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Introduction: Premature ovarian insufficiency (POI) has affected about 3.7% of
women of reproductive age and is a major factor contributing to infertility.
Bushen Huoxue formula (BHF), a traditional Chinese medicine prescription, is
clinically used to treat POI in China. This study aims to investigate the potential
mechanisms of BHF in combating POI using corticosterone-induced rats and
palmitic acid (PA)-challenged human ovarian granulosa cells (GCs).

Methods: Initially, ultra performance liquid chromatography tandem mass
spectrometry was employed to analyze the components of BHF. The
pharmacodynamic parameters evaluated included body weight, ovaries index,
and serum hormone in rats. Follicle numbers were observed using H&E staining.
Additionally, PCNA and TUNEL staining were used to assess GCs proliferation and
apoptosis, respectively. Lipid accumulation and ROS levels were examined using
Oil Red O and ROS staining. Protein expressions were determined by western
blot. To probe mechanisms, cell viability and E2 levels in BHF-treated, PA-
stimulated GCs were determined using MTT and ELISA, respectively. Cell
apoptosis and ROS levels were assessed using TUNEL and ROS staining.
Proteins related to lipid metabolism and autophagy in PA-stimulated GCs
were studied using agonists.

Results: Our results shown that BHF effectively normalized serum hormone
levels, including follicle-stimulating hormone (FSH), anti-Müllerian hormone
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(AMH), estradiol (E2), and luteinizing hormone (LH). Concurrently, BHF also
significantly reduced follicular atresia and promoted cell proliferation while
inhibiting apoptosis in POI rats. Furthermore, BHF mitigated ovarian lipid
accumulation by modulating lipid metabolism, which included reducing lipid
synthesis (expression of peroxisome proliferator-activated receptor γ and
CCAAT/enhancer binding protein α), increasing lipid catabolism (expression of
adipose triglyceride lipase), and enhancing lipid oxidation (expression of
carnitine palmitoyl transferase 1A). Mechanistically, the therapeutic effects of
BHF on POI were linked with alleviation of lipid deposition-induced reactive
oxygen species (ROS) accumulation and excessive autophagy, corroborating the
results in PA-challenged GCs. After treatment with elesclomol (a ROS inducer) and
rapamycin (an autophagy inducer) in GCs, the effects of BHF were almost
counteracted under model conditions.

Conclusion: These findings suggest that BHF alleviates the symptoms of POI by
altering lipid metabolism and reducing lipid accumulation-induced ROS and
autophagy, offering evidence for BHF’s efficacy in treating POI clinically.
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1 Introduction

Premature ovarian insufficiency (POI) is characterized by a
decline in ovarian function before the age of 40, affecting
approximately 3.7% of women of reproductive age globally
(Golezar et al., 2019). Diagnosis is based on clinical features
including menstrual irregularities or amenorrhea, elevated
gonadotrophins (FSH level > 25 IU/L on two separate tests at
least 4 weeks apart), and reduced estradiol (E2) levels (Ishizuka,
2021). Studies have shown that the natural pregnancy rate in women
with POI is below 5%, making it a significant factor in infertility
among women of reproductive age (Bidet et al., 2011). Furthermore,
POI is associated with increased risks of neurological dysfunction,
type 2 diabetes, cardiovascular diseases, osteoporosis, and reduced
life expectancy (Tucker et al., 2016).

Current evidence suggests that POI etiologies are linked to
environmental factors, iatrogenic injuries, genetic defects,
autoimmune dysfunctions, and metabolic abnormalities
(Huhtaniemi et al., 2018; Jiao et al., 2021; Wang, et al., 2020b).
These complex exogenous and endogenous factors contribute to
abnormal follicle activation, hindered recruitment of dominant
follicles, impeded maturation, and increased follicular atresia,
ultimately leading to POI (Li Z. et al., 2021). Apoptosis in
granulosa cells (GCs) can initiate follicle atresia and lead to
oocyte loss, which is a critical factor in POI development (Li D.
et al., 2021). Prior research on GC apoptosis has focused on reactive
oxygen species (ROS) generation, cytokine, and hormone
disruptions (Matsuda et al., 2012). However, recent studies show
that imbalances in lipogenesis and lipolysis, causing lipid deposition
and subsequent lipotoxicity and ROS generation, are key in GCs
apoptosis (Shaoyong et al., 2022). In POI patients, triglyceride (TG)
and free fatty acid (FFA) levels are significantly elevated in follicular
fluid compared to healthy individuals (Huang et al., 2022; Wang L.
et al., 2020). High FFA levels in follicular fluid have been shown to
suppress GCs proliferation, as observed in dairy cows (Wang Y.
et al., 2020). Additionally, FFAs induce apoptosis in GCs (human
primary GCs and human KGN cells) in a dose-dependent manner

(Baddela et al., 2020) and elevate ROS content (Ma et al., 2022),
which inhibits proliferation and promotes senescence in GCs by
triggering autophagy (Sun et al., 2021). Thus, reducing lipid
deposition emerges as a potential therapeutic approach for POI.

While hormone replacement therapy (HRT) is commonly used
for treating POI in clinical settings, it often results in limited clinical
effectiveness or adverse side effects (Webber et al., 2017). HRT is not
reported to aid in follicular development or reverse ovarian function
decline (Li et al., 2020). Recent studies have shown that Traditional
Chinese Medicines may delay ovarian failure and have a high safety
profile in POI treatment (Li et al., 2020). Bushen Huoxue formula
(BHF), a traditional clinical prescription, is widely used in China for
ovarian failure-related diseases (Zhongwei et al., 2019). Our
previous study indicated that BHF significantly enhanced ovarian
function and restored triglyceride homeostasis in psychological
stress-induced POI rats (Miao et al., 2020). Interestingly, BHF
also showed efficacy in regulating lipid metabolism and reducing
ROS in diabetic retinopathy rats and nucleus pulposus cells (Gao
et al., 2022; Wang et al., 2020c; Li, et al., 2020). However, the specific
role of BHF in treating POI by improving lipid levels
remains unclear.

In this context, we hypothesize that BHF treatment in POI may
rectify impaired lipid deposition, thereby reducing ROS and
autophagy. To explore this, we employed FFA-stimulated GCs
and corticosterone-induced rats to investigate BHF therapeutic
effectiveness and the underlying mechanisms in POI treatment.

2 Materials and methods

2.1 Drugs and reagents

BHF consists of eleven medicinal herbs (Table 1) which were
purchased from Nanjing Lishui District Hospital of Traditional
Chinese Medicine (Nanjing, China). Progynova was provided by
DELPHARM Lille S.A.S. Corticosterone was purchased from
Shanghai Aladdin Bio-Chem Technology Co., Ltd. (Shanghai,
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China). Estradiol (E2) and follicle-stimulating hormone (FSH)
ELISA kits were obtained from the Elabscience Biotechnology
Co., Ltd. (Wuhan, China). Corticosterone, Luteinizing Hormone
(LH), and anti-Müllerian hormone (AMH) ELISA kits were from
the Wuhan Xinqidi Biotech Co., Ltd. (Wuhan, China). BCA protein
assay kits were bought from Beyotime (Shanghai, China). Primary
antibodies against PPARγ, c/EBPα, ATGL, and CPT1A were
supplied by Proteintech (Chicago, United States). LC3B and
p62 were purchased by ABclonal (Wuhan, China).

2.2 Preparation and qualitative analysis
of BHF

BHF was prepared using a previously established method. Initially,
In our experiment, all herbs were soaked in distilled water at ten times
their volume (v/m) for 30 min at 24°C, followed by decoction for an
additional 30 min at 100°C. The mixture was then filtered through
gauze. The herb residue was re-extracted under identical conditions.
The two filtrates were consolidated and concentrated under
depressurized conditions, followed by lyophilization to powder for
qualitative analysis and subsequent experiments.

For the analysis, 500 mg of BHF powder was immersed in 1 mL of
70% methanol and ground for 3 min using an automatic sample rapid
grinder (jxfstprp-48, 70 Hz). The solution was then centrifuged at
12,000 rpm for 10min at 4°C and filtered through a 0.22 μmPTFE filter.
UPLC-MS/MS was used for analysis. UPLC was performed on a
Thermo Vanquish UHPLC using a Zorbax Eclipse C18 (1.8 μm ×
2.1 mm × 100 mm) column at 30°C, with pure acetonitrile as solvent A
and 0.1% formic acid as solvent B. The gradient elution programwas as
follows: 5% A at 0–2 min, 5%–30% A at 2–6 min, 30% A at 6–7 min,
30%–78% A at 7–12 min, 78% A at 12–14 min, 78%–95% A at
14–17 min, 95% A at 17–20 min, 95%–5% A at 20–21 min, and
5% A at 21–25 min. The flow rate was set at 0.3 mL/min, with an
injection volume of 2 μL. Mass spectrometry was conducted on a
Q-Exactive HF from Thermo Fisher in both positive and negative
ionization modes. The parameters were: heater temperature at 325°C;
sheath gas flow at 45 arb (arbitrary units); electrospray voltage at

3.5 KV; capillary temperature at 330°C; S-Lens RF level at 55%; full scan
(m/z 100–1,500) and data-dependent MS2 (TopN = 10); resolutions at
120,000 (MS1) and 60,000 (MS2).

2.3 Animals and experimental design

Fifty female Sprague-Dawley (SD) rats were sourced from
Nanjing Kaisijia Biotechnology Co., Ltd. They were housed at the
Animal Center of the Jiangsu Province Institute of Traditional
Chinese Medicine under standard conditions (23°C ± 2°C
temperature, 50% ± 5% humidity, and a 12-h light/dark cycle)
for 7 days. All animal experimental procedures were in strict
compliance with European community guidelines and approved
by the Ethics Committee of Jiangsu Province Institute of Traditional
Chinese Medicine (Permission No. AEWC-20220615-214).

In this research, we utilized corticosterone to establish a POI
model (Miao et al., 2020). The rats were randomly divided into five
groups (n = 10/group): normal control (NC), model control (MC),
Progynova treatment (PT) as the positive control, and two BHF
treatment groups with low (L-BHF) and high (H-BHF) dosages. The
rats of NC received subcutaneous saline injections, while the rest
were administered corticosterone (40 mg/kg, w/w) for 3 weeks to
induce POI. Since the first day of modeling, rats were given drugs
administration at a volume of 10 mL/kg. The NC and MC groups
were received saline plus 0.5% carboxymethylcellulose, while rats in
the PT and BHF treatment groups were orally administered PT
(10 mg/mL) or BHF (L-BHF: 171.5 mg/mL of lyophilized powder,
H-BHF: 686 mg/mL of lyophilized powder) once daily for 3 weeks.
The BHF dosage was selected based on prior research (Miao et al.,
2020). And all subsequent experiments were only carried out after
the treatment had been completed.

2.4 Assessment of ovarian function

Body weight was monitored weekly during the experiment. At
its conclusion, tissue and blood samples were collected for analysis.

TABLE 1 The components of BHF.

Chinese name Latin name Lot number Dosage (g) Occupied percent (%)

Sheng Di Huang Rehmannia glutinosa Libosch. 220401 10 9.43

Yin Yang Huo Epimedium brevicornu Maxim. 211001 10 9.43

Tu Si Zi Cuscuta chinensis Lam. A220616 10 9.43

Gou Teng Uncaria rhynchophylla (Miq.) Miq. ex Havil. A220223 10 9.43

Dang Gui Angelica sinensis (Oliv.) Diels. A220706 10 9.43

Bai Shao Paeonia lactiflora Pall. A220513 10 9.43

Chuan Xiong Ligusticum chuanxiong Hort. 220601 10 9.43

Zhi Mu Anemarrhena asphodeloides Bge. 220402 10 9.43

Chai Hu Bupleurum chinensis DC. 211130 6 5.66

Huang Bai Phellodendron chinensis Schneid. 210928 10 9.43

Mu Dan Pi Paeonia suffruticosa Andr. 220402 10 9.43
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Serum levels of corticosterone, FSH, LH, AMH and E2 were
measured using ELISA kits per the manufacturer’s instructions.
Ovaries were rapidly excised, washed with PBS, and weighed to
calculate the ovarian index (ovarian weight/body weight). Sections
of the ovaries were fixed in 4% paraformaldehyde for a minimum of
24 h, embedded in paraffin, sectioned into 5 μm slices, and stained
with Hematoxylin and Eosin (H&E) to assess follicular changes.

2.5 Cells culture and viability assay

The human ovarian granulosa cell line (KGN cells) was obtained
from EK Bioscience (Shanghai, China) and cultured in DMEM/F-
12 medium (Jiangsu KeyGEN BioTECH Corp., Ltd., China) with
10% FBS (Gibco, United Kingdom) in a 37°C, 5% CO2 incubator
(Thermo Fisher Scientific, Waltham, MA, United States). KGN cells
in the logarithmic growth phase were plated in 96-well plates at a
density of 8 × 103 cells/well for 12 h. The cells were then incubated
with varying concentrations of palmitic acid (PA, 50, 100, 200 μM),
BHF (200, 400 μg/mL), or a combination of PA and BHF for 24 h.
Subsequently, 10 μL MTT solution was added to each well and
incubated at 37°C for 4 h. After discarding the medium, 100 μL
DMSO was added to each well. Cell viability was determined at
490 nm using a microplate reader (SpectraMax® i3x, Molecular
Devices, United States) and calculated as follows: cell viability (%) =
[OD 490 (sample)/OD 490 (control)] × 100%.

2.6 E2 Enzyme-linked immunosorbent assay

KGN cells were seeded in 24-well plates at a density of 3 × 104

cells/well for 12 h, followed by treatment with PA, with or without
BHF (200, 400 μg/mL), under FSH (50 ng/mL) stimulation for 24 h.
Culture supernatants were then collected, and E2 concentrations
were measured using the E2 Human ELISA Kit according to the
manufacturer’s instructions. E2 levels were determined based on
standard curves.

2.7 Oil red O and Nile Red staining

Ovarian tissues were fixed in 4% paraformaldehyde, embedded
in Tissue-Tek OCT, and sectioned into 5-μm-thick slices for Oil Red
O staining. Neutral lipids were visualized and imaged using an
inverted microscope (Leica DM 11, Germany).

For Nile Red staining of KGN, cells were seeded into 6-well
plates and treated with PA (50, 100, 200, 400 μM) or PA (200 μM)
combined with or without BHF (200, 400 μg/mL) for 24 h. Post-
treatment, cells were washed with PBS, fixed with 4%
paraformaldehyde for 10 min, and stained using a Nile Red
staining kit. After being rinsed twice with PBS, lipid droplets
were visualized and photographed as mentioned above.

2.8 Immunohistochemistry

Immunohistochemistry was performed on paraffin-embedded
sections using the avidin-biotin complex method (Zhao et al., 2021).

Slides were incubated overnight at 4°C with primary antibodies
against PCNA. Subsequently, biotinylated anti-rabbit IgG secondary
antibodies and DAPI (Beyotime, China) were applied in sequence,
with protection from light. Images were captured using a light
microscope (Leica DM 11, Germany) and analyzed with Image-
Pro Plus 6.0 software (Media Cybernetics, Maryland, United States).

2.9 Immunofluorescence

For immunofluorescence, sections from paraffin-embedded
tissues were stained, followed by TUNEL and ROS staining
according to standard protocols. GC cells were also fixed and
stained with TUNEL and ROS. Images were acquired using a
Nikon TS2R-FL fluorescent inverted microscope and quantified
with Image-Pro Plus 6.0 software (Media Cybernetics, Maryland,
United States).

2.10 Immunoblot analysis

Ovarian tissue and KGN cells were lysed using RIPA buffer
supplemented with protease and phosphatase inhibitors. Protein
concentrations were quantified using a BCA kit, and equal amounts
of protein (30 μg/lane) were separated by SDS-PAGE, then transferred
onto nitrocellulose filters. The membranes were blocked with 5%
skimmed milk for 2 h and incubated with specific primary
antibodies overnight at 4°C. After washing with TBST, membranes
were incubated with horseradish peroxidase-conjugated secondary
antibodies. Protein bands were visualized using ChemiScope S6
(Clinx Science Instruments Co., Ltd., Shanghai, China) and analyzed
using ImageJ software. The primary and secondary antibodies used
were: anti-PPARγ (Mouse, Proteintech, 1:1,000), anti-c/EBPα (Rabbit,
Proteintech, 1:1,000), anti-ATGL (Rabbit, Proteintech, 1:1,000), anti-
CPT1 (Mouse, Proteintech, 1:1,000), anti-LC3B (Rabbit, ABclonal, 1:
1,000), anti-p62 (Rabbit, ABclonal, 1:1,000), anti-GAPDH (Mouse,
Proteintech, 1:2,000), and anti-β-actin (Rabbit, Beyotime, 1:2,000).

2.11 Statistical analyses

Data were presented as mean ± SEM. Statistical analyses were
conducted using Prism 8.4.0 (GraphPad Software, Inc.,
United States). Normality and homogeneity of variance tests were
respectively performed with Shapiro-Wilk and Brown-Forsythe tests
before proceeding with the statistical analysis (both p > 0.05 in the
present study. A One-Way ANOVA with a subsequent LSD test was
applied for multiple group comparisons, or an independent samples
t-test for comparisons between two groups. A p-value < 0.05 was
considered statistically significant.

3 Results

3.1 Chemical components analysis of BHF

UPLC-MS/MS was utilized to identify the chemical components
of BHF extract. The total ion chromatograms (TIC) of BHF are
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depicted in Figures 1A, B. Using Compound Discoverer 3.3, along
with mzCloud and mzVault databases, 350 ingredients were
identified in BHF. The top 23 compounds are enumerated
in Table 2.

3.2 BHF alleviated ovarian function in
POI rats

The therapeutic effects of BHF on POI were assessed using 8-
week-old female Sprague-Dawley rats, subjected to BHF for 3 weeks
under CORT-induced conditions (Figure 2A). Figure 2B shows that
the body weights in the MC group decreased significantly compared
to the NC group, whereas BHF treatment notably increased body

weight at the end of the experiment. Serum corticosterone levels
(Figure 2C), indicative of stress response, were significantly higher in
the MC group than in the NC group. However, BHF administration
reduced these changes. Ovarian function assessments revealed that
ovary index, E2, AMH, and LH levels were considerably lower in the
MC group compared to the NC group. BHF intervention notably
elevated these parameters (Figures 2D–G). BHF treatment also
reversed elevated FSH levels in POI rats (Figure 2H). Ovarian
morphology, evaluated by H&E staining (Figure 2I), showed that
MC rats had an increased number of atretic follicles, while BHF
treatment significantly reduced them (Figure 2M). We found that
the numbers of primary, preantral, and antral follicles were also
exhibited a trend of increasing in BHF-treated POI rats, although
there were no significant differences (Figures 2J–L). These findings

FIGURE 1
UPLC-MS/MS TICs of BHF in negative-ion mode (A) and positive-ion mode (B).
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suggest that BHF restored hormone synthesis and reduced excessive
follicular atresia, thereby maintaining ovarian function.

3.3 BHF alleviated proliferation inhibition
and apoptosis in rat ovary tissues

Proliferation and apoptosis in follicles were evaluated using
PCNA and TUNEL staining, respectively. Figure 3 illustrates that
the proportion of PCNA-positive areas in follicles was
significantly reduced in the MC group compared to the NC
group, but markedly increased following BHF treatment.
Conversely, TUNEL staining revealed increased apoptosis in
the MC group relative to the NC group. BHF intervention
notably lessened this effect. These findings indicate that BHF

effectively reduced both proliferation inhibition and apoptosis in
GCs within follicles.

3.4 BHF modulated lipid metabolism,
alleviated ROS and excessive autophagy in
POI rats

To assess the impact of BHF on lipid accumulation, ROS, and
autophagy, ovarian lipid deposition levels were first examined
using Oil Red O staining (Figure 4A). BHF treatment
significantly decreased lipid accumulation in the ovaries of POI
rats. Further investigation into lipid metabolism-related proteins
(Figures 4B–F) showed that BHF therapy reduced lipogenesis
protein expression (PPARγ and C/EBPα), increased lipolysis

TABLE 2 Chemical components within BHF extract by UHPLC-MS/MS.

No. Rt/
min

Molecular
formula

Experimental
m/z

Error/
ppm

Identification Contents
(μg/g)

1 0.78 C6H14N4O2 174.1117 [M + H]+ −0.15 DL-Arginine 1441.10

2 0.79 C12H22O11 342.1162 [M-H]− 0.08 Sucrose 8268.25

3 0.81 C7H12O6 192.0627 [M-H]− −3.58 Quinic acid 7012.78

4 1.11 C6H8O7 192.0264 [M-H]− −3.24 Citric acid 11864.68

5 1.69 C7H6O5 170.0207 [M-H]− −4.82 Gallic acid 11266.87

6 4.89 C25H28O16 584.1381 [M-H]− 0.57 Neomangiferin 7748.95

7 5.12 C23H28O12 496.1584 [M-H]− 0.66 Oxypaeoniflorin 3075.01

8 5.17 C16H18O9 354.0953 [M-H]− 0.49 Chlorogenic acid 2843.68

9 5.36 C17H20O9 368.1107 [M-H]− −0.22 Methyl chlorogenate 11271.79

10 5.60 C19H18O11 422.0851 [M-H]− 0.51 Isomangiferin 11832.60

11 5.75 C9H10O2 150.0679 [M + H]+ −1.32 Ethyl benzoate 2084.84

12 6.09 C17H20O9 368.1109 [M-H]− 0.56 4-O-feruloyl-D-quinic acid 27220.64

13 6.15 C38H52N6O8S4 848.2745 [M-H]− 1.82 (2S,2′S)-2,2′-{Disulfanediylbis [2,1-ethanediylimino (1-oxo-2,1-
ethanediyl) (3S)-3,4-dihydroisoquinoline-2,3(1H)-

diylcarbonylimino]bis [4-(methylsulfanyl)butanoic acid]

5481.35

14 6.17 C23H28O11 480.1633 [M-H]− 0.29 Paeoniflorin 22198.34

15 6.33 C16H16N2O6 332.1009 [M-H]− 0.11 2,6-DIMETHYL-5-METHOXYCARBONYL-4-(3-
NITROPHENYL)-1,4-DIHYDROPYRIDINE-3-CARBOXYLIC

ACID

5265.57

16 7.47 C45H76O19 920.4990 [M-H]− 0.95 Trigoneoside Xb 9074.25

17 8.45 C39H50O19 822.2959 [M-H]− 1.59 Epmedin C 3276.76

18 8.78 C33H40O15 676.2377 [M-H]− 1.42 Icariin 6385.02

19 9.22 C45H74O18 902.4884 [M-H]− 0.94 (3beta,5beta,25S)-26-(beta-D-Glucopyranosyloxy)furost-20 (22)-en-
3-yl 2-O-beta-D-glucopyranosyl-beta-D-galactopyranoside

5192.29

20 9.36 C30H32O12 584.1900 [M-H]− 1.03 Benzoylpaeoniflorin 7935.29

21 9.90 C18H34O5 330.2407 [M-H]− 0.32 (15Z)-9,12,13-Trihydroxy-15-octadecenoic acid 4306.41

22 11.70 C12H16O2 192.1149 [M + H]+ −0.6 Senkyunolide A 893.046

23 12.44 C12H14O2 190.0992 [M + H]+ −0.77 Ligustilide 698.54
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FIGURE 2
BHF’s impact on body weight and ovarian function in CORT-induced POI rats: (A) Study design workflow. (B) Body weight over the weeks. (C) Serum
cortisol levels. (D)Ovarian index (ovarian weight/body weight). (E–H) Serum levels of E2, AMH, LH, and FSH. (I) H&E staining ovarian micrographs. (J–M)
Numbers of primary follicles (Triangle), preantral follicles (arrow), antral follicles (rhomboid), and atretic follicles (Five-pointed star). Data are expressed as
mean ± SEM. #p < 0.05, ##p < 0.01, and ###p < 0.001 vs. the NC group. *p < 0.05, **p < 0.01, and ***p < 0.001 vs the MC group. NC, normal control.
MC, model control. PT, positive control. L-BHF, BHF treatment with low dosage. H-BHF, BHF treatment with high dosage.
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protein levels (ATGL), and boosted fatty acid β-oxidation protein
expression (CPT1A). ROS levels and autophagy status in the
ovaries were also evaluated post-BHF treatment. Results
indicated that ROS levels and LC3II expression were

substantially higher in the MC group compared to the NC
group, while significantly reduced after BHF treatment. In
contrast, P62 expression, markedly decreased in the MC group,
was restored with BHF administration (Figures 4G–H). Overall,

FIGURE 3
Proliferation and apoptosis in rat ovarian sections using PCNA and TUNEL staining across all groups. (A) Immunohistochemistry staining of PCNA
(magnification, ×100). (B) Immunofluorescence staining of TUNEL (magnification, ×100). (C, D)Quantitative analysis of positive areas in the ovaries. Data
were expressed as mean ± SEM. ##p < 0.01 and ###p < 0.001 vs the NC group. *p < 0.05 and **p < 0.01 vs the MC group. NC, normal control. MC, model
control. PT, positive control. L-BHF, BHF treatment with low dosage. H-BHF, BHF treatment with high dosage.
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FIGURE 4
BHF improved lipid metabolism, ROS and autophagy in POI rats (A)Oil Red O staining (magnification ×100). (B) Expression levels of PPARγ, c/EBPα,
CPT1A and ATGL. (C–F) Semi-quantitative analysis of PPARγ, c/EBPα, CPT1A and ATGL. (G) ROS staining (magnification ×100). (H) Expression levels of
LC3 and P62. (I, J) Semi-quantitative analysis of LC3 and P62. Data were expressed asmean ± SEM. #p < 0.05 and ###p < 0.001 vs the NC group. *p < 0.05,
**p < 0.01 and ***p < 0.001 vs the MC group. NC, normal control. MC, model control. PT, positive control. L-BHF, BHF treatment with low dosage.
H-BHF, BHF treatment with high dosage.
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these data demonstrate that BHF treatment reduced lipid
accumulation, ROS production, and excessive autophagy.

3.5 BHF mitigated PA-induced KGN cells
injury via regulating lipid metabolism

To understand how BHF diminishes the injury of GCs, a lipid-
loading KGN cell model was established using PA. Figure 5A

demonstrates that 24-h incubation with PA (50, 100, 200, and
400 μM) significantly decreased cell viability in KGN cells in a
dose-dependent manner. Consequently, PA at 200 μM for 24 h was
selected for subsequent experiments. BHF cytotoxicity was then
evaluated in KGN cells. Results indicated that up to 400 μg/mL of
BHF did not exhibit cytotoxic effects (Figure 5B). The impact of BHF
at 200 and 400 μg/mL on PA (200 μM) stimulated KGN cells was
further examined. Figures 5C–E show that BHF treatment not only
significantly improved cell viability and E2 levels but also notably

FIGURE 5
BHF improved lipid metabolism, ROS and autophagy in KGN cells. (A–C) Cell viability assays. (D) E2 levels assays. (E, F) TUNEL and Nile Red staining
(magnification ×100). (G) Expression levels of PPARγ, c/EBPα, CPT1A and ATGL. (H–K) Semi-quantitative analysis of PPARγ, c/EBPα, CPT1A and ATGL.
Data were expressed as mean ± SEM. #p < 0.05 and ###p < 0.001 vs the NC group. *p < 0.05, **p < 0.01 and ***p < 0.001 vs the MC group.
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reduced apoptosis in PA-induced KGN cells. Additional analysis
revealed that BHF decreased PA-induced lipid accumulation
(Figure 5F). PA treatment increased PPARγ and C/EBPα

expression, which was negated following BHF treatment.
Expectedly, ATGL and CPT1A expression markedly decreased
with PA treatment but were substantially reversed upon co-

FIGURE 6
BHF inhibited ROS and autophagy in KGN cells. (A) ROS staining (magnification ×100). (B) Expression levels of LC3 and P62. (C, D) Semi-quantitative
analysis of LC3 and P62. (E) E2 levels assays. (F) TUNEL staining (magnification ×100). (G) LC3 and P62 expression levels with and without elesclomol or
rapamycin addition. (H, I) Semi-quantitative analysis of LC3 and P62 with and without elesclomol or rapamycin addition. Data were expressed as mean ±
SEM. #p < 0.05 and ###p < 0.001 vs the NC group. *p < 0.05 and ***p < 0.001 vs the MC group. @p < 0.05 and @@p < 0.05 vs the BHF group.
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incubation with BHF (Figures 5G–K). Collectively, these findings
indicate that BHF protects GCs by regulating lipid metabolism,
thereby reducing lipid accumulation.

3.6 BHF inhibited ROS accumulation and
autophagy in PA-induced KGN cells

The effect of BHF on ROS and autophagy was evaluated in PA-
stimulated KGN cells. Figures 6A–C shows that 24-h BHF treatment
significantly reduced ROS levels and LC3II expression. The same
treatment also increased p62 expression in PA-stimulated KGN cells
(Figures 6B, D). Our data demonstrated that BHF was most effective
at a concentration of 400 μg/mL, which was used for further
experiments. The effects of BHF on E2 levels, apoptosis, ROS,
and autophagy were partially negated by treatment with
elesclomol (a ROS inducer) and rapamycin (an autophagy
inducer). Co-incubation with elesclomol and rapamycin almost
entirely counteracted the effects of BHF under model conditions
(Figures 6E–I). In conclusion, BHF was found to inhibit cell
apoptosis and enhance E2 secretion by reducing ROS
accumulation and hyperactivation of autophagy.

4 Discussion

POI, a major factor contributing to infertility, significantly
affects the quality of life in women. Currently, there are no
specific, clinically proven treatments for POI. However, recent
studies suggest that Traditional Chinese Medicines offer
promising benefits in managing POI (Xiu et al., 2023; Zhou
et al., 2021). BHF, a formula based on clinical experience, has
shown protective effects against POI (Miao et al., 2020). Yet, its
underlying mechanism remains to be fully understood. In this study,
we found that BHF effectively countered hormonal imbalances (E2,
LH, FSH, and AMH) and reduced follicular depletion in POI rats.
Both in vivo and in vitro experiments indicated that BHF reduced
proliferation inhibition and apoptosis in GCs by decreasing lipid
deposition-induced ROS accumulation and autophagy.

BHF comprises eleven traditional Chinese medicinal herbs and
has complex chemical constituents. This research identified the top
23 compounds in BHF (Table 2) with pharmacological activities like
lipid-lowering, insulin sensitization, antithrombotic, anti-
inflammatory, and antioxidant effects (Jang et al., 2017; Ma et al.,
2017; Zhang et al., 2014). Notably, paeoniflorin, isomangiferin,
sucrose, icariin, benzoylpaeoniflorin, neomangiferin, and
chlorogenic acid are known lipid metabolism regulators (Bi et al.,
2023; Geidl-Flueck et al., 2021; Ma et al., 2017; Shao et al., 2021; Xu
et al., 2021; Zhou et al., 2015). Our previous proteomic screening
indicated that differentially expressed proteins in BHF-treated POI
rats primarily involved triglyceride homeostasis and cholesterol
metabolism (Miao et al., 2020). Recent studies have also
highlighted that cholesteryl ester and triacylglycerol are key
metabolites in diminished ovarian reserve rats treated with BHF
(Zeng et al., 2023). Therefore, BHF’s efficacy in alleviating POI
may be attributed to its lipid-regulating properties.

Lipids are recognized as crucial for ovarian function
maintenance. Research indicates that lipids not only provide

energy to oocytes but also serve as precursors for steroid
hormones synthesized in granulosa and theca cells (Liu et al.,
2022). However, lipid accumulation can cause significant ovarian
damage. Previous studies have demonstrated that excessive adipose
tissue accelerates ovarian follicle loss in rats, leading to premature
ovarian failure (Nteeba et al., 2014). Additionally, FFA accumulation
in ovaries correlates with oocyte mitochondrial dysregulation and
apoptosis in cumulus-oocyte complexes, contributing to ovarian
function depletion (Wu et al., 2022). Lipid-lowering agents, such as
rosuvastatin, curcumin, and resveratrol, have shown protective
effects on ovarian function in POI models (Elkady et al., 2019;
Said et al., 2016; Yan et al., 2018). In this study, lipid deposition in
POI rat ovaries and PA-induced lipid accumulation leading to
reduced E2 secretion and increased apoptosis in GCs were
observed. These effects were reversed with BHF treatment,
suggesting that the efficacy of BHF against POI is linked to its
lipid accumulation reduction. Further, BHF regulated lipid
metabolism by inhibiting lipid synthesis (PPARγ and c/EBPα
expression), enhancing lipid catabolism (ATGL expression), and
boosting lipid oxidation (CPT1A expression). Thus, BHF treatment
in POI might be related to reprogramming lipid metabolism to
alleviate lipid accumulation. Notably, premature menopause,
especially in POI patients, increases cardiovascular risk factors
such as weight gain, visceral adiposity, and lipid abnormalities
(van Lennep et al., 2016; van Lennep et al., 2023). The
2019 ACC/AHA guideline also considers premature menopause
(before age 40 years) a risk-enhancing factor for atherosclerotic
cardiovascular disease, recommending statin treatment for women
at borderline or intermediate risk (Arnett et al., 2019). Therefore,
combining effective POI treatments with lipid-lowering drugs may
be a novel strategy for future POI management.

Moreover, disrupted lipid metabolism leads to elevated ROS
levels, implicated in conditions like fatty liver disease and colon
cancer (Abulikemu et al., 2023; Shi et al., 2022). Previous studies
have established that excessive ROS can cause oxidative damage,
triggering atresia in follicles and eventually resulting in premature
ovarian failure (Agarwal et al., 2012). Our data indicate that BHF
treatments significantly reduced ROS accumulation in
corticosterone-induced rats and PA-challenged GCs. The use of
elesclomol, a ROS inducer, partially reversed the effects of BHF in
PA-challenged GCs. These findings suggest that BHF improves POI
by reducing lipid-induced ROS accumulation.

Autophagy is crucial for maintaining cellular homeostasis by
eliminating misfolded proteins or defective organelles. However, its
hyperactivation can lead to the extensive degradation of vital cell
components. There is substantial evidence that excessive autophagy
induces apoptosis in GCs (Zhou et al., 2019). Duerrschmidt N et al.
reported that low-density lipoprotein-induced autophagic death in GCs
contributes to follicular atresia (Duerrschmidt et al., 2006).
Furthermore, chronic stress is known to accelerate GC senescence,
which is linked to ROS-induced autophagy (Sun et al., 2021). Current
therapeutic approaches, such as melatonin, hyperoside, and human
umbilical cord-derived mesenchymal stem cells, aim to reduce
autophagy to improve POI (Dai et al., 2023; Xie et al., 2021; Zhu
et al., 2022). Our findings show that BHF reduced the accumulation of
LC3II and the decrease in P62 in CORT-induced rats and PA-
challenged GCs, thereby inhibiting excessive autophagy. Co-
treatment with rapamycin, an autophagy inducer, partially nullified
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BHF’s anti-apoptotic and E2 enhancing effects in PA-induced GCs.
Notably, the effects of BHF were almost negated under co-incubation
with rapamycin and elesclomol in PA-induced GCs. These results
suggest that BHF attenuates lipid-induced autophagy, thereby
boosting E2 secretion. Conversely, inadequate autophagy can impair
GC differentiation and E2 synthesis (Shao et al., 2022). Given that
autophagy has varied effects on cell proliferation or apoptosis
depending on cellular conditions (Mazure and Pouyssegur, 2010),
we speculate that the observed differences could be due to the status
of GCs arising from the various model establishment methods.

5 Conclusion

In summary, our study has shown that BHF has beneficial effects
on POI rats by enhancing hormonal balance and reducing follicular
depletion. Further analysis indicated that the mechanisms of BHF
are closely related to its ability to reduce lipid accumulation-induced
ROS and autophagy in ovaries and GCs by altering lipid metabolism.
These findings suggest that modulation of lipid metabolism could be
a promising therapeutic approach for the treatment of POI.
Notwithstanding, our study also exists some limitations. Firstly,
the chemical components of BHF were identified in this paper.
However, the active ingredients should be screened based on the
curative effects of improving POI. Secondly, this experiment only
provided preliminary detection of the representative proteins in
lipid metabolism and did not carry out a full screening. Finally, this
experiment did not probe the upstream regulators of lipid
metabolism in the treatment POI. Therefore, the pathways and
critical targets of BHF modulation lipid metabolism in POI will be
the subject of a future study.
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