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Honokiol, a naturally occurring compound from Magnolia obovata Thunb., has
many biological activities, but its anti-α-glucosidase activity is still unclear.
Therefore, we determined its inhibitory effects against α-glucosidase. Activity
assays showed that honokiol was a reversible mixed-type inhibitor of α-
glucosidase, and its IC50 value was 317.11 ± 12.86 μM. Fluorescence results
indicated that the binding of honokiol to α-glucosidase caused a reduction in
α-glucosidase activity. 3D fluorescence and CD spectra results indicated that the
binding of honokiol to α-glucosidase caused conformational change in α-
glucosidase. Docking simulated the detailed interactions between honokiol
and α-glucosidase, including hydrogen and hydrophobic bonds. All findings
showed that honokiol could be used as a natural inhibitor to develop α-
glucosidase agents.
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1 Introduction

Type 2 diabetes mellitus (T2DM) is a growing health concern with increased
prevalence (Xu et al., 2020; ElSayed et al., 2023; Zhou et al., 2023). Now, T2DM has
become a significant global health issue (Hu et al., 2024; Li et al., 2024). Epidemiological
trends indicate that the prevalence of diabetes could reach an alarming 643 million
individuals worldwide by 2030 (Song et al., 2022; Lin et al., 2023). The hallmark clinical
feature of T2DM is elevated blood glucose levels, or hyperglycemia, which can result in
a spectrum of debilitating complications (Jiang et al., 2020; Ding et al., 2021; Xing et al.,
2021). Therefore, management of hyperglycemia is a critical aspect for T2DM patients
(Hu et al., 2020).

One key characteristic of T2DM is postprandial hyperglycemia, which is intricately
linked to the breakdown of carbohydrates (Hameed et al., 2019; Davies et al., 2022). α-
Glucosidase, an enzyme present in enterocytes of the small intestine, facilitates the
hydrolysis of glycosidic bonds to liberate glucose (Basri et al., 2023; Xiao et al., 2023).
The suppression of α-glucosidase activity can thus delay carbohydrate digestion and
absorption, leading to a reduction in the postprandial glucose spike (Basri et al., 2023;
Wu et al., 2023). This rationale has made the inhibition of α-glucosidase a strategic
target for therapeutic interventions to manage postprandial hyperglycemia (Khan
et al., 2022; Zhang et al., 2022). Clinically, a number of α-glucosidase inhibitors,
including acarbose and voglibose, have been employed to mitigate T2DM (Feng et al.,
2024). However, chronic administration of these pharmaceuticals has its drawbacks,
which urges people to seek safer and more effective α-glucosidase inhibitors
(Lambrinoudaki et al., 2022; Min et al., 2024). Exploration of natural products as a
repository for novel therapeutic agents has been a promising avenue (Zhang et al.,
2021; Chen et al., 2022; Wang et al., 2022; Zhou et al., 2022). The active constituents
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have demonstrated a diverse array of pharmacological effects,
including anti-oxidant (Sun et al., 2020; Tao et al., 2022; Tang
et al., 2023), anti-tumor (Chen et al., 2023; Liang et al., 2023;
Song et al., 2023), anti-inflammatory (Sun et al., 2020; Wang
et al., 2021; Wang et al., 2022), and anti-tissue damage (Shao
et al., 2020; Qi et al., 2022; Ding et al., 2023) properties (Wang
et al., 2020; Chen et al., 2022; Zang et al., 2022; He et al., 2023).
Moreover, a notable advantage of natural products is their

generally lower toxicity profiles (Hao et al., 2022; Mao et al.,
2022; Wang et al., 2023), which makes them a preferable source
for development of α-glucosidase inhibitors.

Honokiol (Figure 1), a naturally occurring compound from
Magnolia obovata Thunb., has been recognized for its diverse
medicinal properties (Zengin et al., 2017; Ma et al., 2023). As a
bioactive neolignan, honokiol has demonstrated a range of
activities, including anti-cancer, anti-inflammation, and anti-
oxidant effects (He et al., 2015; Guo et al., 2021; Niu et al.,
2021). In recent research studies, honokiol has garnered
significant interest due to its ability to mitigate hyperglycemic
conditions, enhance glucose uptake, and inhibit α-glucosidase
activity (Bekircan et al., 2015; Pulvirenti et al., 2017; Ahmad et al.,
2018). This shows the potential of honokiol as a natural α-
glucosidase and hypoglycemic agent.

As far as we know, the detailed inhibitory effects of honokiol
on α-glucosidase are still unclear. Hence, the biological activity of
honokiol as an α-glucosidase inhibitor was investigated by
spectroscopic methods and molecular docking.

2 Results and discussion

2.1 Inhibitory activity of honokiol on α-
glucosidase

First, we assessed the inhibitory activity of honokiol on α-
glucosidase, as shown in Figure 2. With an increase in the
honokiol concentration, the inhibition rate gradually
increased, and its IC50 value was calculated to be 317.11 ±
12.86 μM, which was lower than that of acarbose (IC50 =

FIGURE 1
Structure of honokiol.

FIGURE 2
Inhibition of honokiol on α-glucosidase.
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584.51 ± 8.56 μM). The potential inhibitory activity of honokiol
on α-glucosidase might make it a natural hypoglycemic agent.

2.2 Kinetic study

It is very important to clarify the inhibition mode of inhibitors
against enzymes for understanding the performance of inhibitors.
Hence, the kinetics of honokiol on α-glucosidase were studied. In the
plots of the enzyme reaction rate to the enzyme concentration under
honokiol (Figure 3A), all lines passed the origin point. This indicated

honokiol as a reversible α-glucosidase inhibitor. In the
Lineweaver–Burk plots of the enzyme reaction rate to substrate
concentration under honokiol (Figure 3B), all lines intersected at the
second quadrant. Their slope and Y-intercept were both changed
with honokiol concentration. Therefore, it is evident that honokiol
was a mixed-type inhibitor.

As a mixed-type inhibitor, honokiol was determined to have an
inhibition constant. The fitting plot of slope and Y-intercept versus
honokiol (Figures 4A,B) yielded Ki and Kis values of 16.03 and
285.22 μM, respectively. The lower Ki indicated that honokiol
tended to bind to substrates.

FIGURE 3
(A) Plots of the enzyme reaction rate to enzyme concentration (B) Lineweaver–Burk plots of the enzyme reaction rate to the substrate
concentration.

FIGURE 4
(A,B) Ki and Kis plots of honokiol.
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2.3 Fluorescence assay

Based on the fluorescence characteristics of α-glucosidase, the
binding of honokiol to α-glucosidase was studied by fluorescence
spectroscopy at 298K. In Figure 5, α-glucosidase presented
fluorescence with a characteristic peak at 340 nm, while honokiol
had very weak fluorescence at 340 nm. With continuous addition of
honokiol, α-glucosidase fluorescence gradually decreased. This
phenomenon indicated that there were binding interactions
between honokiol and α-glucosidase, which could quench the
endogenous fluorescence of α-glucosidase.

Subsequently, the binding of honokiol to α-glucosidase was
further described by 3D fluorescence (Figures 6A,B). The 3D
fluorescence spectra of α-glucosidase had two characteristic peaks
due to intrinsic fluorophores and the backbone, which could be
reduced by the addition of honokiol. This result was consistent with
that of the fluorescence assay.

2.4 CD spectra

CD spectra were investigated to evaluate the specific effects of
honokiol on α-glucosidase structure. α-Glucosidase showed its own
unique CD spectra at 210–222 nm (Figure 7). Honokiol treatment
changed the CD spectra of α-glucosidase (Figure 7), which further
indicated the binding of honokiol to α-glucosidase. The
conformational changes in α-glucosidase were obtained from CD
spectral data and showed that honokiol treatment resulted in
changes in the α-glucosidase secondary structure content
(Table 1). This might be the reason for the inhibition of
honokiol on α-glucosidase.

2.5 Molecular docking

The docking interaction of honokiol with α-glucosidase was
simulated. In a 3D view of docking (Figure 8A), honokiol was
bound into the α-glucosidase active pocket, with a binding
energy of −4.9 kcal/mol, presumably binding to amino acid
residues in the pocket. Further analysis (Figure 8B) found
that honokiol formed hydrogen bonds with GLU-276 (2.5 Å),
ASP-349 (2.0 Å), and ASP214 (1.9 Å). Moreover, honokiol
formed hydrophobic bonds with TYR-71, TYR-313, LEU-437,
ARG-312, and PHE300. These main interactions between
honokiol and α-glucosidase might be the reason for
honokiol’s inhibitory effect on α-glucosidase activity.

3 Materials and methods

3.1 α-Glucosidase inhibitory activity

α-Glucosidase was dissolved in PBS (pH 6.8), and honokiol was
dissolved in DMSO. Honokiol solution and α-glucosidase solution
were mixed and incubated for an appropriate time, and then a
certain amount of substrate p-nitrophenyl-α-D-galactopyranoside

FIGURE 5
Fluorescence spectra of α-glucosidase binding by honokiol.

FIGURE 6
(A,B) 3D fluorescence spectra of α-glucosidase binding by honokiol.
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(pNPG) was added. Then, the absorbance of the solution at 405 nm
was determined. Then, the α-glucosidase inhibitory effect of
honokiol was obtained (Xu et al., 2020; Ali et al., 2023).

3.2 Inhibition kinetics

The test procedure for inhibition kinetics followed the same
protocol as the α-glucosidase inhibition assay. For enzyme kinetics,
the absorbance of a mixture with different concentrations of
honokiol and α-glucosidase was recorded. For substrate kinetics,
the absorbance of the mixture with different concentrations of
honokiol and substrate was recorded (Kaur et al., 2021).

3.3 Fluorescence

Fluorescence measurements of α-glucosidase were conducted at
an excitation wavelength of 280 nm (Wu et al., 2024). Then,
honokiol was added step by step, and the corresponding
fluorescence of the mixture was recorded.

3.4 3D fluorescence

3D fluorescence spectra of α-glucosidase with/without honokiol
were recorded. The concentration of α-glucosidase was 0.1 mg/mL.
Honokiol (0.25 μM) was added to α-glucosidase to prepare
their mixture.

FIGURE 7
CD spectra of α-glucosidase binding by honokiol.

TABLE 1 Conformational changes in α-glucosidase by honokiol.

[Enzyme]: [Honokiol] α-Helix (%) β-Sheet (%) β-Turn (%) Random coil (%)

1: 0 16.7 37.6 20.0 56.2

1: 1 17.0 36.5 19.9 59.4

1: 2 17.2 36.1 19.8 61.5

FIGURE 8
(A,B) Docking of honokiol with α-glucosidase in 3D and 2D view.
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3.5 CD spectra

CD spectra of α-glucosidase with/without honokiol were also
recorded. The concentration of α-glucosidase was 0.1 mg/mL.
Honokiol was added to α-glucosidase to prepare their mixture.
The data were analyzed using CDNN software (Li et al., 2024).

3.6 Molecular docking

The docking of honokiol with α-glucosidase was conducted
using SYBYL (Deng et al., 2022; Patil et al., 2022). After being
imported into the software, the honokiol structure was hydro-
treated and charge-treated. Then, the homology model of α-
glucosidase was also prepared by hydro-treating and charge-
treating. Due to the absence of ligands in the protein, the active
pocket of α-glucosidase was produced. Then, the docking of
honokiol with α-glucosidase was performed in the default mode.

3.7 Statistical analysis

All data were presented as mean ± SD. One-way ANOVA was
performed to evaluate the differences between the groups (Zhao
et al., 2017; Zhang et al., 2021; Zheng et al., 2021; Sheng et al., 2023).
p < 0.05 was considered significant.

4 Conclusion

As a naturally occurring compound from Magnolia obovata
Thunb., honokiol was ascertained for its anti-α-glucosidase activity
and inhibition mechanism. So we designed experiments to clarify
these properties. Activity assays showed that honokiol was a
reversible mixed-type inhibitor of α-glucosidase, and its IC50

value was 317.11 ± 12.86 μM. Fluorescence, 3D fluorescence, and
CD spectra investigations indicated that the binding of honokiol to
α-glucosidase caused a reduction in α-glucosidase activity. Docking

simulated the detailed interactions between honokiol and α-
glucosidase.
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