TrkB/mTORC1 signaling pathway and
enhancing synaptic plasticity in the prefrontal cortex (Xu
et al., 2023). Baicalein, an important flavonoid found in the
roots Scutellaria baicalensis Georgi, is frequently used in
Chinese medicine and herbal tea preparations to promote
wellbeing (Chandrashekar and Pandi, 2022). In preclinical
studies of antidepressant effects, baicalein has been found to
activate the BDNF/TrkB/CREB signaling pathway and protect
against synaptic plasticity damage in mice with depression
related to PD (Zhao et al., 2021). It also increases the ratio of
mature BDNF (mBDNF) to proBDNF, regulates neuronal
survival and synaptic plasticity, and suppresses
neuroinflammation, effectively alleviating LPS-induced
depressive symptoms in mice (Liu et al., 2022). Baicalin,
extracted from S. baicalensis Georgi, has significant biological
activity, including anti-inflammatory properties (Guo et al.,
2019). Its antidepressant effect involves regulating the
expression of synaptophysin (SYP), PSD95, BDNF, and TrkB,
activating the Rac1-cofilin pathway, and enhancing synaptic
plasticity (Lu et al., 2019).

Quercitrin, a naturally occurring flavonoid found in various
fruits and vegetables, is commonly used as a dietary metabolite and
supplement (Chen et al., 2022a). In mice with LPS-induced
depression, quercitrin intervention could improve hippocampal
damage, restore the abnormal expression of the pCREB/BDNF/
PSD95/Synapsin1 pathway, regulates the PI3K/AKT/NF-κB
signaling pathway, and enhances neuroplasticity (Sun et al.,
2021). Luteolin, another natural flavonoid found in plants such
as Chrysanthemum indicum L., Capsicum annuum L., and Perilla
frutescens (L.) Britton has been studied for its pharmacological
mechanism in treating late-onset depression, involving the
regulation of neuroplasticity-related proteins (Li et al., 2021b; Liu
et al., 2023; Rauf et al., 2024).

Soy isoflavones (SI), essential metabolites of Glycine max (L.)
Merr., have different biological functions. SI can upregulate the
expression of phosphorylated SYP (p-SYP) and PSD95 in the
hippocampus of mice, inhibit neuroinflammation, regulate
tryptophan metabolism, and reverse LPS-induced depressive
behavior (Lu et al., 2022). Additionally, S-equol, a metabolite of
dietary soy isoflavones, has demonstrated antidepressant effects by
increasing synaptic plasticity proteins and inhibiting
neuroinflammation (Lu et al., 2021). Silibinin, a polymorphic
flavonoid extracted from milk thistle [Silybum marianum (L.)
Gaertn.] (Ma et al., 2023), exerts its antidepressant effects by
improving neuroplasticity and increasing neurotransmitter levels
(Yan et al., 2015).

5.1.2 Polyphenols
Polyphenols, metabolites widely distributed in a variety of

plants, have garnered significant interest for their potential
pharmacological actions, particularly their immune-stimulating
and anticancer activities (Wang et al., 2022a). These metabolites
have been found to enhance brain function by directly influencing
cells and processes in the CNS (Grabska-Kobyłecka et al., 2023).
Curcumin,a primary bioactive polyphenolic metabolite extracted
from the rhizomes of Curcuma longa L., has been extensively studied
for its therapeutic properties. In an ovariectomy-induced depression
model, Curcumin was found to be a safe and effective regulator of 5-
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TABLE 2 Information on the action of active metabolites in TCM.

Category Active
metabolites

Source
information

In
vivo/
in vitro

Modeling
method

Dosage Behavioral
testing

evaluation

Main
pharmacological
mechanisms

References

Flavonoids Engeletin Astragalus
mongholicus

Bunge

In vivo CRS 2.5, 5, 10,
20 mg/kg

FST, TST,
OFT, SPT

Activation of BDNF/
TrkB/mTORC1 signaling
pathway and regulation of
PFC synaptic plasticity

Xu et al. (2023)

Baicalein Scutellaria
baicalensis Georgi

In vivo Rotenone 300 mg/kg TST, SPT, OFT,
Rotarod test

Activating the BDNF/
TrkB/CREB signaling
pathway to improve
neural plasticity

Zhao et al.
(2021)

In vivo and
in vitro

LPS In vivo:
3 mg/kg

FST, TST Increase the proportion of
mBDNF/proBDNF to

regulate neuronal survival
and synaptic plasticity

Liu et al. (2022)

Baicalin Scutellaria
baicalensis Georgi

In vivo CMS 25, 50,
100 mg/kg

OFT, FST, SPT Promote the expression of
BDNF and CREB, regulate
neuronal survival and
synaptic plasticity

Lu et al. (2019)

Quercitrin Multiple fruits
and vegetables

In vivo LPS 10, 20,
30 mg/kg

FST, TST,
OFT, SPT

Inhibiting
Neuroinflammation

PI3K/AKT/NF-κB Signal
Transduction and

Improving Damaged
CREB/BDNF

Neuroplastic Signal
Transduction

Sun et al. (2021)

luteolin Chrysanthemum
indicum L.,
Capsicum

annuum L., and
Perilla frutescens

(L.) Britton

In vivo CUMS 25 mg/kg SPT, OFT,
FST, MWM

Regulating
Neuroplasticity Related

Proteins

Liu et al. (2023)

Soy isoflavones soybeans In vivo LPS 10, 20,
40 mg/kg

FST, TST,
OFT, SPT

Upregulation of
hippocampal SYP

phosphorylation and
expression of PSD95

Lu et al. (2022)

Polyphenols Curcumin Curcuma longa L In vivo Ovariectomised 100 mg/kg FST Regulating neural
plasticity

Abd-Rabo et al.
(2019)

In vivo CUMS 40 mg/kg OFT, SPT, FST Regulating neural
plasticity related proteins

(PSD95 and SYP)

Zhang et al.
(2014)

Alkaloids Berberine Coptis chinensis
Franch

In vivo CUMS 2.5, 5,
10 mg/kg

OFT, FST,
Novelty-
suppressed
feeding test
(NSFT)

Promote synaptic
plasticity and regulate

tryptophan metabolism by
inhibiting IDO1 and
activating TPH1

Ge et al. (2023)

In vivo CORT 100,
200 mg/kg

FST, TST,
OFT, SPT

Inhibiting the activation of
NLRP3 inflammasome to

reduce
neuroinflammatory

response and promote
synaptic plasticity and

neurogenesis

Qin et al. (2023)

Saponins Saikosaponin C Bupleurum
chinense DC.

In vivo and
in vitro

In vivo: CSDS
In vitro:
LPS/ATP

In vivo: 0.5,
1 mg/kg

Social
interaction TEST
(SI), SPT, TST,

FST, OFT

Inhibiting
DNMT1 protein to reduce
IL6 methylation, inducing
decreased IL6 expression,
and promoting synaptic

plasticity

Bai et al. (2023)
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TABLE 2 (Continued) Information on the action of active metabolites in TCM.

Category Active
metabolites

Source
information

In
vivo/
in vitro

Modeling
method

Dosage Behavioral
testing

evaluation

Main
pharmacological
mechanisms

References

Ginsenoside Rb1 Panax ginseng
C.A.Mey

In vivo CUMS 20 mg/kg FST, TST,
OFT, SPT

Regulating hippocampal
synaptic plasticity through
the miR-134 mediated

BDNF pathway

Wang et al.
(2022b)

In vivo and
in vitro

In vivo: CUMS
In vitro: LPS-

ATP
stimulation

In vivo:
10 mg/kg

OFT, FST, SPT Regulating mitophagy and
NF-κB pathway to inhibit

astrocyte pyroptosis,
thereby inhibiting

neuroinflammation and
enhancing synaptic

plasticity

Li et al. (2023a)

Ginsenoside-Rg1 Panax ginseng
C.A.Mey

In vivo LPS 40 mg/kg SPT, FST, OFT,
EPM, MWM

It has a synergistic effect
with volumetric running,
with anti-inflammatory
and improved neural
plasticity functions

Wang et al.
(2023a)

Terpenoids Geniposide Gardenia
jasminoides J.Ellis

In vivo prenatal
restraint stress

25, 50,
100 mg/kg

SPT, OFT, FST Regulating the HPA axis
and improving the

expression of synaptic
plasticity related proteins

Ma et al. (2024)

Paeoniflorin Paeonia lactiflora
Pall

In vivo CUMS 20 mg/kg SPT, FST,
TST, MWM

Improving LTP in
hippocampal CA1 region

and upregulating
hippocampal dendritic

spine density and
expression levels of BDNF

and PSD95

Liu et al. (2019)

Oleanolic acid Olea europaea L In vivo Maternal
separation

30 mg/kg OFT, EPM,
Splash test, FST

Both OA and UA can
upregulate synapsin levels,

and OA can also
upregulate the expression

level of PSD95

Kong et al.
(2023)

Ursolic acid Exists in various
plants

Polysaccharides Polysaccharides
from

Polygonatum
cyrtonema Hua

Polygonatum
cyrtonema Hua

In vivo Single
prolonged
stress

200, 400,
800 mg/kg

OFT, EPM, Fear
conditioning

task

Relieve oxidative stress
and neuroinflammation,
and act on the Nrf2/HO-
1 signaling pathway to

improve synaptic damage

Xie et al. (2024)

Inulin Inula helenium L In vivo CUMS 0.037 g of
inulin/kcal

SPT, FST, OFT,
TST, EPM

Enhancing CREB/BDNF
signaling to improve

neurogenesis and synaptic
plasticity

Wang et al.
(2023b)

Polysaccharide-
rich fraction from

Schisandra
chinensis (Turcz.)

Baill

Schisandra
chinensis (Turcz.)

Baill

In vivo Olfactory
bulbectomy

50, 200,
800 mg/kg

FST, TST,
Locomotor
activity test

Improving abnormal
synaptic plasticity
(upregulating

PSD95 expression),
inhibiting excessive HPA

axis activity, and
regulating gut microbiota

Zhu et al. (2024)

Botanical drugs
extracts

Saffron Extract
(Affron®)

Saffron (Crocus
sativus L.)

In vivo Unpredictable
chronic mild

stress

100,
200 mg/kg

SPT Adjusting the HPA axis to
increase hypothalamic

neural plasticity

Kim et al. (2023)

Blueberry Extract Blueberry
(Vaccinium spp.)

In vivo LPS 100,
200 mg/kg

OFT, FST Downregulation of
hippocampal AChE
activity, inhibition of

neuroinflammation, and
potential protection of

neuroplasticity

Spohr et al.
(2023)
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HT, similar to fluoxetine and neurotrophic E2, and was involved in
regulating neuroplasticity (Abd-Rabo et al., 2019; Zia et al., 2021).
Additionally, in the CUMS model, Curcumin was found to improve
depressive-like behavior in animals by regulating the expression of
synaptic plasticity proteins (Zhang et al., 2014).

5.1.3 Alkaloids
The defining characteristic uniting the diverse class of chemicals

known as alkaloids is the presence of a nitrogen atom in a
heterocyclic ring (Ziegler and Facchini, 2008). Berberine, an
isoquinoline alkaloid derived from the Chinese botanical drug
Coptis chinensis Franch. and related Berberis species, possesses a
broad variety of pharmacological effects (Song et al., 2020). Studies
have shown that Berberine effectively treats depression by inhibiting
neuroinflammation and improving gut microbiota (Zhu et al., 2017;
Yang et al., 2023a). Berberine has multi-target and multi-pathway
antidepressant characteristics (Gao et al., 2024). Recent research has
emphasized the impact of Berberine on neuroplasticity in the
context of depression. In mouse models of depression treated
with Berberine, an increase in neuronal and synaptic plasticity
has been observed. Berberine targets enzymes such as tryptophan
5-hydroxylase one and indoleamine 2,3-dioxygenase one involved in
tryptophan metabolism, thereby improving depressive symptoms in
CUMS stimulated mice (Ge et al., 2023). Additionally, Berberine’s
antidepressant effect is accompanied by a reduction in
neuroinflammatory responses through the inhibition of
NLRP3 inflammasome activation, promoting plasticity and
neurogenesis to alleviate neuronal damage (Qin et al., 2023).

5.1.4 Saponins
Saponins, naturally occurring substances found in a wide range

of plants, have garnered interest for their potential
pharmacological properties (Zhang et al., 2023). Saikosaponin
C, a metabolite purified from the traditional Chinese botanical
drug Bupleurum chinense DC., has been studied for its effects on
depression. Recent reports indicate that saikosaponin C reduces
IL6 levels by inhibiting DNA methyltransferase one protein,
leading to a decrease in IL6 expression. This metabolite
promotes synaptic plasticity and alleviates depression-like
behavior induced by chronic social defeat stress (Pan et al.,
2019; Bai et al., 2023).

Ginsenoside Rb1, one of the main ginsenosides found in Panax
ginseng C.A.Mey., is known for its neuroprotective properties (Ni
et al., 2022). Research has shown that ginsenoside Rb1 can alleviate
depressive symptoms induced by CUMS by modulating
hippocampal synaptic plasticity through the miR-134-mediated
BDNF signaling pathway (Wang et al., 2022b). Additionally,
ginsenoside Rb1 regulates mitochondrial autophagy and the
NF-κB pathway to inhibit astrocyte apoptosis, thereby reducing
neuroinflammation and enhancing synaptic plasticity to maintain
nervous system homeostasis (Li et al., 2023a). Ginsenoside Rg1,
another key metabolite of P. ginseng C.A.Mey., has gained
attention for its potential in preventing neurological diseases,
especially dementia and depression (Yang et al., 2023b). It has
been found to synergize with exercise in treating depression by
reducing inflammation and improving neuroplasticity (Wang
et al., 2023a).

TABLE 2 (Continued) Information on the action of active metabolites in TCM.

Category Active
metabolites

Source
information

In
vivo/
in vitro

Modeling
method

Dosage Behavioral
testing

evaluation

Main
pharmacological
mechanisms

References

Other types Honokiol Magnolia
grandiflora L

In vivo and
in vitro

In vivo: CUMS 10 mg/kg OFT, SPT Activate the HIF-1α/
VEGF signaling pathway
and upregulate the protein
expression levels of SYP

1 and PSD 95

Fan et al. (2022)

Salidroside Rhodiola rosea L In vivo and
in vitro

In vivo: CORT
or LPS

In vitro: CORT
or nigericin

20,
40 mg/kg

OFT, SPT, FST Upregulation of BDNF
expression, improvement
of synaptic plasticity, and
inhibition of P2X7/NF-
κB/NLRP3 signaling
pathway mediated

pyroptosis

Chai et al.
(2022)

Crocin Crocus sativus L In vivo and
in vitro

In vivo: CUMS 12.5,
25 mg/kg

SPT, TST,
FST, OFT

Regulating the Wnt/β-
catenin signaling pathway

to promote adult
hippocampal
neurogenesis

Tao et al.
(2023a)

In vivo Prenatal stress 10, 20,
40 mg/kg

OFT, TST, FST,
SPT, NSFT

Regulating hippocampal
synaptic plasticity related

proteins

Wu et al. (2020)

Panaxynol Panax ginseng
C.A.Mey

In vivo CUMS 1.0 mg/kg OFT, EPM, SPT Regulating the HPA axis,
promoting the release of

5-HT and DA, and
improving hippocampal

synaptic plasticity

Sun et al. (2020)

Frontiers in Pharmacology frontiersin.org08

Lv et al. 10.3389/fphar.2024.1426769

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1426769


5.1.5 Terpenoids
The largest class of natural products is terpenoids, offering a

plethora of potential therapeutic candidates (Huang et al., 2012).
Gardenia jasminoides J. Ellis contains a type of iridoid glycoside
called geniposide, which has various of biological benefits, including
anti-neurodegenerative effects (Shen et al., 2020a). In a mouse
model of postpartum depression, researchers observed excessive
activation of the HPA axis and abnormal expression of proteins
related to synaptic plasticity. Treatment with geniposide can
alleviate these pathological phenomena and improve depressive-
like behavior in mice (Ma et al., 2024). Xia et al. (2021) found that
iridoids from Gardeniae fructus exerted antidepressant-like effects
by stimulating AMPAR/mTOR signaling to enhance synaptic
plasticity. For over a millennium, Paeonia lactiflora Pall. has
been used in TCM to address ailments related to pain,
inflammation, and the immune system (Zhang and Wei, 2020).
Paeonia lactiflora Pall. produces a water-soluble monoterpene
glycoside known as paeoniflorin (Cao et al., 2023), effectively
reversing LTP damage induced by CUMS in the hippocampal
CA1 region. Additionally, it can prevent CUMS-induced changes
in dendritic spine density in the mouse hippocampus and
downregulate BDNF and postsynaptic density protein 95
(PSD95) expression (Liu et al., 2019).

The pentacyclic triterpenoid chemical oleanolic acid (OA) is a
naturally occurring substance extracted from various plants,

including Olea europaea L. (Luo et al., 2024). Ursolic acid (UA)
is another naturally occurring pentacyclic triterpenoid found in
plants (Li et al., 2023b). Kong et al. (2023) conducted a study
comparing the antidepressant effects of OA and UA, and found
that in a depression model induced by CMS, OA was more effective
than UA at reversing the depressive-like behavior induced by MS. In
their mechanistic study, it was found that both OA and UA
treatments reversed the decrease in synapsin expression levels
caused by MS, but only OA upregulated the expression level of
PSD-95 (Kong et al., 2023).

5.1.6 Polysaccharides
Polysaccharides are carbohydrate polymers composed of at least

ten monosaccharides linked by glycosidic linkages (Yi et al., 2020).
They are found in plants, microbes, bacteria, fungi, and seaweed all
contain polysaccharides, playing crucial roles in various
physiological processes (Chen et al., 2017). Post-traumatic stress
disorder (PTSD) is a type of depression syndrome, and Xie et al.
(2024) found that polysaccharides from Polygonatum cyrtonema
Hua can improve PTSD-induced behavioral abnormalities and
synaptic damage in mice by reducing oxidative stress and
neuroinflammation, and by acting on the Nrf2/HO-1 signaling
pathway. Inulin, a non-digestible fructan-type carbohydrate, was
originally isolated from the roots of Inula helenium L. (Illippangama
et al., 2022). Studies suggest that inulin improves neurogenesis and

FIGURE 1
Schematic diagram of neurogenesis in structural plasticity.
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synaptic plasticity by enhancing CREB/BDNF signaling, prevents
CUMS-induced reduction in blood-brain barrier permeability,
reduces neuroinflammation, preserves intestinal barrier integrity,
and promotes the production of short-chain fatty acids (SCFAs)
(Wang et al., 2023b). Schisandra chinensis (Turcz.) Baill., belonging
to the Magnoliaceae family and has been widely used as a medicinal
plant in China for centuries. Modern pharmacological research has
revealed the anti-inflammatory and anti-aging properties of S.
chinensis and its active metabolites (Bian et al., 2022). Notably,
studies have shown that the polysaccharide-rich fraction from S.
chinensis (Turcz.) Baill. exhibits antidepressant effects in olfactory
bulbectomized mice by enhancing abnormal synaptic plasticity
(upregulating PSD95 expression), suppressing excessive activity of
the HPA axis, and regulating gut microbiota (Zhu et al., 2024).

5.1.7 Botanical drugs extracts
Botanical drugs extracts are considered valuable for their

comprehensive active properties, driven by complex biochemical
interactions and synergistic effects among their natural metabolites
(Pace and Martinelli, 2022). Saffron (Crocus sativus L.), a well-
known natural product, has long been used to prevent and treat
different disorders (Ghaffari and Roshanravan, 2019). In rats
exposed to chronic mild stress (CMS), repeated administration of
doses of 100 mg/kg and 200 mg/kg doses of Saffron Extract
(Affron®) effectively normalized HPA axis dysregulation.
Moreover, hypothalamic neuroplasticity showed a significant

dose-dependent increase following treatment with Saffron Extract
(Affron®) (Kim et al., 2023). Blueberry (Vaccinium spp.), a member
of the Vaccinium genus, is recognized as one of the top five
nutritious foods for humans and is often referred to as the “king
of fruits.” This reputation has fueled considerable interest in the
market for plant-based prebiotics (Duan et al., 2022). Blueberry
Extract has demonstrated efficacy in alleviating depression-like
behavior in LPS-induced mice. It also mitigates the increase in
acetylcholinesterase (AChE) activity in the hippocampus induced by
LPS and inhibits the mRNA expression of TNF-α, IL-1β, and IL-10
in the cerebral cortex following LPS administration, indicating a
potential protective effect on neuroplasticity (Spohr et al., 2023).

5.1.8 Other types of active metabolites
Honokiol is a versatile lignan metabolites naturally occurring in

plants likeMagnolia grandiflora L., known for its anti-inflammatory
and neuroprotective effects (Rauf et al., 2021; Hu et al., 2023). Fan
et al. (2022) found that the antidepressant mechanism of Honokiol
involved the activation of the HIF-1α/VEGF signaling pathway and
the upregulation of synaptic protein one and PSD 95 expression
levels. Salidroside, an active metabolites found in Rhodiola rosea L.
used in TCM, has various pharmacological effects (Xue et al., 2019).
It enhances BDNF expression, improve synaptic plasticity, and
inhibits pyroptosis mediated by the P2X7/NF-κB/
NLRP3 signaling pathway, thereby providing a treatment for
depression (Chai et al., 2022).

FIGURE 2
Neuroplasticity regulatory mechanisms.
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Crocin is a hydrophilic carotenoid produced in the blooms of C.
sativus L., has been associated with promoting new nerve cell
generation in the adult hippocampus and exerting antidepressant
effects by activating the Wnt/β-catenin signaling pathway (Boozari
and Hosseinzadeh, 2022; Tao et al., 2023a), Neurogenesis plays a key
role in the physiological mechanism of structural neuroplasticity.
Wu et al. (2020) also found that crocin rapidly and persistently
induced antidepressant effects in mice subjected to Prenatal stress
(PNS), acting through the GHSR-PI3K signaling pathway and
modulating the expression of hippocampal synaptic plasticity-
related proteins. Panaxynol, commonly found in plants of the P.
ginseng C.A.Mey., can alleviate HPA axis overactivity induced by
CUMS, promote the release of 5-HT and dopamine (DA), enhance
hippocampal synaptic plasticity, and improve neurotransmitter
effectiveness (Table 2 showed the active metabolites of TCM
information) (Sun et al., 2020).

5.2 TCM formulas

Zhi-Zi-Chi-Tang (ZZCT) is a potent traditional Chinese
herbal remedy with a historical record in the “Shanghan Lun.”
It consists of the dehydrated mature fruits of G. jasminoides
J. Ellis and G. max (L.) Merr. In a rat depression model induced
by CUMS, ZZCT enhances neuroplasticity through the 14–3–3ζ/
GSK-3β/CREB/BDNF signaling pathway. It restores the

expression of synaptic plasticity-related proteins like
MAP2 and PSD95 in the hippocampal CA1 region, enhances
LTP induction, and improves neuronal damage caused by CUMS
(Tao et al., 2023b).

Zi-Shui-Qing-Gan-Yin (ZSQGY) is another traditional Chinese
herbal remedy commonly used in China for depression symptoms.
ZSQGY consists of 12 botanical drugs, including P. ginseng C.A.Mey
et al. In a study conducted both in vivo and in vitro by Zhu et al.
(2023), it was found that ZSQGY significantly improved depression-
like behavior induced by monosodium glutamate (MSG) in rats.
Further investigations revealed that ZSQGY improved synaptic
ultrastructure by upregulating PGC-1α, regulating mitochondrial
function, and inhibiting the expression of pro-inflammatory
cytokines (Zhu et al., 2023).

The traditional remedy Danggui-Buxue Decoction (DBD), is
taken from Li Dongyuan’s work on differentiating endogenous and
exogenous diseases in the Jin and Yuan Dynasties (Shi et al., 2019).
Studies suggest that DBD protects and reshapes hippocampal
neurons by regulating the CREB/BDNF/TrkB pathway. It shows
promise as a potential metabolite for preventing diabetes mellitus
with depression (DD), with ferric acid potentially playing a crucial
role in its effects (Wang et al., 2021). The Erzhi formula, composed
of Ligustrum lucidum W.T.Aiton and Eclipta prostrata (L.) L.,
represents a TCM treatment (Peng et al., 2022). In an in vitro
depression model, the Erzhi formula revealed the capacity to
diminish dexamethasone-induced apoptosis in primary cultured

FIGURE 3
The pharmacological mechanism of TCM regulation of neuroplasticity in the treatment of depression. The red arrow indicates changes caused by
stress, while the green arrow indicates changes caused by TCM.
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TABLE 3 Information on the action of TCM formulas.

TCM
formulas

Main
composition

In vivo/
in vitro

Modeling
method

Dosage Behavioral
testing

evaluation

Main pharmacological
mechanisms

References

Zhi-Zi-Chi-
Tang (ZZCT)

Gardenia jasminoides
J.Ellis and Glycine max

(L.) Merr

In vivo CUMS 3, 6 g/kg SPT, TST,
FST, OFT

Regulating the 14–3–3ζ/GSK-3β/
CREB/BDNF signaling pathway
to enhance neural plasticity

Tao et al.
(2023b)

Zi-Shui-Qing-
Gan-Yin
(ZSQGY)

Panax ginseng C.A.Mey,
Dioscorea oppositifolia L,
Bupleurum chinense DC,
Paeonia lactiflora Pall,
Angelica sinensis (Oliv.)
Diels, Anemarrhena
asphodeloides Bunge,

Cornus officinalis Siebold
and Zucc, Paeonia ×
suffruticosa Andrews,
Smilax glabra Roxb,
Ziziphus jujuba Mill,

Alisma plantago-aquatica
L and Gardenia
jasminoides J.Ellis

In vivo and
in vitro

In vivo:
monosodium
glutamate

In vitro: CORT

12, 24,
48 g/kg

SFT, SPT, OFT Upregulation of PGC-1α to
improve pathological changes in
synaptic ultrastructure, regulate
mitochondrial function, and
inhibit the expression level of
pro-inflammatory cytokines

Zhu et al. (2023)

Danggui-Buxue
Decoction
(DBD)

Astragalus mongholicus
Bunge and Angelica
sinensis (Oliv.) Diels

In vivo CUMS 4, 8 g/kg FST, OFT, TST Regulating the CREB/BDNF/
TrkB pathway to protect and
reshape hippocampal neurons

Wang et al.
(2021)

Erzhi formula Ligustrum lucidum
W.T.Aiton and Eclipta

prostrata (L.) L

In vitro Dexamethasone -- -- Reduce neuronal apoptosis and
improve synaptic damage

Han et al. (2023)

Jiawei-Xiaoyao
pill (JWX)

Gardenia jasminoides
J.Ellis, Paeonia ×

suffruticosa Andrews,
Bupleurum chinense DC. ,
Paeonia lactiflora Pall.,
Angelica sinensis (Oliv.)

Diels, Atractylodes
macrocephala Koidz.,
Smilax glabra Roxb.,

Glycyrrhiza glabra L. and
Mentha canadensis L

In vivo CORT 0.7, 1, 1.4,
1.8 g/kg

OFT, TST,
FST, SPT

Stimulation of CaMKII signaling
pathway, followed by activation

of mTOR/BDNF signaling
pathway, enhances hippocampal

neural plasticity

Zhang et al.
(2024a)

Modified
Xiaoyaosan
(MXYS)

Bupleurum chinense DC.,
Angelica sinensis (Oliv.)
Diels, Paeonia lactiflora

Pall., Atractylodes
macrocephala Koidz.,
Acorus calamus L.,
Curcuma aromatica
Salisb.,Reynoutria
multiflora (Thunb.)

Moldenke, Schisandra
chinensis (Turcz.) Baill.,
Ziziphus jujuba Mill., and
Periploca forrestii Schltr

In vivo CUMS 0.4 g/kg SPT, TST, FST Promote hippocampal
neurogenesis and improve BOLD

signaling

Gao et al. (2018)

SiNiSan (SNS) Citrus × aurantium f.
Aurantium, Paeonia

lactiftora Pall.,
Glycyrrhiza glabra L., and
Bupleurum chinense DC

In vivo Maternal
separation and

CUMS

0.25, 0.5,
1 g/mL

SPT, OFT, FST Activating the CaSR-PKC-ERK
signaling pathway

Shen et al.
(2020b)

In vivo Maternal
separation

2.5, 5,
10 g/kg

SPT, OFT, FST Regulating mitochondrial
function, and improving neural

plasticity

Deng et al.
(2022)

Suanzaoren
Decoction
(SZRD)

Ziziphus jujuba Mill.,
Smilax glabra Roxb.,

Anemarrhena
asphodeloides Bunge,
Oreocome striata (DC.)
Pimenov and Kljuykov,
and Glycyrrhiza glabra L

In vivo and
in vitro

In vivo: CUMS
In vitro: LPS

15 g/kg SPT, FST, OFT Elevated the expression levels of
BDNF, SYP, and PSD95, and

inhibited the activation of TLR4/
MyD88/NF-κB and Wnt/β-

catenin pathways

Du et al. (2024)

In vivo CUMS 2.5, 5,
10 g/kg

SPT, OFT Modulating CaMK signal system Zhang et al.
(2024b)
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cortical neurons and repair synaptic damage. Its neuroprotective
effects were linked to the 11β-hydroxysteroid dehydrogenase 1
(HSD1)-glucocorticoids (GC)/glucocorticoid receptor (GR)
signaling pathway (Han et al., 2023).

Xiaoyaosan, a TCM formula first introduced in the book
“Prescriptions of the Bureau of Taiping People’s Welfare
Pharmacy,” has a historical use in treating mental disorders, such
as depression (Jiao et al., 2024). The ancient Chinese medicine
pharmacopoeia also mentions Jiawei-Xiaoyao pill (JWX), a
traditional Chinese medication, for the treatment of a variety of
illnesses, including mood disorders. JWX consists of nine botanical
drugs, including G. jasminoides J. Ellis et al. Studies have shown that
JWX stimulates CaMKII signaling, leading to the activation of the
mTOR/BDNF signaling pathway, Furthermore, it also enhances
hippocampal neuroplasticity and triggering rapid antidepressant
effects (Zhang et al., 2024a).

For more precise administration in patients with depression,
Gao et al. (2018) introduced an empirical prescription called
modified Xiaoshan (MXYS) based on Xiaoshan consisting of B.
chinense DC et al. In a depression model induced by CUMS, MXYS
was found to promote hippocampal neurogenesis and improve brain
blood oxygen level-dependent signaling, indicating its potential
therapeutic benefits for depression (Gao et al., 2018).

SiNiSan (SNS) is a TCM formula. Originally mentioned in the
Treatise on Febrile Diseases for controlling liver qi (Cao et al.,
2024), SNS has been shown to regulate neuroplasticity by
activating the Calcium sensitive receptor (CaSR)-protein
kinase C (PKC)-ERK signaling pathway. It also helps in
regulating mitochondrial function and improving
neuroplasticity (Shen et al., 2020b; Deng et al., 2022).
Suanzaoren Decoction (SZRD), a TCM combination with a
history of insomnia treatment (Dong et al., 2021; Yan et al.,
2023b). Research by Du et al. (2024) using in vivo and in vitro
experiments demonstrated that SZRD increases the expression
levels of BDNF, SYP, and PSD95. It also inhibits the activation of
the TLR4/MyD88/NF-κB and Wnt/β-catenin pathways, showing
antidepressant effects, and SZRD could also adjust the CaMK
signal system (Zhang et al., 2024b; Du et al., 2024).

Zhi-Zi Hou-Po Decoction (ZZHP), a TCM formula widely used
in depression treatment (Feng et al., 2022). Studies suggest that
ZZHP effectively reverses the decrease of monoamine
neurotransmitters in the hippocampus, maintains their
homeostasis, activates the BDNF/TrkB/CREB pathway, protects
neuronal synaptic plasticity, promotes hippocampal neurogenesis,
and alleviates depression-like symptoms in mice caused by CUMS
(Ye et al., 2024). Kaiyu Zhishen Decoction (KZD) is composed of
botanical drugs such as P. lactiflora Pall. Chen et al. (2024) found
through network pharmacology and experimental verification that
the antidepressant effect of KZD involves regulating the ERK-
CREB-BDNF signaling pathway and promoting neuronal repair,
potentially regulating neuroplasticity (Figure 3 showed the
mechanism of TCM action and Table 3 showed the TCM
formulas information).

6 Conclusion and prospects

Depression is a common long-lasting mental disorder marked
by enduring feelings of sadness, low self-esteem, and potentially
dangerous suicidal ideation. Understanding the pathogenesis of
depression remains a challenge in modern medicine, and there is
a deficiency of therapeutic strategies that may effectively prevent or
entirely reverse depression (Chen et al., 2022b; Xia et al., 2023). At
now, great progress has been achieved in the study of depression,
both at the preclinical level and at the fundamental research level.
Multiple chemicals with antidepressant effects have been developed
in some clinical treatments, but there are still certain side effects and
insufficient efficacy. In addition, there is a lack of suitable and
appropriate depression prediction tools in clinical practice.
Currently, finding antidepressant drugs with multiple targets,
high safety, good efficacy, and minimal adverse reactions is
a major task.

In recent years, TCM has received attention and promotion, and
has been vigorously developed in various aspects. In the research of
antidepressants, TCM has gradually become the focus and hotspot
of research. In the treatment of depression, it is crucial to explore

TABLE 3 (Continued) Information on the action of TCM formulas.

TCM
formulas

Main
composition

In vivo/
in vitro

Modeling
method

Dosage Behavioral
testing

evaluation

Main pharmacological
mechanisms

References

Zhi-Zi Hou-Po
Decoction
(ZZHP)

Gardenia jasminoides
J.Ellis, Citrus × aurantium

f. Aurantium and
Magnolia officinalis

Rehder and E.H.Wilson

In vivo CUMS 0, 30,
40 mg/kg

SPT, TST,
FST, OFT

Activating the BDNF/TrkB/
CREB pathway protects neuronal
synaptic plasticity and promotes

hippocampal neurogenesis

Ye et al. (2024)

Kaiyu Zhishen
Decoction
(KZD)

Paeonia lactiflora Pall.,
Cyperus rotundus L.,
Smilax glabra Roxb.,

Angelica sinensis (Oliv.)
Diels., Panax ginseng
C.A.Mey., Gardenia
jasminoides J.Ellis.,

Atractylodes
macrocephala Koidz.,

Citrus reticulata Blanco.,
Glycyrrhiza glabra L., and
Bupleurum chinense DC

In vivo and
in vitro

In vivo: CUMS
In vitro: CORT

1.579, 4.73,
14.21 g/kg

SPT, FST, TST Regulating the ERK-CREB-
BDNF signaling pathway and
enhancing neuronal repair

Chen et al.
(2024)
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how TCM can complement Western medicine approaches,
leveraging the strengths of TCM’s multi-target effects and
individualized treatments. Research in multi-target antidepressant
therapies is essential to achieve outcomes comparable to modern
medical “cocktail therapy.” TCM offers multiple advantages,
including its emphasis on multiple targets and individualized
treatment in line with the principles of precision medicine.
Active metabolites in TCM, such as flavonoids, polyphenols,
alkaloids, saponins, terpenes, polysaccharides, and TCM extracts,
along with TCM formulas such as ZZCT, ZSQGY, DBD, Erzhi
formula, JWX, MXYS, SNS, SZRD, KZD and ZZHP, play a role in
regulating neuroplasticity through various targets and pathways
when exerting antidepressant effects.

However, the causes and mechanisms of depression have not
been fully elucidated, and there is a lack of unified and relatively
authoritative methods for evaluating depression symptoms in
clinical practice. There is no clear standard for the specific
indicators of depression. More importantly, current research
mostly focuses on the in vivo or in vitro levels, lacking high-
quality clinical research on active metabolites and TCM formulas.
Most studies only explore the mechanism of drug action, and the
connection between TCM theory and neuroplasticity has not been
thoroughly investigated. Furthermore, compared to the active
metabolites of TCM, research on TCM formulas is relatively
weak, and the diversity and depth of neuroplasticity-related
signaling pathways explored are insufficient. There is no active
substance in the world that not only exerts its pharmacological
effects but also has non-specific off-target effects on normal tissues
of the body (Guo et al., 2023). In current research on
antidepressants, there has been insufficient exploration of the
toxicology and side effects of TCM.

In addition, some Chinese herbal medicines lack clear quality
control standards, compromising the stability and consistency of
their chemical metabolites, limiting their clinical application and
complicating the study of their pharmacological mechanisms.
Furthermore, certain active metabolites of TCM face challenges
such as poor stability, solubility issues, and difficulty in crossing
the blood-brain barrier, which need further investigation to
ascertain their efficacy in targeting CNS organs. The
mechanism of neuroplasticity is complex, involving multiple
signaling pathways and cell coordination. While TCM
possesses the advantage of targeting multiple pathways,
current research predominantly focuses on single signaling
pathways with limited detection indicators. This approach fails
to comprehensively elucidate the synergistic mechanisms
underlying TCM’s multi-target and multi-pathway regulation
of neuroplasticity.

Therefore, in future research, multicenter, large-sample clinical
randomized controlled trials guided by TCM theory should be
conducted to explore the efficacy and safety of TCM in treating
depression, as well as the regulatory mechanisms of neuroplasticity,
aiming to provide deeper insights into how TCM works in

antidepressant treatment. Simultaneously, it is essential to
enhance the quality control standards for TCM and strengthen
the exploration of targeted delivery systems for TCM to increase the
concentration and duration of TCM in target organs, thereby
improving the therapeutic outcomes. Furthermore, focusing on
cutting-edge technologies such as combined single-cell
sequencing and spatial transcriptomics is necessary to further
reveal the key regulatory targets of TCM and the regulatory
mechanisms of neuroplasticity at different time points and cell
types. This review systematically elucidated the role of
neuroplasticity in the pathological development of depression
and the regulatory role of TCM. In conclusion, substantial
research efforts are still needed to fully explore the potential of
TCM in modulating neuroplasticity for the prevention and
treatment of depression.
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Glossary

TCM Traditional Chinese medicine

MDD Major depressive disorder

SSRIs Selective serotonin reuptake inhibitors

LTP Long-term potentiation

LTD long-term depression

BDNF Brain-derived neurotrophic factor

TrkB Tyrosine kinase receptor B

cAMP Cyclic adenosine monophosphate

CREB cAMP responsive element binding protein

CUMS Chronic unpredictable mild stress

MS maternal-infant separation

DG Dentate gyrus

CSIS Chronic social isolation

HPA Hypothalamic-pituitary-adrenal

ACTH Adrenocorticotropin

CRH Corticotropin-releasing hormone

CORT Cortisol

BNIP3L BNIP3 like

LPS Lipopolysaccharide

PNs Projection neurons

CNS Central nervous system

BLA Basolateral amygdala

nNOS neural nitric oxide synthase

GAP-43 Growth associated protein 43

5-HT Serotonin

NMDAR N-methyl-D-aspartate receptor

4E-BPs 4E binding proteins

AR Allergic rhinitis

H2S Hydrogen sulfide

SI Soy isoflavones

p-SYP Phosphorylated SYP

OA Oleanolic acid

PTSD Post-traumatic stress disorder

SCFAs Short-chain fatty acids

AChE Acetylcholinesterase

PNS Prenatal stress

DA Dopamine

ZZCT Zhi-Zi-Chi-Tang

ZSQGY Zi-Shui-Qing-Gan-Yin

MSG monosodium glutamate

DBD Danggui-Buxue Decoction

AR Astragali Radix

ASR Angelica Sinensis Radix

DD Diabetes mellitus with depression

HSD1 11β-hydroxysteroid dehydrogenase 1

GC Glucocorticoids

GR Glucocorticoid receptor

JWX Jiawei-Xiaoyao pill

MXYS Modified Xiaoshan

SNS SiNiSan

SZRD Suanzaoren Decoction

ZZHP Zhi-Zi Hou-Po Decoction
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