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Introduction: Pharmacovigilance is vital for drug safety. The process typically
involves two key steps: initial signal generation from spontaneous reporting
systems (SRSs) and subsequent expert review to assess the signals’ (potential)
causality and decide on the appropriate action.

Methods: We propose a novel discovery and verification approach to
pharmacovigilance based on electronic healthcare data. We enhance the
signal detection phase by introducing an ensemble of methods which
generated signals are combined using Borda count ranking; a method
designed to emphasize consensus. Ensemble methods tend to perform better
when data is noisy and leverage the strengths of individual classifiers, while trying
to mitigate some of their limitations. Additionally, we offer the committee of
medical experts with the option to perform an in-depth investigation of selected
signals through tailored pharmacoepidemiological studies to evaluate their
plausibility or spuriousness. To illustrate our approach, we utilize data from
the German Pharmacoepidemiological Research Database, focusing on drug
reactions to the direct oral anticoagulant rivaroxaban.

Results: In this example, the ensemble method is built upon the Bayesian
confidence propagation neural network, longitudinal Gamma Poisson shrinker,
penalized regression and random forests. We also conduct a
pharmacoepidemiological verification study in the form of a nested active
comparator case-control study, involving patients diagnosed with atrial
fibrillation who initiated anticoagulant treatment between 2011 and 2017.

Discussion: The case study reveals our ability to detect known adverse drug
reactions and discover new signals. Importantly, the ensemble method is
computationally efficient. Hasty false conclusions can be avoided by a
verification study, which is, however, time-consuming to carry out. We
provide an online tool for easy application: https://borda.bips.eu.
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1 Introduction

Evidence of the safety of newly approved drugs is often limited.
The pivotal randomized clinical trials (RCTs) are powered to assess
efficacy so that the sample sizes are too small to examine rare safety
outcomes. Patients in RCTs usually have to fulfill several inclusion
criteria and especially vulnerable groups such as pregnant women,
elderly, and multi-morbid persons are often excluded or
underrepresented. Moreover, patients are followed up very closely
under controlled conditions over a limited period of time. Post-
market surveillance or pharmacovigilance is, therefore, essential to
guarantee the safety of drugs in routine care (Routledge, 1998;
World Health Organization, 2002; Härmark and van, 2008;
Suling and Pigeot, 2012; Aronson, 2023). Its primary goal is to
promptly identify any previously unknown adverse drug reactions
(ADRs) associated with drugs already on the market, allowing
necessary precautions to be taken to safeguard the population.
The post-market surveillance process typically comprises of three
key elements or stages, as illustrated in Figure 1A: 1) the use of
spontaneous reporting system (SRS) data, 2) a signal detection
phase, and 3) the evaluation of the results by a committee of
medical experts. In this context, we introduce a novel discovery
and verification approach to pharmacovigilance, shown in
Figure 1B. We start by considering each of the three components
of the conventional approach individually and then propose
potential improvements for each step.

Pharmacovigilance traditionally relies on SRS data as the
primary data source (Routledge, 1998; World Health

Organization, 2002; Suling and Pigeot, 2012; Huang et al., 2014;
Bailey et al., 2016; Alomar et al., 2020; Noguchi et al., 2021; Costa
et al., 2023; Cutroneo et al., 2024). In the last decades, research has
shifted its focus to electronic healthcare (EHC) data which
encompass individual patients’ drug prescriptions and medical
events over time, in addition to personal details, such as age, sex,
region of residence and other factors (Suling and Pigeot, 2012;
Coloma et al., 2012; Zorych et al., 2011; Patadia et al., 2015; Li et al.,
2015; Pacurariu et al., 2015). EHC data offer several advantages over
SRSs: 1) the total count of patients prescribed a drug and/or
experiencing an ADR is available, whereas spontaneous reports
are only filed when the drug was prescribed and an ADR
occurred; 2) issues of under- and over-reporting are less
prominent (Schroeder, 1998; van der Heijden et al., 2002); and 3)
some EHC databases include follow-up data for several million
individuals (Haug and Schink, 2021). There is a strong push to make
electronic healthcare data more accessible. One such initiative is the
European Health Data Space (EHDS; (European Commission,
2024)), which aims to standardize data formats, enhance
interoperability, and ensure privacy protections across the
European Union.

A wide variety of statistical signal detection methods have been
proposed for the detection phase in which one aims to identify
associations between drugs and ADRs, often referred to as signals
(Pacurariu et al., 2015; Simpson, 2011; Arnaud et al., 2017; Dijkstra
et al., 2020). These methods encompass a wide spectrum, including
disproportionality measures (e.g., reporting odds ratio (Stricker and
Tijssen, 1992)), hypothesis tests (e.g., Poisson test (DuMouchel,

FIGURE 1
(A) The conventional pharmacovigilance approach involves applying a single detection method to SRS data to generate a single ranking of ADRs
pairs. This ranking is subsequently submitted to a committee of medical experts. (B) The approach proposed in this paper entails the application of Q
distinct signal detection methods to EHC data, resulting inQ rankings. These rankings are then amalgamated into a unified ranking using the Borda count
method. The consolidated ranking is then presented to the committee. Furthermore, the option to conduct a verification study is provided to the
committee as well. The * indicates that, preferably, the EHC data are split into two sets: one for detection and one for the verification phase.

Frontiers in Pharmacology frontiersin.org02

Dijkstra et al. 10.3389/fphar.2024.1426323

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1426323


1999)), Bayesian shrinkage estimates (e.g., Bayesian confidence
propagation neural network or BCPNN (Bate et al., 1998; Norén
et al., 2006)), random forests (RFs (Breiman, 2001)), and sparse
regression methods like LASSO (Caster et al., 2010; Tibshirani,
1996). Each method assigns a score to each of the drug-ADR pairs in
the data. Following signal generation, these scores are utilized to
create a ranking of the drug-ADR pairs, reflecting the strength of
associations between them.

Each of these signal detection methods possesses distinct
strengths and weaknesses. For instance, the widely-used BCPNN
excels in cases involving innocent bystanders, in which a drug is
mistakenly linked to an ADR since it is frequently co-prescribed
with the actual causative drug (Dijkstra et al., 2020). However, it has
the limitation of evaluating each drug-ADR pair independently. In
contrast, LASSO, while less effective in scenarios with innocent
bystanders (Dijkstra et al., 2020), does not have this constraint and
can assess multiple ADRs simultaneously, even accommodating
potential confounders (Dijkstra et al., 2020; Caster et al., 2010;
Tibshirani, 1996). RFs stand out due to their capability to handle
non-linear relationships (Breiman, 2001); a feature that sets them
firmly apart from the other methods. The choice of signal detection
method is, therefore, non-trivial and depends on many factors, as
highlighted in previous research (Dijkstra et al., 2020; Candore et al.,
2015). In such scenarios, ensemble methods have shown their
effectiveness. They have the capacity to combine the strengths of
individual classifiers and mitigate some of their limitations (Rokach,
2009; Antczak, 2016; Tabassum and Ahmed, 2016). Furthermore,
ensemble methods are particularly adept at handling noisy data (Ho
et al., 1994).

After the signal detection phase, the resulting ranking of drug-
ADR pairs is presented to a committee of medical experts, which
triages the signals and decides on any possible actions, e.g., issue
warnings, request label changes or, in extreme cases, recommend to
withdraw the license (Alomar et al., 2019).

We propose the alternative approach to pharmacovigilance
shown in Figure 1B, with the goal of addressing the challenges
outlined earlier. We choose to utilize EHC data which not only offers
the previously mentioned advantages but also provides the
possibility to execute a subsequent verification phase, as
elaborated on later. Second, to leverage the strengths and address
the limitations of various signal detection methods, we advocate for
employing an ensemble of more than one method, see Figure 1B.
The scores generated by these methods result in varying rankings,
which are then aggregated into a unified ranking using the Borda
count, a method originally developed in the field of electoral
mathematics (Emerson, 2011). The Borda count ranking is
advantageous as it emphasizes consensus (Saari, 1985; 2022).
Furthermore, we extend the options available to the committee
by introducing the option to conduct a verification study using
pharmacoepidemiological methods. This verification phase allows
the committee to assess whether signals persist when standard
methods, such as controlling for confounding, are applied.

In conclusion, we define a new approach to pharmacovigilance
that utilizes an ensemble of signal detection methods and offers the
committee of medical experts the opportunity to verify select signals
through a tailored pharmacoepidemiological study. We assess the
approach’s applicability by conducting a case study using real-world
EHC data, where we apply an ensemble of four established signal

detection methods to uncover potential unknown ADRs associated
with the direct oral anticoagulant rivaroxaban. We perform a
pharmacoepidemiological signal verification study on a subset of
interesting signals selected by the committee.

2 Methods

This section outlines the proposed discovery and verification
approach in general terms, structured around three phases as shown
in Figure 1B: 1) signal detection, 2) signal triage, and 3) signal
verification. To prevent any potential confusion, we define certain
terms used throughout the paper here, as their interpretations may
vary across different fields. Here, we define an adverse drug reaction
(ADR) as any individual event that can be reported to a SRS or
documented in electronic healthcare records, even if the event is not
commonly thought of as a reaction to a drug. A drug-ADR pair
denotes a combination of a specific drug and a particular ADR. A
signal is a drug-ADR pair that is deemed associated after applying a
signal detection method. The identification of a signal is contingent
upon the chosen detection method and the threshold used to
determine whether the drug-ADR pair should be submitted to
the committee. Additionally, we use the term health outcome to
denote a collection of various drug-ADR pairs, typically defined by
the committee of medical experts.

2.1 Signal detection

Typically, the detection of potential previously-unknown ADRs is
carried out using a single signal detection method. This method
assigns a score to each drug-ADR pair within the dataset, reflecting the
strength of the association between the drug and the ADR in question.
These scores may take various forms, such as odds ratios (van
Puijenbroek et al., 2002), p-values (DuMouchel, 1999), or
penalized regression coefficients (Caster et al., 2010). Subsequently,
these scores are utilized to create a ranking of the drug-ADR pairs.
This ranking is then presented to a committee of medical experts for
discussion and signal triage (see Figure 1A). We use the convention
throughout that the lowest rank of 1 corresponds to the strongest
signal and that the highest rank corresponds to no signal.

We propose the use of an ensemble of more than one signal
detection methods. Given the diverse nature of the scores produced
by signal detection methods, it is challenging to directly aggregating
them into a single score. Instead, we opt for aggregating the rankings
generated by the various signal detection methods into a unified
ranking using the Borda count method (Emerson, 2011; Saari, 2022;
de Borda, 1781). Drawing inspiration from electoral mathematics,
the Borda count treats each signal detection method as a “voter” that
ranks drug-ADR pairs in order of preference. The Borda count for
each drug-ADR pair is calculated as the sum of the individual ranks
assigned by the voters/methods. The drug-ADR pair with the lowest
Borda count is deemed to exhibit the strongest signal and is
positioned at the top, while the pair with the highest Borda
count is placed at the bottom, indicating no signal. Tournament-
style counting is employed to handle ties (Narodytska and Walsh,
2014). See the Supplementary Material for a formal definition of
Borda count ranking.
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The essence of the Borda count ranking lies in capturing the
“consensus” among the voters/methods, rather than relying on a
simple majority (Emerson, 2011; de Borda, 1781). To see this, let us
consider an example where the ensemble consists of three methods
and the EHC dataset contains five drug-ADR pairs: A, B, C, D and E.
Table 1 shows the ranking of each method. For instance, Method
1 assigned D rank 1, corresponding to the strongest signal, B second
etc., and ending with A which is deemed to weakest signal. The right
column shows the ranking using the Borda method, with the
corresponding Borda count shown in brackets. For example, B is
ranked second by all methods, resulting in a Borda count of 6. D
ranked first by Method 1 andMethod 2, but last by Method 3, giving
it a Borda count of 1 + 1 + 5 � 7. The remaining drug-ADR pairs are
ranked similarly. In this context, if relying solely onMethod 1 or 2, D
would be considered the strongest signal, but Method 3 ranks it last.
Conversely, drug-ADR pair B consistently receives a high rank from
all methods, making it more likely to be a signal of interest. This
illustrates the consensus-seeking property of the Borda
count method.

2.2 Signal triage

Following the signal detection phase, the committee of medical
experts is provided with the drug-ADR pairs ranking derived from
the Borda count. This committee is entrusted with the task of
filtering out signals, aiming to identify severe and previously
unknown ADRs and taking appropriate actions.

It is important to note that expert knowledge in this part of the
process is paramount. Subject-matter knowledge is required to
assess the biological plausibility that an ADR is indeed caused by
the drug currently under suspicion. Relying solely on the top-ranked
drug-ADR pairs proves insufficient, as these are likely to encompass
known ADRs as well, whereas previously unknown ADRs are more
likely to be further down the list, i.e., they tend to generate weaker
signals. The possibility of the drug in question to be an innocent
bystander (Dijkstra et al., 2020), or whether the signal is due to
indication bias, has to be ruled out.

Based on medical or pharmacological considerations, the
committee has the option to merge specific ADRs. This involves
aggregating ICD codes from multiple signals into a single health
outcome. See Section 3.3 for an example. A formal definition of a
health outcome can be found in the Supplementary Material.

To facilitate the signal triage process, we have developed an
online tool based on Borda count rankings, accessible at https://
borda.bips.eu. Our R-Shiny app computes the Borda count ranking

using uploaded data and offers graphical visualizations to aid the
selection of drug-ADR pairs for further investigation.

2.3 Signal verification

The presented approach includes a verification phase (see
Figure 1B), providing the committee with the opportunity to
assess the reliability of filtered signals through an observational
study focused on the specific drug-ADR pair or health outcome of
interest. This study should be designed to minimize bias and control
for potential confounding, for instance, by employing a new user
active comparator approach (Lund et al., 2015), evaluating all
potential confounders, and utilizing appropriate statistical
methods. It is important to note that due to the substantial
number of drug-ADR pairs, systematically verifying all signals
through traditional pharmacoepidemiological studies is not
feasible. As a result, verification is limited to a small subset of
drug-ADR pairs/health outcomes.

3 Case study

We demonstrate the applicability of the approach outlined in the
previous section using a case study. We begin by introducing the data
source and the drug of interest, rivaroxaban (RVX, ATC: B01AF01).
We are focusing on this drug in particular because it is central to the
PV-Monitor project from which this work stems. For further details,
please refer to the Funding section. The subsequent part of the section
adheres to the same structure as the preceding one, startingwith signal
detection, followed by signal triage, and concluding with signal
verification. The results of the case study are available at https://
borda.bips.eu as well. The website also provides the option to conduct
a similar analysis with one’s own dataset.

3.1 Data source and exposure of interest

We used the German Pharmacoepidemiological Research
Database (GePaRD) that is based on claims data from four
statutory health insurance (SHI) providers in Germany. It
currently includes information on approximately 25 million
persons who have been insured with one of the participating
providers since 2004 or later (Haug and Schink, 2021).

To illustrate our methodology, we focus on a single drug: RVX, a
direct oral anticoagulant (DOAC) that has been approved for, e.g.,

TABLE 1 Example of Borda count ranking with three signal detection methods and five drug-ADR pairs (A, B, C, D,and E).

Rank Method 1 Method 2 Method 3 Borda ranking (count)

1 D D A B (6)

2 B B B D (7)

3 C A C A (9)

4 E C E C (10)

5 A E D E (13)
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the prevention of stroke and systemic embolism in patients with
atrial fibrillation, the treatment of deep vein thrombosis and
pulmonary embolism, and prevention of recurrent deep vein
thrombosis and pulmonary embolism in adult patients, and for
the prevention of venous thromboembolism in adult patients
undergoing elective hip or knee replacement surgery. As is the
case with other anticoagulants, clinical studies of rivaroxaban
identified hemorrhage as an important safety outcome (Ruff
et al., 2014). Since the approval of RVX on the German market
in 2008, numerous ADRs have been reported to spontaneous
reporting systems (Morgovan et al., 2023). In this case study,
however, we are interested in as of yet unknown ADRs. GePaRD
and the cohort of the signal detection study are described in detail in
the Supplementary Material.

3.2 Signal detection

3.2.1 General principle
We employ four signal detection methods as the foundation for

the ensemble. These methods consist of the BCPNN (Norén et al.,
2006)), the LGPS (Schuemie, 2011), LASSO (Caster et al., 2010;
Tibshirani, 1996), and RFs (Breiman, 2001). See the Supplementary
Material for a full description of all four methods. We opt for the
BCPNNmethod, since it is the method of choice for SRSs. The LGPS
is a disproportionality method tailored specifically to longitudinal
data, demonstrating superior performance in the Observational
Medical Outcomes Partnership (OMOP) competition (Schuemie,
2011; The Observational Medical Outcomes Partnership, 2010). The
inclusion of LASSO is motivated by its ability to regress all ADRs
against the drug of interest while considering patient information
and accounting for potential confounding variables. RFs are

included in our analysis since they can handle non-linear effects
(Breiman, 2001). We use the corrected version of the impurity
measure for the RFs (Nembrini et al., 2018). It is important to
emphasize that this serves as an illustrative example, and alternative
signal detection methods could be employed as well.

We included persons in the signal detection study who.

1. Had been insured with the health insurance Techniker
Krankenkasse (TK), which is one of the largest nationwide
SHI providers in Germany, for at least 12 consecutive months
between January 2015 and December 2016;

2. Who had at least one dispensation of RVX at least 90 days after
cohort entry and before cohort exit, respectively, and

3. Who had no DOAC use within 12 months preceding
cohort entry.

In our analysis, we incorporate covariates such as age, sex, other
diagnoses, and prescribed medications to address potential
interactions. See the Supplementary Material for details.

3.2.2 Results
The dataset included 3,795 ICD-codes that were treated as

potential ADRs. Figure 2 illustrates the Kendall’s τ correlations
among the rankings produced by the four signal detection methods
forming the basis of the ensemble method, i.e., BPCNN, LGPS,
LASSO, and RF. The disproportionality methods, BCPNN and
LGPS, lead to similar rankings. The LASSO and the RF, however,
differ substantially from the others.

For instance, consider the ADR acute cystitis with the ICD-code
N30.0, which is ranked quite disparately by these methods. BCPNN,
LGPS, and RF position this ICD-code among the top 2% of the
strongest signals, whereas LASSO does not even include it in the top
10%. Depending solely on the LASSO output could result in
overlooking this ADR as a potential signal.

Table 2 presents the top 10 ICD-codes with the highest rankings
according to the Borda count. It is worth noting that K92.2
(gastrointestinal hemorrhage, unspecified) is a recognized ADR
associated with DOACs.

3.3 Signal triage

3.3.1 General principle
A committee of pharmacoepidemiologists, pharmacologists,

physicians and statisticians reviewed the rankings and discussed
plausibility, severity and the novelty of the signals.

3.3.2 Results
Based on the ranking obtained during the signal detection phase,

the committee identified four health outcomes of interest: acute liver
injury (ALI), acute cystitis (CYS), epilepsy and seizures (EPI), and
sepsis. Additionally, two health outcomes were chosen as positive
controls – gastrointestinal bleeding (GB) and intracranial bleeding
(ICB) – as they are known adverse outcomes of RVX. See the
Supplementary Material for the ICD codes corresponding to each
health outcome.

This selection was made based on medical plausibility, whether
the event was already known before, and with the help of plots as

FIGURE 2
Kendall’s τ correlations between the rankings of the BCPNN,
LGPS, RF and LASSO. The correlation values fall within the range of
[−1, 1]. However, for clarity, the legend only depicts the positive
range [0,1].
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shown in Figure 3. This figure shows the relative Borda ranks for the
ICD-codes associated with each of the six health outcomes and a
negative control: Fracture of head and neck of femur (S72.0). Each
dot represents an individual ICD-code. A relative rank of 1 indicates
the ADR is ranked last (indicating no signal), while a relative rank of
0 signifies the item is at the top of the ranking (indicating a strong
signal). We prefer to use the relative rank for its clarity.

GB and ICB are established adverse outcomes of RVX, with
many associated ADRs exhibiting strong signals. Acute cystitis,
corresponding to a single ADR (N30.0), produces a very strong
signal. The ADRs linked to epilepsy and sepsis exhibit significant
variation; there are both groups of ADRs that display strong
associations and those that suggest there is no connection with

RVX. Especially the latter two can benefit from performing a
verification study. It is evident from the bottom row that there is
no signal for the negative control. The negative control is, therefore,
not considered in the verification study.

3.4 Signal verification

3.4.1 General principle
The verification study was designed as an active comparator

case-control study nested in a cohort of new users of RVX and
phenprocoumon (PPC, ATC: B01AA04, the most frequently used
vitamin K antagonist in Germany) with atrial fibrillation and

TABLE 2 Top ten ICD-10-GM codes for rivaroxaban according to the Borda ranking.

Rank ICD-10 code Description

1 D50.8 Other iron deficiency anemias

2 J69.0 Pneumonitis due to inhalation of food and vomit

3 K92.2 Gastrointestinal hemorrhage (unspecified)

4 K31.8 Other specified diseases of stomach and duodenum

5 D50.0 Iron deficiency anemia secondary to blood loss (chronic)

6 C20 Malignant neoplasm of rectum

7 K25.0 Acute gastric ulcer with hemorrhage

8 E86 Volume depletion

9 I27.2 Other secondary pulmonary hypertension

10 N17.9 Acute kidney failure (unspecified)

FIGURE 3
The relative ranks represent the positions of seven adverse outcomes, with five consisting of multiple individual ADRs. Each dot represents an
individual ICD-code. A relative rank of 1 signifies the highest rank, indicating no signal, while a relative rank of 0 indicates the top rank, suggesting a very
strong signal.
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included data from 2011 to 2017. Cases were defined as patients with
a diagnosis of the respective outcome of interest. Each case was
matched with up to 10 controls by sex, age at index day (± 1 year)
and SHI using risk set sampling (Goldstein and Langholz, 1996) with
time in cohort as the time axis to ensure a similar follow-up as for the
corresponding case. Eligible patients hospitalized for any reason at
the index date of the case were excluded from the set of potential
controls. Cases were eligible for selection as controls before their
index date, and controls could be selected more than once (Rothman
et al., 2008). The outcome of interest was defined based on the
signals identified by the expert committee. A list of potentially
confounding variables was established to each health outcome
(see Supplementary Material for details). Conditional logistic
regression was used to estimate crude and confounder-adjusted
odds ratios (ORs) with 95% confidence intervals (95% CI). We
report ORs that compare the current use of RVX with PPC (active
comparator) and to no exposure to RVX or PPC at index day.
However, the in- and exclusion criteria for the signal detection step
and the verification study differ. The verification study contains only
individuals with atrial fibrillation whereas the signal detection study
contains all insurants that were exposed to RVX.

3.4.2 Results
The study cohort of the verification study was based on

97,400 new users of PPC and 71,917 users of RVX. The median
age at cohort entry was 73 (IQR: 65, 79) for RVX and 75 (IQR: 69,
81) for PPC new users. The proportion of women was 47% (RVX)
and 48% (PPC). We observed 5,053 cases of acute cystitis, 322 cases
of acute liver injury, 3,070 cases of epilepsy, 3,504 cases of sepsis,
6,705 cases of gastrointestinal bleeding, and 2,974 cases of
intracranial bleeding. A full description of the study cohort,
including baseline characteristics, relevant medical history and
dispensed medication at cohort entry, can be found in the
Supplementary Material.

Table 3 shows that the adjusted risk of gastrointestinal bleeding
was increased in current single use of RVX compared to current
single use of PPC (OR = 1.37, 95% CI: (1.27; 1.47)) but decreased for
intracranial bleeding (OR = 0.74, 95% CI: (0.66; 0.83)). This is what

we expected from the literature (Hohnloser et al., 2017). The risk of
cystitis was slightly increased (OR = 1.11, 95% CI: (1.02; 1.21))
whereas the risk of acute liver injury was much lower in patients
using RVX compared to PPC (OR = 0.50, 95% CI: (0.35; 0.72)).
Patients receiving current treatment with RVX showed a
considerably higher risk of epilepsy and seizures compared to
PPC users (OR = 1.26, 95% CI: (1.11; 1.43)). The risk of sepsis
was similar in current users of RVX compared to current use of PPC
(OR = 1.10, 95% CI: (0.99; 1.23)).

4 Discussion and conclusion

In this paper, we introduced a novel approach to
pharmacovigilance. Conventionally, a single signal detection
method is applied to SRS data, and the resulting ranking of
drug-ADR pairs is presented to a committee of medical experts.
Here, we enhance this process in three significant ways: First, we opt
for EHC data due to its richness and its capacity to facilitate a
pharmacoepidemiological study; something that cannot be
accomplished with SRS data. Second, we simultaneously apply
multiple signal detection methods, aggregating the obtained
rankings through the Borda count and we provide the committee
with a visual representation for defining health outcomes. See, for
example, Figure 3. Third, we recommend verifying a selection of
health outcomes in a pharmacoepidemiological verification study.
Such a study can be immensely beneficial, as it may offer support for
either confirming the existence of the association or revealing its
spurious nature (Platzbecker et al., 2023).

To illustrate this approach, we conducted a case study with the
direct oral anticoagulant rivaroxaban (RVX) based on the healthcare
claims database GePaRD. In our case study, the ensemble method
comprised of four signal detectionmethods: BCPNN, LGPS, LASSO,
and RF. After applying the ensemble method to the data, the
resulting ranking was sent to the committee. During signal triage,
a total of four health outcomes were selected to be further
investigated in a pharmacoepidemiogical verification study: acute
liver injury (ALI), acute cystitis (CYS), epilepsy and seizures (EPI),

TABLE 3 Results of the verification study: matched crude and adjusted odds ratios with corresponding 95% confidence intervals.

Current use of RVX at index day Current use of RVX at index day vs.
current single use of PPC at index day

Health outcome Cases N Controls N in Cases
N (%)

in Controls
N (%)

Crude OR
(95% CI)

Adjustedb OR
(95% CI)

Gastrointestinal
bleedinga

6,705 67,019 1,635 (24.4%) 13,817 (20.6%) 1.22 (1.14; 1.31) 1.37 (1.27; 1.47)

Intracranial bleedinga 2,974 29,720 515 (17.3%) 5,959 (20.1%) 0.72 (0.64; 0.80) 0.74 (0.66; 0.83)

Acute cystitis 5,053 50,424 1,123 (22.2%) 10,590 (21.0%) 1.09 (1.00; 1.19) 1.11 (1.02; 1.21)

Acute liver injury 322 3,220 52 (16.1%) 688 (21.4%) 0.50 (0.35; 0.71) 0.50 (0.35; 0.72)

Epilepsy 3,070 30,676 617 (20.1%) 6,362 (20.7%) 1.34 (1.19; 1.51) 1.26 (1.11; 1.43)

Sepsis 3,504 35,022 670 (19.1%) 7,231 (20.6%) 1.01 (0.91; 1.12) 1.10 (0.99; 1.23)

RVX, rivaroxaban. PPC, phenprocoumon. OR, odds ratio.
aPositive control.
bAdjusted for outcome-specific comorbidities and co-medications (see Supplementary Material for details).
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and sepsis. In addition, gastrointestinal bleeding (GB) and
intracranial bleeding (ICB) served as positive controls, being
recognized adverse health outcomes of RVX. We performed an
active comparator, case-control study nested in GePaRD in which
we compared patients with atrial fibrillation who initiated treatment
with RVX or phenprocomoun (PPC). For each health outcome,
possible confounding variables were collected from the literature
and adjusted for. Our approach successfully identified both the
positive controls GB and ICB. Additionally, the results indicated no
significant safety issues in RVX users compared to PPC concerning
the occurrences of ALI, CYS, and sepsis, which were ranked in the
top third of the Borda count ranking, as depicted in Figure 3.
However, the verification study confirmed an elevated risk for
epilepsy and seizures in RVX users compared to PPC users. This
finding was further investigated and published by Platzbecker et al.
(2023). Within this paper, also the limitations of the
pharmacoepidemiological studies are discussed in more detail.
These examples illustrate that signal detection using EHC data is
feasible, but also underscore the importance of verification to
address biases such as confounding, selection, or measurement
bias (Prada-Ramallal et al., 2019).

The ensemble method proposed for the signal detection phase is
characterized by its flexibility, allowing for easy modification of the
signal detection methods incorporated in the ensemble, and it is
computationally fast. By employing an ensemble, the goal is to
leverage the individual advantages of different methods while
potentially mitigating some of their limitations (Rokach, 2009;
Antczak, 2016; Tabassum and Ahmed, 2016). Moreover,
ensemble techniques are adept at handling noisy data (Ho et al.,
1994). The use of Borda count ranking for aggregation offers the
advantage of independence from the interpretation or
characteristics of the scores generated by each individual signal
detection method. The method aims to promote consensus
(Emerson, 2011; Saari, 2022), as discussed in Section 2. The case
study highlights that individual signal detection methods may
produce significantly different rankings, as shown in Figure 2.
The Borda method also allows for assigning weights to the
rankings produced by individual signal detection methods. This
adaptability facilitates the prioritization of output from specific
methods over others, proving particularly valuable when there is
an expectation that a particular method will excel in the
given scenario.

Conducting a pharmacoepidemiological verification study is
generally laborious and if the study confirms a safety issue, a
follow-up with sensitivity analyses to investigate different sources
of potential bias is required. Hence, we considered only a limited
number of health outcomes in our case study. It is important to
recognize that the decision for the additional verification step in the
presented approach leads to a time-consuming process. While this
may be acceptable in certain situations, the committee tasked with
evaluating signals must factor in this aspect when deciding on the
course of action.

In the case study, we focused on a single medication rather than
multiple drugs simultaneously, which is more typical in
pharmacovigilance. However, this does not prohibit the
application of the proposed approach to scenarios involving
multiple drugs. The resulting Borda ranking presented to the
committee would be longer; however, this is standard in the

pharmacovigilance context. Most signal detection methods are
computationally efficient and capable of handling large datasets
with numerous drug-ADR pairs. Consequently, running multiple
methods simultaneously should not present significant challenges.

It is standard practice to partition the dataset into two segments
for detection and verification to avoid overfitting. Nevertheless,
when the available data are limited, such as when the drug of
interest is seldom prescribed or the ADR is rare, this approach
might significantly diminish the power to detect relevant signals,
possibly leaving crucial associations between drugs and ADRs
unnoticed. In such scenarios, the option of not splitting the data
could be considered; however, we caution that this decision should
be taken into account when interpreting the results of the
verification study. In our RVX case study, the datasets used for
signal detection and the verification study overlap slightly (2 years of
data from one health insurance company compared to data over
7 years from four health insurance companies). In addition, the
inclusion and exclusion criteria for signal generation and the
verification studies were very different. For more details, please
see Section 3.2 and Section 3.4. In Platzbecker et al. (2023), we
conducted a sensitivity analysis by repeating our main analysis
without the data used for signal detection and were able to
confirm our results.

The availability of EHC data is often delayed, meaning that there
can be a significant gap between the occurrence of the event itself
and the moment the observation becomes available for analysis. This
delay must be taken into account when utilizing EHC data for
detection, as it can be challenging, if not impossible, to detect ADRs
for drugs that very recently entered the market. In those cases, SRS
data might be a more appropriate choice, since reports tend to be
processed quickly. However, for drugs that have been on the market
for a longer time, EHC data may be preferable due to its richer
nature, allowing for easier detection of rare ADRs and long-term
effects. Therefore, we recommend users to carefully consider which
data source to use for signal detection, as it heavily depends on their
specific goals.

In efforts to improve post-market surveillance, research
typically focuses on one or more of three key aspects: 1) the
data source being used, 2) the statistical methods employed for
signal detection, and 3) the signal triage process. Alongside
traditional data sources such as SRSs or EHC data, alternative
sources like social media posts, journal publications, sensor data,
and reporting apps are also being explored (Lavertu et al., 2021;
Satwika et al., 2021; Shin et al., 2022; Pilipiec et al., 2022). Instead of
relying solely on a single source, some studies delve into
multimodal approaches, integrating multiple sources
simultaneously (Dimitriadis et al., 2023). In this particular
study, our choice for the signal detection phase was EHC data
since it can be used for the verification study as well. However,
other data sources could also be used. However, alternative data
forms such as SRS and social media are unsuitable for performing a
pharmacoepidemiological verification study.

A considerable amount of research is directed towards
enhancing the signal detection phase through the development of
novel methodologies or the refinement of existing ones. Particularly
in recent years, there has been a strong emphasis on artificial
intelligence methods within the field (Bate and Hobbiger, 2021;
Huysentruyt et al., 2021; Ball and Dal Pan, 2022; Kompa et al., 2022;
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Painter et al., 2023), although classical methods continue to be
considered as well. For example, Courtois et al. (2021) proposed
employing the adaptive LASSO to simplify the selection of tuning
parameters. Note that while it is feasible to integrate multiple
methods simultaneously within our framework, determining the
optimal set of methods to use requires further investigation.

Hsieh et al. (2023) conducted a study that employs two signal
detection methods simultaneously (Hsieh et al., 2023): sequence
symmetry analysis (SSA; (Lai et al., 2017)) and tree-based scan
statistics (TreeScan; (Kulldorff et al., 2013)). In their research, they
examine two drugs using EHC data. Any ADR flagged by either SSA
or TreeScan is treated as a signal. Consequently, their approach
requires one to select appropriate thresholds for both methods,
which can be challenging. In contrast, our approach simplifies this
process by requiring only the selection of a threshold for the Borda
count. How to extend their approach to accommodate an arbitrary
number of methods and drugs is unclear.

Furthermore, research addresses the third phase, signal triage,
by aiming to further refine the list of signals by filtering out known
signals. In the same study by Hsieh et al. (2023), signals are
automatically categorized into various groups, e.g., known ADRs,
ADRs associated with indications and ADRs linked to patient
characteristics. However, this study only considers two drugs.
Subsequent research is need to explore how to extend this
automated triage process to encompass more drugs. Thus far, we
have not encountered any research proposing to enhance the post-
market surveillance process with a verification step.

To facilitate the implementation of the approach described in
this paper, we have developed an online tool accessible at https://
borda.bips.eu.
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