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Neurodegenerative diseases (NDDs) represent a category of serious illnesses
characterized by the progressive deterioration of neuronal structure and
function. The exploration of natural compounds as potential therapeutic
agents has gained increasing attention in recent years owing to their wide
range of pharmacological activities and minimal side effects. Baicalin (BAI) and
baicalein (BE), polyphenolic flavonoids, derived from the root of Scutellaria
baicalensis, evidently show potential in treating NDDs. This review provides an
overview of the current understanding of the roles of BAI and BE in alleviating
neuroinflammation, a pivotal pathological process implicated in various NDDs.
Studies conducted prior to clinical trials have shown that BAI and BE exert
protective effects on the nervous system in different animal models of NDDs.
Furthermore, mechanistic studies indicate that BAI and BE exert anti-
inflammatory effects by inhibiting pro-inflammatory cytokines, suppressing
microglial activation, and regulating microglial phenotypes. These effects are
mediated through the modulation of inflammatory signaling cascades, including
Toll-like receptor 4 (TLR4), mitogen-activated protein kinase (MAPK), amp-
activated protein kinase (AMPK), NOD-like receptor thermal protein domain-
associated protein 3 (NLRP3) inflammasome, and nuclear factor erythroid 2-
related factor 2 (Nrf2)/hemoglobin oxygenase-1 (HO-1). Overall, BAI and BE
exhibit promising potential as natural compounds with anti-inflammatory
properties and offer innovative therapeutic approaches for managing NDDs.
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1 Introduction

Scutellaria baicalensis (S. baicalensis), commonly known as Huangqin or Chinese
skullcap, is widely distributed in northern, northwestern, and southwestern China
(Shang et al., 2010). It has also been found in the Soviet Union, Mongolia, North
Korea, and Japan. Baicalin (BAI; syn.baicalein7-O-β-D-glucuronic acid) and baicalein
(BE; 5, 6, 7-trihydroxyflavone), the principal compounds derived from the roots of S.
baicalensis, are polyphenolic substances and members of the flavone subclass of flavonoids
(Gaire et al., 2014). BAI and its aglycone, BE, have attracted increasing attention from the
pharmaceutical industry because of their remarkable biological activities. These two
flavonoids share structural similarities and can be converted into each other during
metabolism within the body (Liang et al., 2017). BAI, as a glucuronide form of BE, is
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hydrolyzed by glucuronidases in the intestines, liver, and other
tissues, releasing baicalein. This process allows baicalein to exert
its biological activities directly. Conversely, BE can be conjugated
with glucuronic acid to form BAI through glucuronidation
reactions, primarily occurring in the liver. Their pharmacological
properties have garnered significant attention in recent years,
leading to extensive research on their various therapeutic
applications.

BAI is formed by combining BE with glucuronic acid. Due to its
glucuronic acid component, BAI exhibits higher water solubility but
has relatively poor ability to penetrate the intestinal epithelium,
requiring specific transport mechanisms or enzymatic action to
enter the bloodstream. In contrast, BE has smaller molecular size
and higher lipid solubility, allowing it to more easily penetrate the
intestinal epithelium and enter the bloodstream directly. It does not
require specific transport mechanisms or enzymatic assistance,
making it more efficient in crossing the intestinal barrier (Zhang
et al., 2007; Li et al., 2011). BAI is moderately absorbed in the
stomach, with limited absorption in the small intestine and colon.
Conversely, BE is efficiently absorbed in the stomach and small
intestine; however, its absorption in the colon is somewhat
restricted. Owing to body dynamics, BE is more completely
absorbed and converted back to BAI in the systemic circulation
through conjugative reactions. Circulating BAI is expected to return
to the gastrointestinal tract via biliary excretion (Taiming and
Xuehua, 2006). BAI cannot directly cross the intestine but is
hydrolyzed to BE by enzymes and bacteria (Akao et al., 2000;
Day et al., 2003). BAI can cross the blood–brain barrier (BBB),
quickly spread to the cerebrospinal fluid, and peak at a
concentration of 344 μg/L in approximately 30 min after the
intravenous administration of 24 mg/kg BAI. BAI has a tendency
to build up in the striatum, thalamus, and hippocampus, which helps
reinforce its positive impact on the central nervous system (CNS)
(Zhang et al., 2006; Huang et al., 2008). Hence, the spread of BAI in
the brain reinforces its healing properties on the central nervous
system. Upon oral administration of BAI, the presence of both
unchanged BAI and BE conjugates of glucuronide and sulfate is
reportedly observed in the serum (Lai et al., 2003). BAI and BE are
excreted via both the biliary and renal pathways (Akao et al., 2009).

BAI and BE exhibit diverse pharmacological effects, and one of
the primary areas of research is their potent antioxidant activity.
They can eliminate free radicals and decrease oxidative stress, which
helps protect cells from damage and may alleviate various diseases
linked to oxidative stress, such as heart problems, brain disorders,
and cancer (Waisundara et al., 2009; Ma et al., 2021; Wang et al.,
2021; Chen et al., 2022; Nie et al., 2023). Furthermore, BAI and BE
exhibit anti-inflammatory effects by modulating various
inflammatory mediators and signaling pathways. Their capacity
to suppress the generation of pro-inflammatory cytokines
enhances their effectiveness in managing inflammatory disorders,
such as arthritis, inflammatory bowel disease, and asthma (Chen
et al., 2014; Zhang et al., 2014; Dinda et al., 2017; Wang et al., 2021;
Wen et al., 2023). Moreover, BAI and BE have been investigated for
their neuroprotective properties. They may offer neuroprotection
through mechanisms such as reducing neuronal apoptosis,
suppressing neuroinflammation, and promoting neuronal
regeneration (Yuan et al., 2020; Zhao et al., 2021; Huang et al.,
2024; Song et al., 2024). The characteristics of BAI and its aglycone

BE make them potential options for treating neurodegenerative
diseases (NDDs), such as Alzheimer’s disease (AD), Parkinson’s
disease (PD), and stroke.

2 Literature search strategy

To provide an overview of the research articles on BAI and BE in
neurodegenerative diseases, we searched the databases PubMed,
Web of Science, Embase, and Scopus. The search strategy used in
PubMed was as follows: ((“Neurodegenerative Diseases” [MeSH]
OR “Alzheimer Disease” [MeSH] OR “Parkinson Disease” [MeSH]
OR “Huntington Disease” OR “Amyotrophic Lateral Sclerosis” OR
“Multiple Sclerosis”) AND (“Neuroinflammation” [MeSH] OR
“Brain Inflammation” OR “Microglia Activation”)) AND
(“Baicalin” OR “Baicalein” OR “Flavonoids” OR “Scutellaria
baicalensis”). The search strategy used in Web of Science was as
follows: ((“Neurodegenerative Diseases” OR “Alzheimer Disease”
OR “Parkinson Disease” OR “Huntington Disease” OR
“Amyotrophic Lateral Sclerosis” OR “Multiple Sclerosis”) AND
(“Neuroinflammation” OR “Brain Inflammation” OR “Microglia
Activation”)) AND (“Baicalin”OR “Baicalein”OR “Flavonoids” OR
“Scutellaria baicalensis”). The search strategy used in Embase was as
follows: ((“Neurodegenerative Diseases” OR “Alzheimer Disease”
OR “Parkinson Disease” OR “Huntington Disease” OR
“Amyotrophic Lateral Sclerosis” OR “Multiple Sclerosis”) AND
(“Neuroinflammation” OR “Brain Inflammation” OR “Microglia
Activation”)) AND (“Baicalin” OR ‘Baicalein” OR “Scutellaria
baicalensis”). The search strategy used in Scopus was as follows:
(TITLE-ABS-KEY (“Neurodegenerative Diseases”) OR TITLE-
ABS-KEY (“Alzheimer Disease”) OR TITLE-ABS-KEY
(“Parkinson Disease”) OR TITLE-ABS-KEY (“Huntington
Disease”) OR TITLE-ABS-KEY (“Amyotrophic Lateral Sclerosis”)
OR TITLE-ABS-KEY (“Multiple Sclerosis”)) AND (TITLE-ABS-
KEY (“Neuroinflammation”) OR TITLE-ABS-KEY (“Brain
Inflammation”) OR TITLE-ABS-KEY (“Microglia Activation”))
AND (TITLE-ABS-KEY (“Baicalin”) OR TITLE-ABS-KEY
(“Baicalein”) OR TITLE-ABS-KEY (“Scutellaria baicalensis”)).

3 NDDs and neuroinflammation

NDDs encompass a broad spectrum of neurological disorders
characterized by various clinical and pathological hallmarks,
affecting specific subsets of neurons within distinct regions of the
CNS, mainly including AD, PD, multiple sclerosis (MS),
amyotrophic lateral sclerosis (ALS), Huntington’s disease (HD),
and multiple system atrophy (MSA). Although the pathogenic
mechanisms of these diseases are different, such as different
protein aggregates and genetic variations, they all share the
common hallmark of chronic neuroinflammation (Mayne et al.,
2020). Increasing evidence has demonstrated that
neuroinflammation may not merely be a consequence of protein
aggregation; rather, it may initiate the accumulation of aggregates at
the earliest phase of the disease process (Sosna et al., 2018; Gao
et al., 2023).

Microglia, considered macrophages of the CNS, play an
important role in neuroinflammation. Resting microglia, also
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known as M0 microglia, maintain the homeostasis of their adjacent
environment during active immune surveillance (Gao et al., 2023).
Upon exogenous or endogenous stimuli, microglia are rapidly
activated and shift to an activated phenotype, which is typically
characterized by two phenotypic states: a classically activated
M1 phenotype or an alternatively activated M2 phenotype.
Generally, the M1 phenotype is associated with pro-
inflammatory and neurotoxic responses, whereas the
M2 phenotype predominantly possesses anti-inflammatory and
neuroprotective functions (Woodburn et al., 2021). During aging,
microglia tend to display a dominant M1-like phenotype
associated with neurotoxic responses (Ward et al., 2015). In
NDDs, endogenous pathological protein aggregation, neuronal
damage, and microglial-related neuroinflammation are
interconnected via a positive feedback loop.

In AD, microglia become persistently activated by the
aggregation of β-amyloid peptide (Aβ) and subsequently
transform into the M1 phenotype. They release a wide variety of
pro-inflammatory and toxic productions, amplifying immune
responses, leading to neurotoxicity (Meda et al., 2001), and
increasing the secretion of Aβ fragments and the aggregation of
soluble β-amyloid (Tan and Seshadri, 2010). In PD, excessive
aggregation of α-synuclein (α-syn) can be released either directly
from neurons or via exosomes, thereby activating microglia.
Subsequently, activated microglia exacerbate the disease by
releasing cytokines and chemokines that enhance α-syn
pathogenicity, induce neuron death, and further enhance
microglia activation (Reimer et al., 2018; Pajares et al., 2020).
Similar to PD, MSA is also associated with the pathological
protein α-syn. Its hallmark pathological characteristic is the
presence of glial cytoplasmic inclusions (GCIs), rich in α-syn,
within oligodendrocytes. Misfolded α-syn serves as a main trigger
for microglial activation, which is believed to accelerate α-syn
aggregation and promote the apoptosis of oligodendrocytes
(Vieira et al., 2015). In MS, microglia are not the primary
triggers but are influenced by a wider immune disturbance
(Ransohoff, 2016). They adopt a pro-inflammatory behavior,
such as antigen presentation, phagocytosis, and secretion of
cytokines and chemokines, which play a central role in the
pathogenesis of MS (Li and Barres, 2018; Voet et al., 2019).

Neuroinflammation also plays a vital role in the progression of
other NDDs. In ALS, microglia can become overactivated due to
the aggregation of TAR DNA-binding protein 43 and Cu/Zn
superoxide dismutase 1 (SOD1), producing pro-inflammatory
cytokines, which not only directly damage neurons but also
exacerbate ALS (Zhao et al., 2015; Calió et al., 2020; Yu et al.,
2020). There is a significant increase in activated microglia and
pro-inflammatory cytokine levels in the brains of patients with
HD and in vivo models (Tai et al., 2007; Sivandzade et al., 2019;
Subhramanyam et al., 2019; Saba et al., 2022), which promote
neuronal cell death by inducing apoptosis and reactive oxygen
species (ROS)/reactive nitrogen species (RNS) production and
complement activation, enhancing excitotoxicity and
mitochondrial damage (Smith et al., 2012; Saba et al., 2022). In
addition to that, chronic cerebral hypoperfusion (CCH) is the
common underlying pathophysiological mechanism, which is a
major contributor to cognitive decline and degenerative processes
(Tian et al., 2022). A continuous decrease in cerebral blood flow

causes cell death, and the subsequent release of cell debris will
induce the neuroinflammation–immune cascade reaction (Ma
et al., 2017). During this process, microglia could turn into an
M1 phenotype that releases pro-inflammatory cytokines that
further aggravate neuroinflammation and tissue damage,
promoting the development of cognitive dysfunction and
degeneration (Ma et al., 2017; Tian et al., 2022).

In summary, pathogenic protein aggregation, neuronal damage,
and microglial-related neuroinflammation exhibit mutually
reinforcing patterns that exacerbate neurodegeneration.
Therefore, controlling neuroinflammation is a potential target for
NDD therapy. Natural products that modulate neuroinflammation
have attracted considerable attention in this field.

4 The effects of BAI and BE on
neuroinflammation-related
signaling pathways

BAI and BE, essential natural flavonoids extracted from the
roots of S. baicalensis, have various biological and pharmacological
effects and can cross the BBB (Huang et al., 2008). Extensive
research has demonstrated that BAI and BE can inhibit
neuroinflammation by targeting various signaling pathways
depending on specific NDDs (Figure 1) (Marogianni et al., 2020;
Pan et al., 2021; Scheltens et al., 2021; Araujo et al., 2022; Zhang W.
et al., 2023).

4.1 NF-κB signaling

Nuclear factor-kappa B (NF-κB), implicated in anti-
inflammatory processes across various neurodegenerative
conditions, typically resides in the cytoplasm bound to the
regulatory protein inhibitor of NF-κB (IκB) (Sivandzade et al.,
2019; Sun et al., 2022; Xu et al., 2024). When exposed to various
stimuli, IκB gets phosphorylated by the IκB kinase complex, made
up of IκB kinase (IKK) α, IKKβ, and the scaffolding protein NF-κB
essential modulator, resulting in the release of NF-κB dimers. The
dimers are subsequently transported into the nucleus and control
the transcription of inflammatory cytokines like tumor necrosis
factor α (TNF-α), interleukin-1 beta (IL-1β), interleukin (IL)-2, IL-6,
IL-18, IL-12, inducible nitric oxide synthase (iNOS), and
cyclooxygenase-2 (COX-2) (Guo et al., 2024). BAI or BE
mediates anti-inflammatory effects by blocking NF-κB activation
through multiple signal transductions such as Toll-like receptor 4
(TLR4), mitogen-activated protein kinase (MAPK), AMP-activated
protein kinase (AMPK), and nuclear factor erythroid 2-related
factor 2 (Nrf2)/heme oxygenase-1 (HO-1), ultimately exerting
neuroprotective effects in NDDs.

4.2 TLR4 signaling

The TLR4 pathway has been implicated in neuroinflammation,
which is a common manifestation of various CNS diseases
(Adhikarla et al., 2021; Heidari et al., 2022). In vitro studies have
shown that BAI inhibits microglial activation and the release of
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inflammatory factors induced by oxygen–glucose deprivation
(OGD) or lipopolysaccharide (LPS). It additionally alters the
regulation of associated proteins within the TLR4/MyD88/NF-κB
signaling pathway. Interestingly, molecular docking analysis
revealed that BAI binds favorably to the active site of TLR4-
MD2, indicating a strong and stable interaction with the
TLR4 receptor (Hou et al., 2012; Li B. et al., 2022). BAI inhibited
neuroinflammation induced by microglia in vivo by blocking the
TLR4/NF-κB pathway in amyloid beta precursor protein (APP)/
presenilin-1 (PS1) mice (Jin et al., 2019). BAI triggered the TLR4/
myeloid differentiation protein 88 (MyD88)/caspase-3 pathway to
reduce neurodegeneration in the hippocampal CA3 area, while
decreasing the levels of TLR4, NF-κB p65, iNOS, and COX-2
proteins and suppressing the secretion of TNF-α and IL-1β,
which resulted in a protective effect on the nervous system (Tu
et al., 2011; Yang et al., 2021). BE reduced the protein levels of TLR4,
p-IκBα, and p-p65 in activated microglial models, hindering the
translocation of NF-κB p65 from the cytoplasm to the nucleus and
suppressing the expression of phosphorylated signal transducers
and activators of transcription 1 (STAT1), which also contribute to
the shift in microglial polarization toward an anti-inflammatory
phenotype (Ran et al., 2021). The TLR4/MyD88/NF-κB pathway
plays a role in CCH and is implicated in how BE prevents vascular
dementia in rats (Song et al., 2024).

4.3 MAPK signaling

The MAPK signaling pathway plays a crucial role in controlling
a variety of cellular functions such as cell proliferation,
differentiation, and apoptosis. Emerging evidence has suggested a
significant association between the dysregulation of the MAPK
pathway and CNS disorders (Zheng et al., 2020; Tabaa et al.,
2022; Khan et al., 2023). In the LPS-induced BV2 microglia
model, Li et al. observed that BAI effectively inhibited LPS-
induced phosphorylation of p38, extracellular signal-regulated
kinase (ERK), and c-Jun N-terminal kinase (JNK), along with a
reduction in the expression of neuroimmune mediators such as NO,
prostaglandin E2 (PGE2), and IL-1β, suggesting that MAPK can be
targeted by BAI (Li B. et al., 2022). In addition, BE treatment
significantly inhibited p38, ERK 1/2, and JNK activation in the
brains of PD rats, suggesting that BE can exert an anti-inflammatory
effect in PD rats through the MAPK pathway (Zhang et al., 2017).

4.4 NLRP3 inflammasome signaling

The NOD-like receptor thermal protein domain-associated
protein 3 (NLRP3) inflammasome, which includes NLRP3,
apoptosis-associated speck-like protein containing a caspase

FIGURE 1
Plausible molecular mechanisms of BAI and BE in NDDs.
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recruitment domain (ASC), and caspase-1, breaks down inactive
pro-IL-1β and pro-IL-18 to produce mature IL-1β and IL-18,
respectively (Juliana et al., 2012; Yin et al., 2018). BAI decreased
the activation of NLRP3 and production of IL-1β in the cortex of 3 ×
Tg-AD mice (Bitto et al., 2017), while BE decreased Aβ plaque
accumulation and reduced NLRP3 inflammasome activation and
neuronal cell death (Gong et al., 2023). The anti-inflammatory effect
of BAI may be associated with its ability to inhibit the activation of
the NLRP3 inflammasome, which occurs through the inhibition of
NF-κB pathway activation—a preliminary step necessary for
NLRP3 inflammasome activation (Zeng et al., 2017). Jin et al.
demonstrated that BAI pretreatment significantly inhibited LPS/
Aβ-induced elevation of p-IκBα expression and reduction in IκBα
protein expression in BV2 microglial cells and simultaneously
downregulated NLRP3 protein expression and inhibited caspase-1
activity, thereby reducing IL-1β and IL-18 levels (Jin et al., 2019). In
PD, BAI showed a dose-dependent inhibition of the excessive
phosphorylation of NF-κB p65 and the upregulation of
NLRP3 inflammasomes, along with their resulting caspase-1 and
IL-1β (Huang et al., 2024). In contrast, BE alleviated 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP)-triggered
neuroinflammation by inhibiting the NLRP3/caspase-1/gasdermin
D (GSDMD) pathway (Rui et al., 2020). BAI treatment also
enhanced the neuronal antioxidant capacity (Huang et al., 2021),
which is associated with Nrf2/HO-1 activation (Ding et al., 2015; Li
X. et al., 2022). The antioxidant effects mediated by Nrf2 are
essential for the inhibition of NLRP3 inflammasome signaling by
BE (Huang et al., 2024).

4.5 AMPK signaling

In various CNS disorders, the aberrant regulation of AMPK
signaling has been implicated in the modulation of
neuroinflammation (Chen et al., 2021a; Wang et al., 2022;
Steinberg and Hardie, 2023; Wang et al., 2023). AMPK
activation reduces the inflammatory response by blocking the
NF-κB pathway (Jie et al., 2022). In PD, BE elevates AMPK
phosphorylation and inhibits the mammalian target of
rapamycin (mTOR) activity, whereas miR-30b-5p
overexpression and sirtuin 1 (SIRT1) silencing partially abolish
the function of BE in regulating the AMPK/mTOR pathway
(Chen et al., 2021b). In addition, BAI attenuates neurological
damage following OGD/reperfusion by inhibiting
NLRP3 inflammasome activity through enhanced AMPK
phosphorylation (Zheng et al., 2021; Li et al., 2017), while the
inhibition of the AMPK/Nrf2 pathway may also contribute to
BE’s neuroprotective mechanisms (Yuan et al., 2020)

4.6 Other possible mechanisms

The alteration of K (+)-Cl (−) co-transporter and Na-K-2Cl
cotransporter-1 expression by BAI affects GABAergic signaling,
while the enhancement of heat shock protein expression may
also contribute to the neuroprotective mechanisms of BAI (Dai
et al., 2013). The regulation of BE on microglial polarization is
essential for suppressing neuroinflammation and nerve damage in

AD by targeting the heme oxygenase 1/phosphodiesterase 4D axis
(Gong et al., 2023).

5 The effects of BE and BAI on
neuroinflammation in NDDs

Extensive research has indicated a close association between
neuroinflammation and various neurodegenerative pathways
(Marogianni et al., 2020; Scheltens et al., 2021; Araujo et al.,
2022; Zhang W. et al., 2023). The neuroprotective properties of
BAI and BE appear to stem from their anti-inflammatory
characteristics (Pan et al., 2021) (Table 1).

5.1 BAI, BE, and AD

AD is the most common neurodegenerative disorder,
characterized by significant pathological changes in the brain,
including the accumulation of Aβ plaques and neurofibrillary
tangles formed hyperphosphorylated tau protein (Scheltens et al.,
2021; Thakur et al., 2023). The presence of Aβ plaques and tau
tangles leads to chronic neuroinflammation, which exacerbates
neuronal damage and cognitive decline (Leng and Edison, 2021).
TLR4, NF-κB, MAPK, and the NLRP3 inflammasome are key
components in triggering microglial-related neuroinflammation.
TLR4 facilitates the recognition of pathological stimuli and then
initiates NF-κB and MAPK pathways, which propagate pro-
inflammatory signaling (Wu et al., 2022). The
NLRP3 inflammasome can be activated by the TLR4/MyD88/NF-
κB signaling pathway or directly by oligomers and fiber Aβ,
amplifying cytokine release and perpetuating a cycle of
neuroinflammation (Yang et al., 2020; Milner et al., 2021).
Targeting the inflammation-related signaling pathway could
suppress microglial activation, reduce pathogenesis, and improve
learning and memory functions, which may be effective therapeutic
strategies for AD.

Both BAI and BE exhibit beneficial effects in AD by modulating
neuroinflammation. In an Aβ-induced cell model, BAI attenuates
Aβ-mediated microglial inflammatory responses and
neuroinflammation-associated neuronal apoptosis (Jin et al.,
2019; Xiong et al., 2014). Similar effects have been observed with
BE, which can alleviate Aβ25–35-stimulated neuronal apoptosis and
inflammation (Ji et al., 2020). In addition, BAI significantly alleviates
LPS-induced neuroinflammation by suppressing the expression of
miR-155, regulating the TLR4/MyD88/NF-κB pathway and MAPK
pathway (Li B. et al., 2022).

Furthermore, BAI and BE have demonstrated notable
neuroprotective effects in various animal models of AD. BAI
treatment attenuated spatial memory dysfunction in APP/
PS1 mice by suppressing microglial overactivation (Jin et al.,
2019). In a J20 APPSwInd transgenic (Tg) mouse model of AD,
BE inhibited hyperactivity and improved spatial learning ability.
Metabolic profiling of specific brain regions indicated that BE
regulates neuroinflammation, which is associated with the
modulation of starch, sucrose, and glycolipid metabolism in the
cortex and hippocampus (Zhang L. et al., 2023). Additionally, SQYZ
granules, a Chinese herbal preparation containing BAI, ameliorated
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TABLE 1 BAI and BE show protective effects on NDDs in vivo and in vitro.

Disease Species Models Dose Main findings Reference

AD 1. C57BL/6 mice
2. BV2 cells

1. APP/PS1 AD model
2. Aβ/LPS

BAI: 103 mg/kg for 33 days
10, 20, and 40 µM into
BV2 cells for 24 h

Inhibited microglia-induced
neuroinflammation and further
attenuated cognitive function

Jin et al. (2019)

C57BL/6 mice 3 × Tg-AD mice BE: 100 mg/kg, 200 mg/kg,
once per for 8 weeks

Improved the learning and
memory ability by regulating the
microglial phenotypic
transformation and alleviating
neuroinflammation

Xie et al. (2023)

1. C57BL/6 mice
2. BV2 cells

1. APP/PS1 mice
2. LPS

BE: 100 mg/kg/d for
6 months
100 μM BAI for 24 h

Alleviated Alzheimer’s disease by
promoting the microglial
M2 polarization and reduced
apoptosis

Gong et al. (2023)

Rat Aβ25-35 BE: 10, 50, and 100 µM into
PC12 cells for 24 h

Reduced Aβ25–35-induced
neuronal apoptosis and
inflammation in PC12 cells

Ji et al. (2020)

C57BL/6 mice APP/PS1 mice SQYZ: 5.55 g/kg, once per
day for 60 days

Ameliorated the cognitive
impairment and decreased the
neural pathological changes in
AD by regulating
neuroinflammation, stress
responses, and energy
metabolism

An et al. (2018)

BV2 cells LPS BAI: 2.5, 7.5, and 22.5 μM
for 24 h

Inhibited LPS-stimulated
neuroinflammation.

Li B. et al. (2022)

BV2 cells Aβ BAI: 50 μM and 100 μM for
1 h and then with
stimulators for 24 h

Inhibited Aβ-induced microglial
overactivation in vitro and in vivo.

Xiong et al. (2014)

C57BL/6 mice Male J20 AD mice BE: 80 mg/kg Improved behavioral disorders
and alleviated cerebral blood flow
via reverting metabolic
abnormalities

Zhang et al. (2023b)

PD 1. C57BL/6 mice
2. BV2 cells

1. MPTP
2. α-syn/MPP+

BAI: 50, 100, and 200 mg/kg
12.5, 25, and 50 µM into
BV2 cells for 20 h

Showed protective effects in PD
through the inhibition of
microglial-related
neuroinflammation and oxidative
stress

Huang et al. (2024)

Caenorhabditis elegans 6-OHDA BAI: 1, 10, or 100 µM Reduced 6-OHDA injury by
suppressing apoptosis and
oxidative stress

Ma et al. (2021b)

1. C57BL/6 mice
2. Human cell line
pLVXTet3G-α-syn SH-SY5Y

1. MPTP
2. Dox-induced

BAI: 20 and 40 mg/kg
12.5, 25, and 50 µM

Improved the PD model’s
behavioral performance by the
inactivation of
neuroinflammation and oxidative
stress

Lei et al. (2020)

SD rats 6-OHDA BAI: 50, 100, and 150 mg/kg Showed a protective effect
through an antioxidant,
enhancing neurotransmitter
release and regulating the
metabolism of N-acetyl aspartate
and glutamate

Tu et al. (2019)

SD rats 6-OHDA BAI: 25 mg/kg Improved neuronal apoptosis Zhai et al. (2019)

PC12 cells 6-OHDA BAI: 10, 20, 50, 70, or
100 µM

Reduced cell injury via
downregulating miR-192-5p and
regulation of PI3K/AKT and
MDM-2/p53 signal pathways

Kang et al. (2019)

Wistar rats Rotenone BAI: 78 mg/kg per day Protected dopaminergic neuron
damage by inhibiting iron
accumulation in different brain
regions.

Xiong et al. (2012)

(Continued on following page)
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TABLE 1 (Continued) BAI and BE show protective effects on NDDs in vivo and in vitro.

Disease Species Models Dose Main findings Reference

SH-SY5Y cells Rotenone BE: 10, 25, 50, or 100 µM Showed neuroprotective effects by
antioxidant activity, regulation of
mitochondrial function, and anti-
and pro-apoptotic proteins.

Song et al. (2012)

Human wild-type α-syn — BE: 20 µM Suppressed fibrillation of alpha-
synuclein and enhanced
disaggregation of existing fibrils

Xiong et al. (2012)

C57BL/6 mice Rotenone BE: 300 mg/kg Inhibited α-synuclein
aggregation, decreased
neuroinflammation, and
maintained neurotransmitter
homeostasis

Zhao et al. (2021)

SD rats Rotenone BE: 200 and 400 mg/kg Improved motor impairments by
reducing brain damage and
inhibiting the level of pro-
inflammatory cytokine damage

Zhang et al. (2017)

C57BL/6 mice MPTP BE: 1 mg/kg and 10 mg/kg Attenuated motor ability and
reduced DA neuron injury by
inhibiting astroglia overactivation

Lee et al. (2014)

MS C57BL/6 mice MOG35-55 BE: 150 mg/kg Delayed the onset of EAE and
attenuated clinical symptoms,
demyelination, and inflammatory
cell infiltration

Ma et al. (2022)

C57BL/6 mice MOG35-55 BAI: 100 mg/kg/day Reduced T-cell proliferation and
affected
the entire T-cell response

Zhang et al. (2015)

SJL/J mice Proteolipid protein (PLP)
139–151

BAI: 5–10 mg/kg Inhibited a pre-activated immune
system in the late effector phase,
leading to disease eruption

Zeng et al. (2007)

C57BL/6 male mice Cuprizone BE: 100 mg/kg Attenuated motor dysfunction by
reducing demyelination and
neuroinflammation

Hashimoto et al. (2017)

C57BL/6 mice MOG35-55 BE: 25 mg/kg Suppressed Th1 and
Th17 differentiation in vitro;
reduced the disease severity and
infiltration process, attenuated
demyelination in EAE, and
blocked IL-17A production

Ying et al. (2023)

C57BL/6 mice MOG35-55 BAI: 75 mg/kg Significantly attenuated the
clinical severity of EAE by the
inhibition of 12/15-LO and then
inhibited microglia activation.

Xu et al. (2013)

CCH SD rats Bilateral common carotid
artery occlusion (BCCAO)

BAI: 50 and 100 mg/kg Ameliorated cognitive
impairment in CCH-induced VD
rats through its pro-
remyelination and anti-
inflammatory capacities, possibly
by activating Wnt/β-catenin and
suppressing NF-κB signaling

Xiao et al. (2023)

Wistar rats BCCAO BE: 30 and 100 mg/kg Have therapeutic potential for the
treatment of dementia caused by
CCH and contributed to its
protections on brain mitochondrial
homeostasis and function

He et al. (2009)

SD rats BCCAO BE: 50 and 100 mg/kg Ameliorated cognitive
impairment, attenuated
hippocampal inflammatory
responses, inhibited the TLR4/
MyD88/NF-κB signaling
pathway, and modulated
intestinal microbiota in VD rats

Song et al. (2024)

(Continued on following page)
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neural pathological changes in AD, possibly by modulating anti-
neuroinflammation, promoting stress recovery, and enhancing
energy metabolism in APP/PS1 mice (An et al., 2018).

Moreover, BE and BAI mitigated neuroinflammation by
modulating the phenotypic transformation of activated microglia.
BE improved cognitive dysfunction in 3 × Tg-ADmice by enhancing
M2 microglial polarization (Xie et al., 2023). Furthermore, in both
APP/PS1 double-transgenic mice and LPS-stimulated
BV2 microglia, BE significantly shifts the microglial phenotype
from M1 to M2 (Gong et al., 2023). Moreover, in LPS/interferon
γ-induced neuroinflammation, BAI promoted the polarization of
microglia from theM1 phenotype toM2 phenotype (He et al., 2022).
In conclusion, these studies clearly demonstrated that the protective
effects of BAI and BE against neuronal damage in AD are related to
the inhibition of neuroinflammation.

5.2 BAI, BE, and PD

PD is a complex neurodegenerative disorder characterized by
several pathological manifestations, including the aggregation of α-
synuclein, loss of dopaminergic neurons in the nigrostriatal system,
and heightened neuroinflammation. The presence of protein
aggregates and damaged neurons in PD can initiate an
inflammatory response (Gao et al., 2024). Activated microglia
release pro-inflammatory cytokines such as IL-1β, IL-6, and
TNF-α. These cytokines can further damage neurons and

exacerbate the disease process through autocrine and paracrine
mechanisms. Additionally, neuroinflammation and oxidative
stress can trigger the activation of JNK and p38 MAPK
pathways, both of which are involved in exacerbating the
pathological progression of PD (Gravandi et al., 2023; Gogna
et al., 2024). Currently, dopamine replacement therapy remains
the primary treatment approach for PD. However, it is important to
note that although these methods are widely used, they may not be
universally effective or suitable for all patients.

In a previous investigation using a Caenorhabditis elegans
model of PD, it was discovered that BAI enhanced reversal and
omega turn behavioral characteristics, along with increasing
survival rates. BAI provided protection against 6-
hydroxydopamine (6-OHDA) damage by preventing cell death
and decreasing oxidative damage (Ma J. et al., 2021). Other
in vitro experiments have demonstrated the neuroprotective
effects of BAI in PD. BAI inhibited the inflammatory response
caused by α-syn/1-methyl-4-phenylpyridinium (MPP+) in
BV2 cells (Huang et al., 2024) and reduced neurotoxicity
induced by 6-OHDA in PC12 cells (Kang et al., 2019).
Additionally, BAI and BE reportedly increase the viability and
reduces cell death in dopaminergic SH-SY5Y cells (Song et al.,
2012; Lei et al., 2020). Numerous animal models have confirmed
the neuroprotective effects of BAI against PD. BAI demonstrated
a notable defense mechanism in PD rats induced by 6-OHDA,
possibly through antioxidant actions, enhanced neurotransmitter
release, and control of N-acetyl aspartate and glutamate

TABLE 1 (Continued) BAI and BE show protective effects on NDDs in vivo and in vitro.

Disease Species Models Dose Main findings Reference

SD rats BCCAO BE: 2.4 mg/kg/day Improved the cognitive deficits
and neuropathological changes
induced by CCH in rats to its
antioxidant action

Liu et al. (2007)

SD rats BCCAO — HRT (BI is one of the
compounds) exerts anti-
inflammatory effects via
inhibition of p38 MAPK
phosphorylation in the
hippocampus of BCCAO rats

Sohn et al. (2019)

ALS Buffalo heart cystatin In the presence of glyoxal BAI: 10–100 µM Showed concentration-dependent
anti-aggregation effects.

Sohail et al. (2018)

Wild-type SOD1 or mutant
A4V SOD1

DTT (80 mM) and
EDTA (2 mM)

BAI: 5, 15, 30, and 90 µM Showed potent
antiamyloidogenic and fibril-
destabilizing effects for
Sod1 fibrils.

Bhatia et al. (2020)

G93A/SOD1 mouse G93A/SOD1 mouse BE: 3.7 or 7.4 nmol/kg/day Downregulated inflammation-
related gene expression

Ignacio et al. (2005)

HD Wistar rats Quinolinic acid (QA)
intrastriatal administration

BE: 10 and 30 mg/kg Restored the level of enzymatic
and non-enzymatic antioxidants
and mitochondrial complexes by
reducing the levels of
inflammatory mediators and
maintaining the level of BDNF
and GDNF

Purushothaman and
Sumathi (2022)

MSA OLN-93 oligodendrocyte cell
line

OLN-t40 and OLN-AS cells BE: 100 µM Inhibited fibrillation of α-syn
in vitro

Kragh et al. (2009)
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metabolism. BAI attenuated substantia nigra neuronal apoptosis
in PD rats (Tu et al., 2019; Zhai et al., 2019). Moreover, BAI
demonstrates neuroprotective effects in MPTP-induced PD mice
by inhibiting pro-inflammatory cytokine expression and reducing
oxidative stress. BE also has exhibited a strong protective effect
against PD (Lei et al., 2020; Huang et al., 2024). In PD, BE has the
potential to modulate pathways mediated by α-syn beyond
directly targeting α-syn itself (Li et al., 2023). BE attenuates
iron accumulation and iron-induced oxidative stress in the
brain of PD rats (Liu et al., 2022). BE has the potential to
interfere with both wild-type and E46K/H50Q mutant α-syn
fibrils, potentially mitigating PD progression (Yao et al., 2022).
Treatment with BE decreases the accumulation of α-syn, prevents
inflammation in the brain, balances neurotransmitter levels, and
decreases the release of inflammatory molecules like TNF-α and
IL-6, all while regulating the activity of astrocytes and microglia
in rats with PD (Lee et al., 2014; Zhang et al., 2017; Zhao et al.,
2021). These results indicate that BAI and BE have beneficial
therapeutic effects in PD, possibly attributed to their anti-
inflammatory, antioxidant, and other related actions.

5.3 BAI, BE, and MS

MS is a chronic autoimmune demyelinating disease affecting
the central nervous system. Several cytokines play crucial roles in
MS, with interferon-gamma (IFN-γ) being produced by activated
T cells. IFN-γ binds to its receptor on various central nervous
system cells, including astrocytes and microglia, activating the
Janus kinase (JAK)–STAT signaling pathway (Kooshki et al.,
2023). The associated JAKs are phosphorylated upon receptor
activation, which, in turn, phosphorylates STAT proteins. These
STAT proteins then dimerize and translocate to the nucleus,
regulating the expression of genes related to immune responses
and inflammation (Benucci et al., 2023). Additionally, TNF-α
plays a significant role by binding to its receptors and
activating multiple intracellular pathways, including the NF-κB
pathway, which further enhances the expression of pro-
inflammatory genes.

Studies of MS have demonstrated that BAI reduces the entry of
immune cells into the CNS, suppresses the production of
inflammatory substances and chemokines, and hinders the
formation of Th1 and Th17 cells (Zhang et al., 2015).
Furthermore, BAI can inhibit the development and progression
of experimental autoimmune encephalomyelitis (EAE), which is an
animal model that has a significant relationship withMS (Zeng et al.,
2007). The demyelination in EAE is caused by an autoimmune
response that is artificially induced and shares similarities with the
unknown trigger of MS demyelination (Manogaran et al., 2018). BE
also blocks the activation of microglia/macrophages toward the
M1 phenotype in EAE mice by focusing on STAT 1 (Ma et al.,
2022) and reduces cuprizone-induced demyelination by suppressing
neuroinflammation (Hashimoto et al., 2017). Additional research
has indicated that BE can improve EAE by reducing pathogenic
C-X-Cmotif chemokine receptor 6 (CXCR6)+ CD4 cells (Ying et al.,
2023) or blocking 12/15-lipoxygenase (Xu et al., 2013). These
findings emphasize the importance of exploring the potential
roles of BAI and BE in improving therapeutic strategies for MS.

5.4 BAI, BE, and CCH

CCH is characterized by a persistent reduction in cerebral blood
flow, which often develops gradually and can significantly impact
brain function. This condition activates the MAPK pathway, involving
various members of the MAPK family, including ERK, JNK, and
p38 MAPK (Zhang et al., 2020). The activation of these kinases is
triggered by stimuli associated with the ischemic environment, such as
oxidative stress and inflammatory cytokines. In the context of chronic
cerebral ischemia, NF-κB is also activated. ROS generated during
ischemia, along with other inflammatory mediators, stimulate the
activation of the IKK complex (Su et al., 2017).

In addition, numerous studies have demonstrated that CCH is a
major contributor to neurodegenerative processes (Daulatzai, 2017).
Recent studies have shown that BAI exerts neuroprotective effects
against chronic brain ischemia. BAI ameliorates cognitive impairment
in CCH-induced VD rats through its pro-remyelination and anti-
inflammatory abilities, possibly by activating Wnt/β-catenin and
suppressing NF-κB signaling (Xiao et al., 2023). BE alleviates
cognitive and motor impairments by decreasing mitochondria
reactive oxygen species production (He et al., 2009) and inhibiting
the TLR4/MyD88/NF-κB signaling pathway in CCH rats (Song et al.,
2024; Liu et al., 2007). Traditional Chinese medicine—
Hwangryunhaedok-Tang—containing BAI and BE improves
cholinergic dysfunction and inhibits neuroinflammatory responses
in CCH rats (Sohn et al., 2019). These results indicate that BAI has
a beneficial therapeutic effect against CCH-induced brain injury
through its anti-inflammatory properties.

5.5 BAI, BE, and other NDDs

ALS is a severe and progressive neurodegenerative disorder
primarily affecting the motor neurons in the brain and spinal
cord (Manogaran et al., 2018). HD is an inherited, progressive
neurodegenerative disorder that significantly impacts both the
physical and mental health of those affected (Gharaba et al.,
2024). MSA is a rare and progressive neurodegenerative disorder
that impacts multiple systems in the body (Ndayisaba et al., 2024).
The MAPK and NF-κB signaling pathways play crucial roles in the
pathophysiology of these NDDs.

BAI exhibits concentration-dependent anti-aggregation effects
linked to ALS (Sohail et al., 2018). In ALS mouse models, the impact
on mutant SOD1 was more pronounced than that on wild-type
SOD1, affecting fibril elongation (Bhatia et al., 2020; Ignacio et al.,
2005). BE also mitigates the psychological and behavioral changes
induced by quinolinic acid in an HDmouse model (Purushothaman
and Sumathi, 2022). BE effectively decreases the number of cells
exhibiting microtubular retraction and suppresses the aggregation of
α-syn in the MSAmodel (Kragh et al., 2009). In conclusion, BAI and
BE demonstrate the potential to ameliorate NDD-
associated symptoms.

6 Conclusion and future perspective

NDDs have a profound impact on human health, primarily
characterized by the progressive loss of neuronal function and
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structure, leading to cognitive decline and physical disabilities.
Current therapeutic strategies for these disorders are limited,
with most treatments focusing on alleviating symptoms rather
than addressing the underlying pathology.

Extensive evidence has demonstrated the potent anti-
inflammatory and neuroprotective properties of BE and BAI in
both in vitro and in vivomodels of various NDDs mediated through
the activation of multiple signaling pathways. In recent years, two
phase-I clinical trials involving BE chewable tablets were completed
in healthy Chinese adults, demonstrating that oral BE
administration was safe and well-tolerated in healthy subjects
(Pang et al., 2016). In a randomized, double-blind, placebo-
controlled trial of BAI in patients with coronary heart disease
(CAD) and rheumatoid arthritis (RA), it was found that BAI
reduces blood lipids and inflammation in patients with both
CAD and RA (Hang et al., 2018). BAI affects the innate
immunity and apoptosis in leukocytes of children with acute
lymphocytic leukemia (Orzechowska et al., 2014). A clinical
study on BAI in patients with ulcerative colitis (UC)
demonstrated that BAI can balance immune function and
alleviate inflammation associated with UC (Yu et al., 2015).
Additionally, several clinical trials have investigated BAI or
herbal formulations containing BAI in patients with
mild–moderate photo-damaged skin, non-surgical periodontal
therapy, or after the surgical removal of impacted mandibular
third molars (Farris et al., 2014; Isola et al., 2021; Isola et al.,
2019). However, there remains a lack of targeted clinical research
specifically investigating the effects of BAI and BE on NDDs.

To fully explore the therapeutic potential of BAI and BE, future
clinical trials should focus on assessing their efficacy in patients with
neurodegenerative disorders. Furthermore, additional research is
required to characterize their specific molecular targets or receptors,
which is essential for understanding their pharmacological
mechanisms, optimizing drug design, and advancing drug
development. Given the limited water and lipid solubility of BAI
and BE, developing innovative delivery systems—such as
nanoparticles or other advanced carriers—will be crucial to
enhance bioactivity, improve blood–brain barrier permeability,
and increase clinical efficacy (Zhou et al., 2017).

Despite these challenges, accumulating evidence highlights the
value of BAI and BE as promising natural compounds. Their
therapeutic potential merits continued investigation and

exploration, offering hope for new treatment options in the
medical and healthcare fields.
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