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Background: Clinical observations have recently shown that Abelmoschus
manihot (L.) in the form of Huangkui capsule (HKC) and in combination with
irbesartan (EB) is an effective therapy for diabetic nephropathy (DN) in patients
with type 2 diabetes (T2D). The present study aims to explore the mechanisms
underlying the therapeutic efficacies of HKC and its combination with EB in DN
via the gut-kidney axis.

Methods: HKC, EB, and their combination or vehicle were administered in db/db
mice, which is an animal model for the study of T2D and DN. Comparative
analyses of the gut microbiota, serum metabolites, and kidney transcriptomics
before and after drug administration were performed.

Results: After treatment with HKC, EB, and their combination for 4 weeks, the
urinary albumin-to-creatinine ratios decreased significantly in the db/db mice
with DN. In terms of the gut microbiota, the abundances of Faecalitalea, Blautia,
and Streptococcus increased but those of Bacteroidetes, Firmicutes,
Enterobacteriaceae, and Desulfovibrio decreased. Parallelly, serum
metabolites, mainly including quercetin 3′-glucuronide and L-dopa, were
elevated while cortisol and cytochalasin B were reduced. Furthermore, the
S100a8, S100a9, Trem1, and Mmp7 genes in the kidneys were downregulated.
These altered elements were associated with proteinuria/albuminuria reduction.
However, EB had no effects on the changes in blood pressure and specific
differentially expressed genes in the kidneys.
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Conclusion: The present study provides experimental evidence that HKC regulates
the gut microbiota, circulating metabolites, and renal gene activities, which are
useful for better understanding of the action mechanisms of A. manihot in the
treatment of DN through the gut-kidney axis.
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Abelmoschus manihot L., diabetic nephropathy, Huangkui capsule, irbesartan,
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Introduction

Abelmoschus manihot (L.) is called Huangkui in Chinese
(“Huang” means yellow and “Kui” means sunflower). Similar to
the discovery of Artemisinin (Tu, 2016), the medical applications of
A. manihot were first recorded in the Handbook of Prescriptions for
Emergencies by Mr. Hong Ge during the Eastern Jin Dynasty
(317–420 AD) in China. As a traditional Chinese medicine, the
Huangkui capsule (HKC) is made from the ethanolic extract of the
flowers of A. manihot and received approval from the Chinese Food
and Drug Administration (Z19990040) in 1999 (Chen et al., 2016; Li
et al., 2021). Currently, HKC is used in China for treating patients
with kidney diseases, including diabetic nephropathy (DN). The
main active chemical constituents of HKC are the flavones of A.
manihot (L.); according to liquid chromatography quadrupole time-
of-flight mass spectrometry (LC-Q-TOF/MS) analysis, we identified
seven flavonoids as the components of HKC, namely rutin,
hyperoside, isoquercitrin, gossypetin-8-O-β-D-glucuronide,
myricetin, quercetin-3-O-β-D-glucuronide, and quercetin (Diao
et al., 2024).

Clinical observations have demonstrated the efficacy and safety
of HKC in the treatment of primary glomerular diseases and IgA
nephropathy that mainly present as albuminuria and proteinuria
(Zhang et al., 2014; Li et al., 2017; Li et al., 2020). Irbesartan (EB) is
an angiotensin receptor blocker and that independently has
renoprotective blood pressure lowering effects in patients with
type 2 diabetes (T2D) and microalbuminuria (Parving et al.,
2001; Lewis et al., 2001). When used in combination with EB, a
multicenter randomized double-blind parallel controlled clinical
trial recently reported HKC as an effective therapy for DN in
T2D patients for reducing albuminuria and proteinuria (Zhao
et al., 2022). However, the mechanisms underlying the effects of
HKC and its combination with EB in the treatment of DN
are unknown.

Gut microbiota and their metabolites may have pathogenic or
beneficial effects on the onset and progression of DN. The theory
of the gut-kidney axis was proposed by Meijers and Evenepoel
(2011) based on their finding that changes in the intestinal
microecology could affect the progression of chronic kidney
disease by regulating metabolites (Meijers et al., 2019;
Krautkramer et al., 2021). In recent years, increasing evidence
has shown that gut microbiota and their metabolites play
essential roles in the pathophysiological processes of DN
through the gut-kidney axis (Zhao et al., 2023; Tao et al.,
2019). Our research group has carried out an experimental
study using non-obese diabetic (NOD) mice as a model for
the study of type 1 diabetes and DN; the results suggest that
HKC may modulate gut microbiota and subsequently ameliorate

the metabolite levels in DN (Shi et al., 2023). Both HKC and
EB are orally administered drugs that may exert their
pharmaceutical effects in the treatment of DN by regulating
the gut-kidney axis.

In the present work, we designed an experimental study using
db/db mice as the animal model to study T2D and DN (Sharma
et al., 2003; Wang et al., 2014). First, we investigated the changes in
gut microbiota before and after administration of HKC, EB, and
their combination. Then, we identified the altered metabolites in the
serum. Finally, we analyzed the transcriptomics of the kidneys. This
study provides novel information for understanding the efficacy of
HKC and its combination with EB in the treatment of T2D-related
DN with a focus on the gut-kidney axis.

Methods

Animals

Ten-week-old db/db (BKS.Cg-Dock7m +/+ Leprdb/J) and
C57BL/KsJ mice were purchased from the animal experimental
center of Nanjing University (Nanjing, China). All mice were
males and housed in a specific pathogen-free barrier
environment at the animal experimental center of Xuanwu
campus, China Pharmaceutical University. The animal room was
maintained at a temperature of 24°C ± 2°C and humidity of 50% ±
10% with 12-h light/dark cycles. After 1 week of adaptation, the
bodyweights and blood glucose levels of all mice were measured
weekly. The urine samples were collected using metabolic cages
(DXL-XS, Fengshi, Suzhou, China) for 6 h. Microalbuminuria and
creatinine were measured using ELISA quantitative kits (Elabscience
Biotechnology, China). When the blood glucose level
was ≥16.7 mmol/L and urinary albumin-to-creatinine ratio
(UACR) was ≥200 ng/μg for two consecutive days, the db/db
mice were diagnosed to have DN. The db/db mice with DN were
randomly divided into five groups as DNwithout treatment (n = 13),
HKC (receiving HKC treatment, n = 11), EB (receiving EB
treatment, n = 6), HKCEB (receiving HKC with EB as treatment,
n = 8), and C57BL/KsJ mice as the non-diabetic control group
(WT, n = 16).

Drugs and administration

HKC was produced by Suzhong Pharmaceutical Group Co., Ltd.
(Taizhou, China). Each HKC contains 0.43 g of A. manihot (L.)
extract. The quality of the HKC was examined through fingerprint
analysis using high-performance liquid chromatography, as
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reported previously (Lai et al., 2009; Guo et al., 2015). EB was
produced by Sanofi Shengdelabao Minsheng Pharmaceutical Co.,
Ltd. (Hangzhou, China). Based on the conversion of human and
mouse body surface areas, HKC (0.84 g/kg/d) and EB (0.0195 g/kg/
d) or vehicle were administered daily via oral gavage for 4 weeks in
the db/db mice. The administration period was determined based on
clinical trials (Zhao et al., 2022) and our previous experimental
studies (Yu et al., 2023a; Yu et al., 2023b; Shi et al., 2023). The
experiments were performed according to the guidelines of the
Declaration of Helsinki and approved by the ethics committee of
China Pharmaceutical University (Approval Code: 2019-08-
0003 and Approval Date: 26-08-2019).

16S ribosomal DNA sequence analysis

As reported previously, our research group used the intestinal
contents as samples to analyze the gut microbiota in mice (Shi et al.,
2023). In the present study, mice colon were retrieved by surgical
double ligation. Total g.DNA from the colon microbiota was
extracted using the CTAB/SDS method and amplified by
polymerase chain reaction (PCR) using 341F (5′-
CCTAYGGGRBGCASCAG-3′) and 806R (5′-
GGACTACNNGGGTATCTAAT-3′) as the primers belonging to
the V3–V4 variable region of 16S rDNA. Each sample was repeated
thrice, and the mixed PCR products were detected through 2%
agarose gel electrophoresis. The samples with main band brightness
between 400 and 450 bp were selected for further experiments. The
amplicons were purified using the AxyPrep DNA gel extraction kit
(Axygen Biosciences, Union City, CA, United States). After the
DNA libraries were built using the NEB Ultra DNA Library Prep Kit
(NEB), the 16S RNA sequences were aligned and analyzed using the
NovaSeq 6000 (Illumina, San Diego, CA, United States) platform
and Silva database.

Serum metabolomics

Serum samples stored at −80°C were removed from the
refrigerator and thawed on ice until there were no ice cubes in
the samples. The samples were then mixed by vortexing for 10 s;
approximately 50 μL of each sample was transferred to the
corresponding numbered centrifuge tube, and 300 µL of a
mixture of acetonitrile and methanol (ACN: methanol = 1:4,
V/V) was added. The sample plates were vortexed for 3 min
and centrifuged at 12,000 r/min for 10 min at 4°C. After
centrifugation, approximately 200 μL of the supernatant was
removed into another corresponding numbered centrifuge tube
and placed in a refrigerator at −20°C for 30 min. Qualitative
analysis of the serum metabolites was initially performed by
untargeted metabolomics in the LC-Q-TOF/MS platform and
further adapted to widely targeted metabolomics on the LC-
ESI-MS/MS system. Acquisition conditions for the untargeted
assays included ultraperformance liquid chromatography
(UPLC) and quadrupole time-of-flight (TripleTOF 6600, AB
SCIEX) data acquisition systems, and the targeted acquisition
conditions included UPLC and tandem mass spectrometry
(Xing et al., 2024a).

Kidney transcriptomics

The total RNAs in the kidneys were extracted using a TRIzol
regent kit (Ambion, Shanghai Yubo Biological Technology Co., Ltd.,
China). The concentration of the total RNAs was detected with the
Qubit®RNA assay kit (Life Technologies, CA, United States). The
integrity of the total RNAs was analyzed with the
Nano6000 bioanalyzer 2100 system (Agilent Technologies, CA,
United States). Library construction for the total RNAs >1 μg
was performed with the NEBNext® Ultra RNA library prep kit
(Illumina, NEB, United States). Oligo (dT) beads were enriched
using mRNA with polyA tail, and the mRNA were randomly
interrupted in the NEB fragmentation buffer. The cDNA was
synthesized using the M-MuLV reverse transcriptase system
(Illumina, NEB, United States) with fragmented mRNA as the
template and random oligonucleotides as the primers. The
cDNAs of approximately 200 bp were screened using AMPure
XP beads (Beckman Coulter, Beverly, United States). The library
was quantitated using the Qubit2.0 Fluorometer, and the insert size
was detected using the Agilent 5400 bioanalyzer (Agilent,
United States). Once qualified, the library was sequenced on the
Illumina platform (Illumina, Novo Geno Bioinformatics Co.,
Ltd., China).

Statistical analysis

All analyses and graphics were obtained using GraphPad Prism
software (version 8.0), SPSS software (version 23.0), and R software
(version 3.6.0). The principal coordinates analysis (PCoA) was used
for Adonis’s multivariate analysis of variance; linear discriminant
analysis effect size (LEfSe) differences between pairs of groups were
tested for significance using the Kruskal–Wallis sum-rank test.
Biological significance was subsequently analyzed through
pairwise tests among the groups using the Wilcoxon rank-sum
test. Furthermore, the genus levels of the gut microbiota were
used in the Metastats statistical analysis. Metabolic pathway
analysis that integrated pathway enrichment and pathway
topology analyses were visualized using MetaboAnalyst (Chong
and Xia, 2020; Pang et al., 2022). The correlations among the gut
microbiota, metabolites, and differentially expressed genes (DEGs)
were analyzed using the Spearman correlation test. The significance
comparisons between the groups were calculated using Student’s
t-test. All values are presented in terms of mean ± standard error of
the mean (SEM) unless otherwise noted. A p-value < 0.05 was used
as the threshold for statistical significance.

Results

UACR after treatment with HKC, EB, and
their combination

The blood glucose, bodyweight, and UACR values of the db/db
mice were higher than those of the mice in the WT group. After
treatment with HKC, EB, and HKCEB in the db/db mice, the UACR
decreased significantly (Figures 1J–L). As reported recently, several
biomarkers such as col4a3, slc5a2, slc34a1, slc12a3, and slc4a1in the
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glomerulus as well as the proximal and distal convoluted tubules of
the kidneys in db/db mice treated with HKC were observed to have
improved (Yu et al., 2023a). However, changes in the blood glucose
levels and bodyweights were not statistically significant (Figures
1A–F). The blood pressures of all mice were examined, and no
significant changes were observed (Figures 1G–I).

Changes in intestinal flora after treatment
with HKC, EB, and their combination

Comparative analyses of the intestinal flora in the WT, DN,
HKC, EB, and HKCEB groups were conducted. A plot of the PCoA
results is shown in Supplementary Figure S1A. Bacteroidetes and
Firmicutes were the dominant phyla (Supplementary Figure S1B),
while Ligilactobacillus and Limosilactobacillus were dominant at the
genus level (Supplementary Figure S1F). LEfSe demonstrated that f._
Enterobacteriaceae and s._Bacteroides_acidifaciens increased, while
g._Streptococcus and g._Blautia decreased in DN compared to the
WT group (Figure 2A). After HKC treatment, g._Anaeroplasma, g._
unidentified_Lachnospiraceae, and s._Clostridiales_bacterium_
CIEAF_020 increased (Figure 2B). In the EB group, g._
Akkermansia was found to have increased (Figure 2C). s._
Streptococcus_pneumoniae and s._Staphylococcus_epidermidis
had increased in the HKCEB group (Figure 2D). A heatmap of
the flora abundance of the gut microbiota in the WT, DN, HKC, EB,
and HKCEB groups is shown in Figure 2E. The data demonstrate
that Bacteroidetes, Firmicutes, Weissella, Alloprevotella, Mailhella,
Treponema, Enterobacteriaceae, Rikenellaceae, Enterococcus, and
Desulfovibrio increased in DN compared to WT but decreased after

HKC, EB, and HKCEB treatments (Figures 2F–O). Conversely,
Muribaculaceae, Anaerovibrio, Dietzia, Faecalitalea, Anaerofustis,
Limosilactobacillus, Ligilactobacillus, Arthrobacter, Streptococcus,
and Blautia were lower in DN but increased upon treatment with
HKC, EB, and HKCEB (Figures 2P–Y).

Alteration of serum metabolites after
treatment with HKC, EB, and their
combination

The numbers of metabolites detected in the sera of the WT, DN,
HKC, EB, and HKCEB groups are summarized in Supplementary
Figures S2A–C. Principal component analysis (PCA) shows the
altered serum metabolites in the db/db mice after treatment with
HKC, EB, and their combination (Figure 3A). The cluster heatmaps
of the top-50 metabolites in DN and the remaining groups are
shown in Figure 3B and Supplementary Figures S3A–C, respectively.
Compared to the WT group, cortisol, cytochalasin B, acetoxy-8-
gingerol, (3-ethenylphenyl) oxidanesulfonic acid, 3,5-
dinitrocatechol, and 2,7-dichlorodihydrofluorescein diacetate were
higher in the DN group (red boxes indicate upregulation), while
kaempferide, quercetin, Thr-Asp-Phe-Glu, N-cinnamylglycine,
ganoderiol I, L-dopa, and acrylamide were lower (blue boxes
indicate downregulation). After HKC and HKCEB treatments,
cortisol, cytochalasin B, 3,5-dinitrocatechol, (3-ethenylphenyl)
oxidanesulfonic acid, 2,7-dichlorodihydrofluorescein, and
acetoxy-8-gingerol were found to be downregulated, while
kaempferide, ganoderiol I, Thr-Asp-Phe-Glu, N-cinnamylglycine,
and acrylamide were upregulated (Figures 3C–E). In the EB group,

FIGURE 1
Blood glucose levels, bodyweights, UACRs, and blood pressure values of db/db mice before and after treatment with Abelmoschus manihot,
irbesartan, and their combination. (A–C) Blood glucose, (D–F) bodyweight, (G–I) blood pressure, and (J–L) UACR of the DN group compared to the WT
group and after treatment with HKC, EB, or HKCEB for 1 and 4 weeks. DN, diabetic nephropathy; WT, non-diabetic control; HKC, Huangkui capsule of A.
manihot; EB, irbesartan; HKCEB, HKC combined with EB; UACR, urinary albumin-to-creatinine ratio; **P < 0.01 and ***P < 0.001.
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only cortisol, cytochalasin B, 3,5-dinitrocatechol, and (3-
ethenylphenyl) oxidanesulfonic acid were found to be
downregulated, while kaempferide, ganoderiol I, Thr-Asp-Phe-
Glu, and N-cinnamylglycine were upregulated (Figure 3E).

KEGG pathway enrichment analyses of the
metabolites

The Kyoto encyclopedia of genes and genomes (KEGG) is a
database for systematic analysis of the gene functions and
genome information; KEGG also provides integrated
metabolic pathways for carbohydrates, nucleosides, and
amino acids. The annotation results of the significantly
altered metabolites in the DN, HKC, EB, and HKCEB groups
are shown in Supplementary Figure S4A–D and subsequently
classified into four major KEGG pathways, including organismal
systems, metabolism, human disease, and environmental
information processing and cellular processing
(Supplementary Figure S5A–D). In the DN group, cortisol
was found in the steroid hormone biosynthesis, cortisol
synthesis, and secretion pathways; 3-hydroxypyruvic acid was
enriched in the carbon metabolism, glyoxylate, and
dicarboxylate metabolism pathways (Figure 4A). In the HKC
group, cortisol was downregulated and enriched in the steroid
hormone biosynthesis as well as cortisol synthesis and secretion

pathways (Figure 4B). In the EB group, hypoxanthine, xanthine,
erucic acid, L-arginine, and urea were found to be enriched in
the nucleotide and purine metabolism pathways. Moreover,
erucic acid was downregulated in the nucleotide metabolism
pathway, while L-arginine was upregulated and enriched in the
arginine and proline metabolism pathways. Urea was
downregulated in the pyrimidine metabolism pathway
(Figure 4C). In the HKCEB group, 11β-hydroxyprogesterone,
17α-hydroxyprogesterone, and xanthosine were found in the
steroid hormone biosynthesis and purine metabolism
pathways (Figure 4D).

Correlation between gut microbiota
changes and serum metabolite alterations

The correlations between metabolites and gut microbiota at
the phylum, family, and genus levels in DN compared to WT and
after treatment with HKC, EB, and HKCEB are shown in Figures
5A–D. At the phylum level, Firmicutes was positively (indicated
by red line) correlated with cytochalasin B and quercetin 3′-
glucuronide but negatively (blue line) correlated with L-dopa and
cortisol, while Bacteroidetes showed converse trends to
Firmicutes (Figures 5E, F). At the family level, Muribaculaceae
and Streptococcus were positively correlated with L-dopa,
quercetin 3′-glucuronide, and acrylamide but negatively

FIGURE 2
Changes in the intestinal flora after treatment with A. manihot, irbesartan, and their combination. LEfSe analyses demonstrate changes in the
intestinal flora (A) in DN compared to theWT group and after the treatment with (B)HKC, (C) EB, and (D)HKCEB. (E)Clustering heatmap of the abundance
of intestinal flora. The heatmap indicates that (F–O) 10 gut microbiota types were decreased while (P–Y) 10 other types of intestinal flora were increased
after treatment with HKC, EB, or HKCEB. DN, diabetic nephropathy; WT, non-diabetic control; HKC, Huangkui capsule of A. manihot; EB, irbesartan;
HKCEB, HKC combined with EB; *P< 0.05.
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correlated with cortisol and acetoxy-8-gingerol (Figures 5G, H).
At the genus level, Rikenellaceae and Enterobacteriaceae were
positively correlated with cytochalasin B, cortisol, and acetoxy-8-
gingerol but negatively correlated with L-dopa, quercetin 3′-
glucuronide, and acrylamide (Figures 5I, J). Blautia was
positively correlated with L-dopa, quercetin 3′-glucuronide,
and acrylamide but negatively correlated with cytochalasin B,
cortisol, and acetoxy-8-gingerol (Figure 5K). Desulfovibrio was
positively correlated with cytochalasin B and negatively
correlated with L-dopa, quercetin 3′-glucuronide, acrylamide,
and acetoxy-8-gingerol (Figure 5L).

DEGs in kidneys after treatment with HKC,
EB, and their combination

PCoA implicated that the DEGs in the kidneys of the DN
mice may be regulated after HKC, EB, and HKCEB treatments
(Figure 6A). The DEGs in the kidneys of the DN group
compared to the WT, HKC, EB, and HKCEB groups are
summarized by Venn diagrams (Supplementary Figures
S6A–C). The top-50 genes in the kidneys of the DN, HKC,
EB, and HKCEB groups are represented as cluster heatmaps
(Figures 6B–E; Supplementary Figures S7A–C). In brief, the
Cstdc5, S100a8, S100a9, Asprv1, Il1r2, Lcn2, Cxcr2, Trem1,
Chil1, Slpi, Mmp7, Sprr2f, Ngp, 1200007C13Rik, Mpo, Marco,

Camp, Ctsg, and Elane genes were upregulated, while the Trdn
and Acsm3 genes were downregulated in the DN group
(Figure 6B). In the HKC group, Trdn was upregulated, while
Trem1, S100a8, Mmp7, S100a9, Asprv1, Chil1, Il1r2,
1200007C13Rik, Cxcr2, and Marco were downregulated
(Figure 6C). In the EB group, all Fam193b, Malat1, Rgs11,
Gm12940, Rsrp1, and AI480526 genes were downregulated
(Figure 6D). In the HKCEB group, Acsm3 gene expression
increased while Trem1, Camp, S100a9, Asprv1, Chil1, and
Ctsg gene expressions decreased (Figure 6E).

KEGG pathway enrichment analyses of
the DEGs

Volcanic map, gene ontology (GO), and KEGG enrichment
analyses of the DEGs in the kidneys of the DN, HKC, EB, and
HKCEB groups are shown in Supplementary Figures S8–S10. The
genes Gsta1 and Ugt1a2 that were upregulated in DN were enriched
in the glutathione, pentose, and glucuronate interconversion
pathways (Figure 7A). After HKC treatment, Tlr4 was
downregulated and enriched in the inflammatory bowel disease
pathway (Figure 7B). After HKCEB treatment, Selp and Itgb2 were
enriched in the neutrophil extracellular trap formation pathway
(Figure 7C). No specific pathways of the DEGs in the kidneys of the
EB group were found.

FIGURE 3
Alteration of serummetabolites after treatment with A. manihot, irbesartan, and their combination. (A) PCA plot of the altered serummetabolites in
theWT, DN, HKC, EB, and HKCEB groups. (B–E)Cluster heatmaps of the topmetabolites in DN compared to theWT group and after treatment with HKC,
EB, or HKCEB. The red boxes indicate upregulation, while the blue boxes imply downregulation. PCA, principal component analysis; DN, diabetic
nephropathy; WT, non-diabetic control; HKC, Huangkui capsule of A. manihot; EB, irbesartan; HKCEB, HKC combined with EB.
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Correlation between serummetabolites and
renal genes

KEGG enrichment bubble maps predicting the correlations
between the serum metabolites and genes in the kidneys are shown
in Supplementary Figures S11, S12. The 50 DEGs (only 6 in the EB
group) and 50 differential metabolites were included in the
Spearman correlate analyses, whose heatmaps are shown in
Figures 8A–D. The Trem1, S100a9, Asprv1, and Chil1 genes
were upregulated in DN but downregulated in the HKC and
HKCEB groups. These genes were positively correlated with
metabolites such as cortisol, cytochalasin B, 2,7-
dichlorodihydrofluorescein diacetate, medetomidine
hydrochloride, and L-cystin but negatively correlated with
dihydro isorescinnamine, L-dopa, 18-oxooleate, quercetin 3′-
glucuronide, xanthosine, and 18-oxooleate (Figures 8E–H). In
addition, the S100a8, Mmp7, Il1r2, and Cxcr2 genes that were
increased in DN but decreased after HKC treatment were
positively correlated with cortisol, cytochalasin B, 2,7-
dichlorodihydrofluorescein diacetate, medetomidine
hydrochloride, and 4-(3-hydroxy-2-naphthyl)-2-oxobut-3-enoic
acid but negatively correlated with dihydro isorescinnamine,

L-dopa, quercetin 3′-glucuronide, and acrylamide (Figures
8I–L). In the HKCEB group, the Camp and Ctsg genes were
positively correlated with 2,7-dichlorodihydrofluorescein
diacetate, 4-(3-hydroxy-2-naphthyl)-2-oxobut-3-enoic acid,
L-cystin, butalbital, S-(methyl) glutathione, and thymidine but
negatively correlated with dihydro isorescinnamine, L-dopa,
quercetin 3′-glucuronide, xanthosine, 18-oxooleate,
medetomidine hydrochloride, and acrylamide (Figures 8M, N).

Discussion

In the present study, we investigated the changes in the intestinal
flora, serum metabolites, and mRNA expressions in the kidneys of
db/db mice with DN. The aim here was to explore the molecular
mechanisms of HKC and its combined treatment with EB for T2D-
related DN primarily in the gut-kidney axis. After 4 weeks of
administration of HKC, EB, and their combination, the UACRs
of the db/db mice with DNwere found to be significantly reduced, as
reported in recent clinical observations (Zhao et al., 2022) and
animal experiments (Yu et al., 2023a; Yu et al., 2023b).
Furthermore, the molecular mechanisms of HKC and its

FIGURE 4
KEGG pathway enrichment analyses of the various metabolites. The predicted KEGG pathways of the different serum metabolites (A) in DN
compared toWT and (B–D) after treatment with HKC, EB, or HKCEB are presented. DN, diabetic nephropathy; WT, non-diabetic control; HKC, Huangkui
capsule of A. manihot; EB, irbesartan; HKCEB, HKC combined with EB.
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combined treatment with EB for T2D-related DN were predicted
from data analyses and summarized in Figure 9.

Based on analyses of the gut microbiota, we found that
microorganisms like Alloprevotella, Bacteroides, Desulfovibrio,
Enterobacteriaceae, Enterococcus, Firmicutes, Treponema,
Rikenellaceae, and Weissella were increased in DN compared to
the WT group, while Muribaculaceae, Anaerovibrio
Ligilactobacillus, Limosilactobacillus, Faecalitalea were decreased.
After treatment with HKC and HKCEB, however, these microbes

underwent opposite changes, with the trends in DN transitioning
from increasing to decreasing or from decreasing to increasing
compared to those in WT. In recent years, increasing evidence
has shown that microbiota are associated with diabetes and diabetic
complications, including DN (Zhao et al., 2023; Tao et al., 2019). Gut
microbiota such as Firmicutes and Bacteroidetes are found to be the
dominant species in rats with T2D and DN, while Firmicutes and
Bacteroides can be reduced by treatment with the San-Huang-Yi-
Shen capsule to improve DN (Su et al., 2022). Weissella in the

FIGURE 5
Correlation between changes to the gut microbiota and various serummetabolites (A) in DN compared to the WT group and (B–D) after treatment
with HKC, EB, or HKCEB. (E–L) Themajor gut microbiota are shown, and each is correlated with several serummetabolites. The red lines indicate positive
correlation while the blue lines indicate negative correlation. DN, diabetic nephropathy; WT, non-diabetic control; HKC, Huangkui capsule of A. manihot;
EB, irbesartan; HKCEB, HKC combined with EB.
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intestinal flora can be reduced using white common bean extract and
subsequently ameliorate T2D and its complications (Feng et al., 2022).
Muribaculaceae can be increased using the sodium-glucose
cotransporter 2 inhibitors canagliflozin and dapagliflozin to
prevent DN progression as well as the onset of end-stage renal
disease independent of lowering glucose levels (Wu et al., 2023).
Limosilactobacillus could decrease blood glucose levels in db/db mice
and alleviate diabetes-mediated liver and kidney damage (Hsieh et al.,
2020), so it has been considered as a probiotic in diabetic patients
(Lacerda et al., 2022). Furthermore, Enterobacteriaceae, Blautia, and
Rikenellaceae are found to be related to proteinuria and albuminuria
in DN (Su et al., 2022; He et al., 2021). The Enterobacteriaceae,
Enterococcus, and Desulfovibrio were significantly increased in the
intestinal flora of patients with diabetic kidney disease, and
Enterobacteriaceae was positively correlated with urinary proteins
in fecal samples of adult patients with chronic kidney disease and
idiopathic nephrotic syndrome (He et al., 2021).

In the analyses of the serum metabolites, several metabolites
such as cortisol and cytochalasin B were found to be elevated in the
DN group. After treatment with HKC and HKCEB, these two
metabolites were regulated in opposite directions. Several clinical
studies have shown that cortisol is higher in the plasma of patients
with T2D-related DN (Devi et al., 2019). Serum cortisol levels in
T2D patients and prediabetic subjects are elevated and associated
with high levels of microalbuminuria (Zhang et al., 2020).
Cytochalasin B is as a cytopermeable mycotoxin that can inhibit

the loss of nephrin in the podocytes to reduce proteinuria (Doublier
et al., 2003; Doublier et al., 2005). Furthermore, quercetin and
L-dopa were found to be downregulated in the serum of db/db
mice with DN. After treatment with HKC, quercetin 3′-glucuronide
(the main metabolite of quercetin) was upregulated; however, this
was not true for HKCEB. A previous study indicated that quercetin
3′-glucuronide can improve podocyte injury in DN rats by
inhibiting oxidative stress and the TGF-β1/Smad pathway (Guo
et al., 2013). Interestingly, L-dopa or 3,4-dihydroxyphenylalanine is
a chiral amino acid generated via biosynthesis of L-tyrosine (Giuri
et al., 2021); experimental studies have suggested that this small
peptide can be used to induce hyperhomocysteinemia and
therapeutically prevent the progression of Parkinson’s disease
(Barthelmebs et al., 1991) while suppressing streptozotocin-
induced diabetic glomerular hyperfiltration, subsequently
preventing the progress of DN (Barthelmebs et al., 1990).

Furthermore, transcriptomics analyses demonstrated that genes
such as Trem1, S100a8, S100a9, andMmp7 are higher in the kidneys
of patients with DN compared to those in the WT group. The
triggering receptor expressed on monocytes 1 (Trem1) gene
amplifies neutrophil- and monocyte-mediated inflammatory
responses triggered by bacterial and fungal infections by
stimulating the release of proinflammatory chemokines and
cytokines. As an amplifier of inflammation, Trem1 has been
shown to have a role in cIgA1-induced kidney injury (Zhao
et al., 2018) and in maintaining tubular homeostasis through

FIGURE 6
Cluster heatmap analyses of the differentially expressed genes in the kidneys. (A) PCoA plot and (B–E) cluster heatmaps show the differentially
expressed genes in the kidneys of DN group compared to the WT group and after treatment with HKC, EB, or HKCEB. The red boxes indicate
upregulation, while the blue boxes indicate downregulation. PCoA, principal coordinates analysis; DN, diabetic nephropathy; WT, non-diabetic control;
HKC, Huangkui capsule of A. manihot; EB, irbesartan; HKCEB, HKC combined with EB.
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regulation of mitochondrial metabolic flexibility (Tammaro et al.,
2019). The S100a8 and S100a9 genes encodemyeloid-related protein
8 (MRP8) and migration inhibitory factor related protein 14
(MRP14), respectively; these two proteins are associated with
immune and inflammation responses (Sreejit et al., 2020). Du
et al. (2023) recently reported that the activities of S100A8 and
S100A9 are increased in the tubular epithelial cells under DN.
Kuwabara et al. previously reported that the S100a8 gene
expression in the glomeruli of the kidneys is associated with the
progression of proteinuria and albuminuria in patients with obesity
and T2D; they suggested that S100a8 may induce inflammatory
changes in macrophages via TLR4 signaling (Kuwabara et al., 2014).
The matrix metalloproteinase 7 (Mmp7) gene expression is strongly
correlated with fibrosis and with eGFR (Yu et al., 2023a; Yu et al.,
2023b). Hirohama et al. (2023) recently conducted a proteomics
analysis of kidney samples from patients with DN and identified
Mmp7 as a diagnostic marker of kidney fibrosis. Recent studies have
shown that A. manihot polysaccharide (AMP) fortifies the intestinal
mucus barrier by increasingmucus production, which plays a crucial
role in AMP-mediated amelioration of colitis. The effects of AMP on
mucus production are dependent on IL-10. These findings suggest
that plant polysaccharides fortify the intestinal mucus barrier by

maintaining homeostasis of the gut microbiome (Wang et al., 2024).
MMP-7 is implicated in regulating kidney homeostasis and diseases
and barely expressed in normal adult kidney but upregulated in
acute kidney injury (AKI) and chronic kidney disease (CKD) (Liu
et al., 2020). Decoction of white aconite (DWA) suppressed mRNA
expression of fibrosis markers include Collagen I, CTGF, TGF-β,
inhibited protein levels of MMP-9, α-SMA, and Galectin-3, while
elevating TIMP1 expression (Xing et al., 2024b). Furthermore, Urine
MMP7 as a kidney injury biomarker (Avello et al., 2023). In the
present study, we found that these three genes were downregulated
by HKC; furthermore, the Trdn gene expression in the DN group
was lower than that in the WT group, which is a unique gene that is
downregulated after treatment with HKC but not EB.

Based on the findings regarding the gut microbiota, serum
metabolites, and gene activities in the kidneys, we conducted
further correlation analysis and found that Enterobacteriaceae,
Rikenellaceae, and Blautia were positively correlated with cortisol
and cytochalasin B but negatively correlated with quercetin 3′-
glucuronide and L-dopa. Furthermore, Trem1, S100a8, S100a9,
and Mmp7 were positively correlated with cortisol and
cytochalasin B but negatively correlated with quercetin 3′-
glucuronide, L-dopa, and dihydro isorescinnamine. All these

FIGURE 7
KEGG pathway enrichment analysis of the differentially expressed genes in the kidneys (A) for DN compared to the WT group and (B, C) after
treatment with HKC or HKCEB. DN, diabetic nephropathy; WT, non-diabetic control; HKC, Huangkui capsule of A. manihot; HKCEB, HKC combined
with EB.
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FIGURE 8
Correlation between serummetabolites and differentially expressed genes in the kidneys. (A–D) Heatmaps predicted by KEGG enrichment analysis
show the correlations between the serum metabolites and renal genes in DN compared to WT and after treatment with HKC, EB, or HKCEB. (E–N) The
genes expressed in the kidneys are functionally related to metabolites positively (red) or negatively (blue). DN, diabetic nephropathy; WT, non-diabetic
control; HKC, Huangkui capsule of A. manihot; EB, irbesartan; HKCEB, HKC combined with EB.

FIGURE 9
Abelmoschus manihot (L.) and its combination with irbesartan regulated the gut–kidney axis.
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related changes in the gut microbiota, circulating metabolites, and
renal genes have been directly or indirectly proven to be associated
with the reduction of urinary protein/albumin [24–45]. Therefore,
the findings of the present study suggest that HKC combined with
EB has multiple effects on the gut-kidney axis and that they could be
involved in reducing inflammation, improving the functions of renal
reabsorption and regulation, and delaying the progress of DN.

EB is clinically used in the treatment of essential hypertension and
DN (Diao et al., 2024; Doublier et al., 2005). However, no significant
effects were observed for EB on regulating blood pressure in db/dbmice
in this study. Although several serum metabolites were found to be
associated with EB, no specific pathways were found for the DEGs in
the kidneys. Su et al. (2022) recently reported the effects of the San-
Huang-Yi-Shen capsule on rats with DN using EB as the control.
Similarly, EB was not found to cause any significant improvements in
the blood glucose level and renal function (Li et al., 2017). Given these
findings, there are a few limitations to the present study. First, the main
active chemical constituents of HKCwere found to be rutin, hyperoside,
isoquercitrin, gossypetin-8-O-β-D-glucuronide, myricetin, quercetin-3-
O-β-D-glucuronide, and quercetin; among these, the flavonoid that has
the primary effect on DN is unknown. Second, the plasma lipids and
their metabolism are not included in the analyses. Third, female db/db
mice were not included in the study because of changes in their estrogen
and progesterone levels. Therefore, further investigation of the chemical
constituents of A. manihot (L.) as well as the effects of HKC on plasma
lipid metabolism and females are needed.

Conclusion

The present study provides experimental evidence that A.
manihot (L.) in the form of HKC has multiple effects on
regulation of the gut-kidney axis. The data concerning changes to
the gutmicrobiota, serummetabolites, and DEGs in the kidneys may
be useful for improved understanding the mechanisms of HKC in
the treatment of DN for reducing albuminuria and proteinuria.
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