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Antibiotic resistance is a pressing global health challenge, and polymyxins have
emerged as the last line of defense against multidrug-resistant Gram-negative
(MDR-GRN) bacterial infections. Despite the longstanding utility of colistin, the
complexities surrounding polymyxins in terms of resistance mechanisms and
pharmacological properties warrant critical attention. This review consolidates
current literature, focusing on polymyxins antibacterial mechanisms, resistance
pathways, and innovative strategies to mitigate resistance. We are also
investigating the pharmacokinetics of polymyxins to elucidate factors that
influence their in vivo behavior. A comprehensive understanding of these
aspects is pivotal for developing next-generation antimicrobials and
optimizing therapeutic regimens. We underscore the urgent need for
advancing research on polymyxins to ensure their continued efficacy against
formidable bacterial challenges.
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1 Introduction

Since the introduction of antibiotics in the last century, they have saved countless lives
of patients with serious bacterial infections. In the past 50–60 years, doctors have come to
expect that antibiotics would cure almost all patients with bacterial infections. However, due
to the lack of early identification of the causative organisms and their antimicrobial
susceptibility patterns in patients with bacteremia and severe infections in many
healthcare facilities, broad-spectrum antibiotics have been heavily and mostly
unnecessarily used since the 1990s (Akova, 2016). Consequently, this has led to the
emergence of numerous drug-resistant bacteria and unregulated management of
nosocomial infections, resulting in increased chances of transmission of drug-resistant
bacteria, longer hospital stays, and higher mortality rates for patients (Akova, 2016). In
2017, the World Health Organization (WHO) added Acinetobacter baumannii,
Pseudomonas aeruginosa, and Enterobacter species to the list of key pathogens in
urgent need of new antibiotics (Mancuso et al., 2021). While medical institutions have
conducted certain control and preliminary systematic evaluations of these pathogens
(Tomczyk et al., 2019), the overuse and misuse of antibiotics in healthcare, agriculture,
and livestock have contributed to a significant increase in antimicrobial resistance
(Nadimpalli et al., 2020; Schrader et al., 2020). WHO and the U.S. Centers for Disease
Control and Prevention (CDC) have recognized antimicrobial resistance as a worldwide
threat. Without effective management and scaling up the supply of antibiotics, nearly
10 million people worldwide are expected to die from drug-resistant infections by 2050
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(Pulingam et al., 2022). Although the U.S. Food and Drug
Administration (FDA) has approved several new antibiotics in
recent years, the emergence of resistance has been reported
(Abdallah et al., 2015; Giddins et al., 2018; Morrissey et al., 2020)
(Figure 1). Therefore, there is an urgent global need for
antimicrobials with innovative pharmacological activities and
modes of action to combat the public health threat of
antimicrobial resistance (Miethke et al., 2021).

Polymyxins have received increasing attention in recent years, as
they are considered a potential weapon against Gram-negative drug-
resistant bacteria. Polymyxin was approved in the late 1950s (Li
et al., 2006). However, its usage rapidly declined in the 1970s due to
its nephrotoxicity. Nevertheless, with carbapenem-resistant
Acinetobacter baumannii (CRAB), Pseudomonas aeruginosa, and
Klebsiella pneumoniae resistance rates increasing each year (Nang
et al., 2021), polymyxins have been reintroduced into the clinic as a
last-resort salvage treatment option for these resistant organisms
(Cai et al., 2012; Doi et al., 2015). Over the past two decades,
significant progress has been made in the study of polymyxins,
including their chemical structure, activity/toxicity relationship,
antimicrobial activity, and polymyxin resistance mechanisms.
This review summarizes the history of polymyxin development
and provides an overview of the mechanisms of drug resistance.
Additionally, it focuses on the research conducted to overcome
colistin resistance and highlights the development of new

antimicrobials that have entered clinical trials. Furthermore, the
review presents the latest research progress in overcoming
polymyxin resistance and sheds light on the pharmacokinetic
behavior of polymyxins to improve the standardization and
safety of their global clinical application.

2 Polymyxins: from discovery to re-
emergence in the era of superbugs

Polymyxins, discovered in 1947, are antimicrobial cationic
polypeptides produced by Bacillus polymyxins (Benedict and
Langlykke, 1947). Figure 2 provides a timeline highlighting the
major milestones in the discovery, use, and resurgence of
polymyxins. Brownlee and Bushby (1948) isolated an antibiotic
from Bacillus aerospore that exhibited antibacterial activity
against Gram-negative bacteria. In 1949, White et al. conducted a
comparative study on the antibacterial activities of polymyxins and
“Neosporin” and found no significant difference between them,
suggesting that both substances belong to the polymyxins class of
antibiotics. Consequently, a nomenclature system was established
for the polymyxins family (Stansly and Brownlee, 1949). To date,
polymyxin A (also known as Neosporin), B, C, D (polymyxin), E
(also known as colistin), F, M, P, S, and T have been identified from
P. Polymysa strains (Shoji et al., 1977; Niu et al., 2013). After their

FIGURE 1
Antibiotic classification and current status of clinical resistance. This diagram illustrates the evolution and challenges of antibiotic use since
its inception.

FIGURE 2
Evolution of polymyxin antibiotics. This illustration delineates the significant milestones in developing polymyxin antibiotics, from their discovery in
1947 to their contemporary relevance.
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discovery, many polymyxins were found to have reversible
nephrotoxicity, leading to the clinical use of colistin and
polymyxin B due to their relatively low nephrotoxicity. The main
market products are polymyxin B and polymyxin E, which exhibit
similar antimicrobial activity (Storm et al., 1977). There are
currently three polymyxin analogues for injection that have been
marketed both domestically and internationally: colistin
methanesulfonate (CMS) for injection, colistin sulfate and
polymyxin B sulfate for injection. The blood-brain barrier
passage rate of polymyxin is low, and it is difficult to achieve
effective drug concentration by intravenous administration. Local
applications such as intracerebroventricular or intrathecal
administration have been increasingly adopted by the clinic in
recent years, but there is a lack of relevant standardized
operational guidelines (Yang et al., 2023). In addition, the
nebulized inhalation method can significantly increase the lung
tissue concentration of polymyxin while decreasing the systemic
exposure level of the drug, thus achieving the goal of improving the
efficacy and reducing systemic adverse effects (Tang et al., 2023).
Currently, several domestic and international guidelines and
consensus recommend nebulized inhalation of polymyxin as one
of the important therapeutic methods for multidrug-resistant gram-
negative (MDR-GRN) bacterial induced pneumonia (Lin
et al., 2022).

Polymyxin is a cyclic lipopeptide compound composed of
10 amino acids, characterized by a cationic polypeptide
consisting of a cyclic heptapeptide and a tripeptide side chain
(Rutten et al., 1990; Falagas et al., 2010). The primary difference
between PMB and colistin lies in the amino acid variation at position
6 (R2), where PMB contains phenylalanine and colistin contains
leucine (Figure 3) (Velkov et al., 2010; Nation et al., 2014). They have
similar antimicrobial effects. Compared to the parent antibiotics,
sulfomethyl derivatives of polymyxins exhibit lower toxicity and
similar in vivo antibacterial activity. Consequently, sulfonated
derivative polymyxin E has been commercially available for
clinical use in Japan, Europe, and the United States since the
1950s. Conversely, colistin methanesulfonate sodium, an

antibacterial active component covered by sulfate, lacks inherent
antibacterial activity and serves as a precursor drug that exhibits
bactericidal effects. However, CMS was gradually replaced by newer
antibacterial drugs in the 1980s due to its high nephrotoxicity and
neurotoxicity. Importantly, commercial polymyxin B, CMS, and
colistin products are mixtures (Govaerts et al., 2002), leading to
batch-to-batch differences in the abundance of individual
ingredients.

With limited antibiotic options available, the increasing bacterial
resistance in clinical settings has necessitated the re-evaluation of
“old” antibiotics, particularly polymyxin, which has shown
effectiveness against many MDR Gram-negative bacteria.
Polymyxins have been used in clinical practice for approximately
60 years, with polymyxin B and colistin now considered last-resort
treatment options for infections caused by “superbugs."

3 Deciphering the multimodal
antibacterial strategies of polymyxins

Understanding the mode of action of polymyxins is crucial for
optimizing their use and developing new antibiotics. Polymyxin B
and colistin, having similar chemical structures, exhibit comparable
antibacterial mechanisms primarily against common Gram-
negative bacteria (Kwa et al., 2007). Colistin demonstrates a
narrow spectrum of antibiotics but shows activity against several
clinically significant MDR Gram-negative bacteria, such as
Pseudomonas aeruginosa, Acinetobacter baumannii, Escherichia
coli, Klebsiella pneumoniae, Enterobacter, and other
enterobacteriaceae (Bialvaei and Samadi Kafil, 2015; Poirel et al.,
2017; Doymaz and Karaaslan, 2019).

Both colistin and polymyxin B exert their effects on the bacterial
membrane, causing damage. The outer membrane of Gram-negative
bacteria serves as protection against various harmful substances,
including antimicrobials. Extensive studies have demonstrated that
polymyxins exerts its antibacterial effect by directly interacting with
the lipid components of lipopolysaccharide (LPS), disrupting

FIGURE 3
Themolecular structure of the polymyxin. It outlines the structural distinctions between polymyxin B and colistin. Polymyxin B and colistin comprise
five conserved L-α-γ-diaminobutyric acid (Dab) residues. These residues confer a net positive charge to polymyxin compounds at physiological pH. The
cationic hydrophilicity of this macrocycle is pivotal for their antibacterial properties.
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bacterial membranes (Nikaido, 2003). Electrostatic interactions
occur between the positively charged α, γ-aminobutyric acid
(Dab) residues of polymyxin and the phosphoric acid groups on
the bacterial membrane, competitively displacing divalent cations
(Ca2+ and Mg2+) through the negatively charged phosphoric acid
groups in the lipid membrane (Dixon et al., 1986). In addition,
polymyxins can neutralize endotoxins and inhibit the expression of
cytokines such as TNF-α and IL-8, preventing tissue damage caused
by excessive activation of inflammation (Schromm et al., 2021).
Polymyxins binds to LPS through electrostatic and hydrophobic
interactions (Velkov et al., 2010). Consequently, LPS becomes
unstable, increasing bacterial membrane permeability, leading to
the leakage of cytoplasmic contents and, ultimately, bacterial death
(Schindler and Osborn, 1979; Falagas and Kasiakou, 2005). While
the primary model for polymyxin’s antimicrobial activity involves
the destruction of the bacterial adventitia and intima, additional
mechanisms have also been proposed (Figure 4).

Another mechanism of polymyxin action is the inhibition of
type II NADH-quinone oxidoreductase (NDH-2) activity, a
significant respiratory enzyme in the bacterial inner membrane
(Deris et al., 2014). After entering the bacteria, polymyxin
inhibits the respiratory enzymes of the tricarboxylic acid (TCA)
cycle and consumes ATP, leading to bacterial death. Studies have
demonstrated that polymyxins inhibits NDH-2 activity in a
concentration-dependent manner in various Gram-negative
bacteria, including Escherichia coli, Klebsiella pneumoniae, and
Acinetobacter baumannii (Mogi et al., 2009). These events are
accompanied by activation of repair pathways and adventitial

remodeling (Moffatt et al., 2019). Additionally, some researchers
propose that most antibiotics induce bacterial death by perturbing
bacterial metabolism, leading to increased production of reactive
oxygen species (ROS), including superoxide (O2

−), hydrogen
peroxide (H2O2), and hydroxyl radicals (-OH), ultimately causing
bacterial demise (Kohanski et al., 2007). Leveraging this property,
many researchers have designed antimicrobial agents that promote
bacterial death by stimulating the production of hydroxyl radicals
through the Fenton reaction (Yeom et al., 2010). Elevated levels of
hydroxyl radicals within bacteria can damage bacterial DNA, lipids,
and protein synthesis, resulting in bacterial death (Dwyer et al.,
2014). These findings indicate the importance of hydrophobic
interaction in the antibacterial mechanism of polymyxin
(Hancock, 1997).

4 Unraveling the complex web of
polymyxin resistance: mechanisms,
challenges, and countermeasures

The escalating issue of antibiotic resistance poses a significant
threat to human health, particularly with the emergence of
resistance in Enterobacteriaceae, Acinetobacter baumannii, and
Pseudomonas aeruginosa against almost all available antibiotics.
Such MDR bacteria are commonly found in intensive care units
and among long-term hospitalized patients. Despite their potent
bactericidal activity against many Gram-negative bacteria, the
extensive use of polymyxins has led to the emergence of

FIGURE 4
Mechanisms of Polymyxins-Induced Bacterial Inhibition and Death. (A) The Dab residue of colistin interacts electrostatically with the anionic
phosphate group in the outermembrane of bacteria, resulting in structural disruption of the bacterial membrane. (B)Colistin neutralizes the activity of LPS
molecules, inhibiting the induction of shock and consequent release of cytokines by immune cells, such as tumor necrosis factor-α and interleukin 8. (C)
Colistin binds to phospholipids on the outer membrane of bacteria, causing depletion of phospholipids and leading to bacterial death. (D) Colistin
triggers the production of reactive oxygen species (ROS) that damage DNA, lipids, and proteins, ultimately resulting in bacterial death. (E) Colistin inhibits
the activity of respiratory enzymes. Permission to reproduce adapted from reference (El-Sayed Ahmed et al., 2020) has been obtained.
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polymyxin-resistant strains, including Neisseria meningitidis,
Proteus mirabilis, and Burkholderia spp. (Tzeng et al., 2019).
Notably, nosocomial infections caused by MDR Pseudomonas
aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae
are closely associated with increased morbidity and mortality, and
their resistance to polymyxins has attracted significant attention
(Barbier et al., 2013; Bassetti et al., 2018).

In this section, we present a systematic review of recent
discoveries on the mechanisms of polymyxin resistance. In recent
years, antibiotic resistance genes have become one of the greatest
threats to human health in the 21st century.mcr-1, the first plasmid-
mediated polymyxin resistance gene, was discovered in China in
2015, indicating that the last line of defense has also been breached,
further exacerbating the threat of bacterial resistance to public
health. Table 1 summarized the resistant bacteria and resistance
genes to polymyxins in recent years. Some of the more attention-
grabbing, classical mechanisms of polymyxin resistance are
summarized in Figure 5. The phosphoethanolamine (pEtN)
transferase encoded by mcr-1 delivers pEtN from the cell
membrane through modification of lipid A, leading to colistin
resistance (Figure 5A). This modification reduces the affinity of
polymyxin for lipopolysaccharides, as depicted in Figure 5B
(Needham and Trent, 2013; Liu et al., 2016). In addition to
colistin resistance, mcr mediates bacterial resistance to
antimicrobial peptides (AMPs). The amphiphilic structure of
AMPs enables them to penetrate bacterial cell membranes,
forming pores and disrupting the integrity of the cell membrane,
leading to lysis and death of the bacteria (Nang et al., 2021;

Rodriguez-Santiago et al., 2021). The emergence of the plasmid-
mediated colistin resistance gene mcr-1 has attracted global
attention and prompted several countries to adjust their policies
on the use of colistin in food and animals. Currently, researchers
have conducted extensive studies on the distribution, function,
mechanism of action, transmission vectors, and origin of mcr, as
well as prevention and control strategies for mcr-positive bacteria
(Liu et al., 2024). Some researchers have recently identified the
problem of polymyxin resistance mediated by multiple mcr gene
plasmids (Liu et al., 2016; Schwarz and Johnson, 2016). Certain
environments, such as hospitals with a high potential for
transmission of resistant bacteria through food or surfaces, as
well as heavily contaminated surface water, can serve as
reservoirs for various infections.

It has also been observed that the conditions of the medium
influence the sensitivity of some bacteria to polymyxins. Salmonella
enterica cells lacking carbon, nitrogen or phosphate ions, and serum
and quiescence cells exhibit reduced sensitivity to polymyxin
(Figure 5C) (McLeod and Spector, 1996). An alternative
mechanism involves the activation of the pmrA genes in
Salmonella typhimurium, triggered by low levels of Mg2+ ions. It
decreases the lipopolysaccharide molecule’s negative charge and
subsequently reduces polymyxin’s binding affinity (Groisman et al.,
1997), as depicted in Figure 5D.

Previous studies have demonstrated that the resistance
mechanism in most Gram-negative bacteria is associated with
structural changes in lipopolysaccharides (Moore et al., 1984;
Pelletier et al., 2013). Bacteria can develop resistance to

TABLE 1 Bacteria resistant to polymyxins and their resistance gene.

Bacteria Resistance mechanisms Gene References

A. baumannii Modifications of the LPS moiety pmrA, pmrB, pmrC, mcr Snitkin et al. (2013), Cheah et al. (2016), Lima et al. (2018)

A. baumannii lipid A deficiency lpxA, lpxC, and lpxD Bojkovic et al. (2015), Jeannot et al. (2017), Sherry and Howden
(2018)

A. baumannii Changes in membrane permeability and
Efflux pump systems

lpsB, lptD, and vacJ Hood et al. (2013), Whitfield and Trent (2014), Thi Khanh Nhu et al.
(2016)

Helicobacter pylori Modifications of the LPS moiety Cgt, ompD Sato et al. (2018)

Neisseria meningitidis Efflux pumps porB Tzeng et al. (2005)

Yersinia enterocolitica RosA/RosB efflux pump/potassium
antiporter system

RosA and RosB Bengoechea and Skurnik (2000)

Pa. polymyxa Inactivates colistin Unknown Sampson et al. (2012), Deris et al. (2014)

P. mirabilis LPS modification Proteus pmrI gene Jiang et al. (2010)

S. marcescens LPS modification arnB and arnC Lin et al. (2014)

K. pneumoniae Overexpression of PhoP/PhoQ, Inactivation
of the mgrB gene

ColR/ColS, blaCTX-M-
15 ESBL gene

Gutu et al. (2013), Cannatelli et al. (2014), Jayol et al. (2015a), Jayol
et al. (2016), Nordmann et al. (2016)

Klebsiella pneumoniae Reduces the affinity of antibiotics for cells mgrB gene Jayol et al. (2015b), Yap et al. (2022)

Aeromonas spp and
Escherichia coli

mcr-variant of the plasmid-mediated mcr-variant Belaynehe et al. (2018), Gonzalez-Avila et al. (2021)

P. aeruginosa LPS modification operon ParR/ParS Fernandez et al. (2010)

V. cholera LPS biosynthesis and modification gspIEF, lpxN, vc0224/
0239/1981

Mlynarcik and Kolar (2019)

Haemophilus influenza Lipooligosaccharide modifications lic1/2A, lpsA, lgtF, opsX Morey et al. (2013)
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polymyxin either by modifying the phosphate group of lipid A or by
directly removing LPS (Moffatt et al., 2010; Olaitan et al., 2014), as
depicted in Figure 5E. For instance, in the presence of high
concentrations of polymyxin in Pseudomonas aeruginosa, the
bacterial acidic phospholipids undergo conversion to neutral
lipids, along with changes in proteins and carbohydrates,
ultimately leading to the development of resistance (Gilleland
and Lyle, 1979; Gilleland and Farley, 1982). Zhao et al. found
that the increase of polymyxin concentration would affect the
dynamics of genetic variants in the flora and lead to different
degrees of evolution of resistance, and emphasized that during
the use of polymyxin, the evolutionary findings were integrated
into pharmacokinetics/pharmacodynamics to improve the
antibacterial efficacy of patients (Zhao et al., 2022).

Antibiotic resistance has significantly compromised the
effectiveness of antibiotics, leading to a substantial burden on
medical care improvement and cost control. To address this
issue, healthcare professionals must use antibiotics judiciously,
preventing misuse and overuse, which can delay the emergence
of resistance and reduce healthcare expenses for patients.
Governments and medical institutions should also manage and
optimize antibiotic use patterns, selecting the most suitable
treatment plan based on recommended dosages and durations to
achieve optimal clinical outcomes while minimizing toxicity and the
risk of subsequent resistance. Furthermore, establishing an

integrated and specialized antibiotic use monitoring system can
help detect and prevent the emergence of antibiotic resistance in
advance, addressing the problem at its source. Pharmaceutical
researchers, in particular, should intensify their efforts in
developing polymyxin antibiotics to counter emerging or
potentially resistant bacteria in the future.

5 Innovative strategies in combating
antibiotic resistance

Antibiotic resistance poses a significant challenge to global
health, necessitating the exploration of diverse strategies to
counteract its proliferation. Yan Zhu et al. proposed the
combination of genome-scale metabolic modeling with multi-
omics data elucidated the mechanisms by which A. baumannii
cells respond to colistin treatment, including (i) upregulation of
gluconeogenesis, pentose phosphate pathway, amino acid, and
nucleotide biosynthesis fluxes; (ii) downregulation of TCA
cycling, peptidoglycan, and lipopolysaccharide biogenesis; and
(iii) alterations in respiratory chain fluxes. The findings elucidate
the interaction of multiple metabolic pathways in A. baumannii
when treated with colistin and provide key mechanistic insights for
optimizing polymyxin combination therapy (Zhu et al., 2019). Li J
et al. revealed the key pathways associated with the synergistic

FIGURE 5
Polymyxin Resistance Mechanism. This illustration showcases the various mechanisms by which bacteria develop resistance to polymyxin. Central
to this resistance is the structure of Lipopolysaccharide (LPS) present in the bacterial cell, as highlighted in figure. (A) Themcr gene on bacterial plasmids
facilitates the primary resistancemechanism, as depicted by the labelmcr in the image. Furthermore, resistance can arise from covalent modifications to
Lipid A (B) or structural alterations in the LPS (E). The efficacy of polymyxin is further diminished by the reduced charge on LPS (D), especially when it
interacts with cations such as Mg2+. (C) The growth medium conditions in which bacteria reside can also influence their susceptibility to polymyxin.
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activity of polymyxin B and rifampicin in combination against
multidrug-resistant Acinetobacter baumannii by comparative
metabolomics. They found that polymyxin B monotherapy
significantly disrupted glycerophospholipid and fatty acid
metabolism within 1 h, reflecting its activity against the bacterial
outer membrane. Rifampicin monotherapy significantly disrupted
glycerophospholipid, nucleotide, and amino acid metabolism, which
was associated with inhibition of RNA synthesis, and with the
combination, polymyxin B initially affected pathways associated
with outer membrane biogenesis, whereas rifampicin affected them
through inhibition of RNA synthesis, and the findings provide new
mechanistic insights into optimizing this synergistic combination in
patients (Zhao et al., 2021). As bacteria continue to evolve and resist
conventional treatments, the scientific community has responded
with vigor, delving deep into combination therapies,
chemobiological innovations, and the potential of nanotechnology.

5.1 Polymyxin combination therapies:
overcoming bacterial resistance

Combining polymyxin with sensitizing drugs represents a
promising strategy to overcome polymyxin resistance and restore
its sensitivity. Srisakul et al. proposed the combination of polymyxin
and sulbactam as a means to overcome lipid A-mediated colistin
resistance (Srisakul et al., 2022). Moreover, Chen et al. reported that
Anthranilyl-CoA Synthetase PqsA effectively enhanced the activity
of polymyxin B against MDR Pseudomonas aeruginosa-associated
infections (Chen J. et al., 2022). In a study by Li et al., it was
demonstrated that the combined use of the guanidine derivative
isopropoxy benzene guanidine with low-level colistin enhanced the
permeability of the bacterial outer membrane and increased the
accumulation of reactive oxygen species, thereby combating MDR
Escherichia coli (Li et al., 2023). Shein et al. suggested combining
colistin and EDTA could overcome mgrB-mediated colistin
resistance in carbapenem-resistant Klebsiella pneumoniae (Shein
et al., 2022). Wang et al. showed that combination therapy using
colistin and resveratrol improved the membrane permeability of
bacteria and increased the sensitivity of Pseudomonas aeruginosa to
colistin (Wang et al., 2023). The plasmid-mediated resistance gene
mcr-1, a homolog of eptA, confers resistance by modifying lipid A
through cationic phosphoethanolamine (Liu et al., 2016). MacNair
et al. (2018) demonstrated that combining polymyxin with
antibiotics targeting Gram-positive bacteria effectively treated
infections caused by drug-resistant Gram-negative bacteria
expressing mcr-1 (MacNair et al., 2018).

Additionally, combination therapy using melatonin and colistin
has shown efficacy in eradicating mcr-positive pathogens and
exhibits a favorable biosafety profile. The combined antibacterial
mechanism of polymyxin and melatonin involves enhancing
bacterial outer membrane permeability, promoting oxidative
damage, and inhibiting the expression of bacterial efflux proteins.
Liu et al. demonstrated that the combination of polymyxin and
melatonin significantly restored the efficacy of colistin in three
animal models of E. coli infection carrying mcr-1 (Liu et al.,
2020). Table 2 presents an overview of clinical trials investigating
polymyxin combination therapy to overcome drug resistance.
Lindsey A Carfrae et al. proposed that the biotin biosynthesis

inhibitor MAC13772 acted synergistically with colchicine,
indirectly disrupting fatty acid synthesis (FAS) via MAC13772,
leading to changes in phospholipid composition and restoring
susceptibility to the antibiotic colchicine. In addition, the
investigators propose that combination therapy using colchicine
and the clinically relevant FabI inhibitor Debio1452-NH3 is
efficacious against systemic infections in mice with mcr-1-positive
Klebsiella pneumoniae and colchicine-resistant Escherichia coli. We
explored the mechanism of this interaction using chemogenomics,
lipidomics, and transcriptomics (Carfrae et al., 2023).

5.2 Chemobiological advancements:
enhancing antimicrobial efficacy against
drug-resistant pathogens

Jonathan M. Stokes et al. found that pentamidine and its
structural analogues sensitize Gram-negative pathogens to
antibiotics and overcome acquired resistance to polymyxins
(Stokes et al., 2017). Velkov and Li et al. optimized the structure
of polymyxin by chemical biology and successfully developed a new
lipopeptide, which has significant antibacterial activity against a
variety of drug-resistant pathogens. The antimicrobial peptide has
entered phase I clinical trials (Roberts et al., 2022). Zsolt Szűcs et al.
prepared a vancomycin polycationic glycogen derivative with an
n-decane side chain and 5 aminoethyl groups, which has a structure
similar to that of polymyxin and can act synergistically against
Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter
baumannii by combining with teicoplanin (Szucs et al., 2022).
Lindsey A. Carfrae et al. have found that the sensitivity of
colistin therapy can be restored by inhibiting the synthesis of
fatty acids in bacteria and finally changing the lipid composition
of bacterial membranes (Carfrae et al., 2023).

5.3 Harnessing nanotechnology: a frontier in
optimizing antibiotic delivery and
performance

Nanomaterial-based therapy is a promising tool against
refractory bacterial infections, characterized by the ability to
evade the existing mechanisms related to acquired drug
resistance and increase the activity of antimicrobials (Makabenta
et al., 2021). Figure 6 summarizes some nanotechnologies to
overcome antibiotic resistance. Nano-form metals, metal oxides,
and other nano-drugs also have direct antibacterial effects (Lee et al.,
2019; Elbourne et al., 2020; Zhang et al., 2022).

Nanotechnology represents a promising platform for drug
delivery, particularly in the fight against antibiotic resistance. The
key advantages of these nanocarriers lie in their ability to optimize
and enhance the therapeutic effects of drugs (Figure 6). Nanocarriers
greatly improve the stability of antibiotics in complex physiological
and pathological environments. For example, nano-metals and
metal oxides offer a protective barrier against threats such as
hydrolysis, oxidation, pH fluctuations, and enzymatic attacks,
thereby ensuring the preservation of their activity until they
reach the intended target site (Elbourne et al., 2020). Moreover,
nanocarriers, including gels and polymer nanofibers, facilitate the
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sustained release of antibiotics due to their unique design (Thapa
et al., 2020). This feature ensures consistent drug concentrations and
helps reduce dosing frequencies, thereby enhancing patient
compliance. Furthermore, their small size allows nanocarriers to
reside longer at damaged or infected sites, enabling effective
infection control precisely where it is most needed (Mofazzal
Jahromi et al., 2018; Liang et al., 2022). Significantly, these
nanocarriers possess biodegradable and non-invasive properties,
allowing for their safe breakdown and elimination from the body
after fulfilling their purpose without causing any further harm
(Ohnstedt et al., 2019). Moreover, nanocarriers provide a
protective environment for drugs in the gastrointestinal tract,
regulating their release. For instance, combining or encapsulating
polymyxins with polymers and liposomes can protect drugs in the
gastrointestinal tract, leading to enhanced drug absorption (Maher
et al., 2016; Faustino and Pinheiro, 2020). Furthermore, the design of
nanos and microparticles ensures targeted drug delivery, enabling
drugs to be directed straight to the infection site. This precision
allows for more accurate treatments, reduced drug dosages, and
diminished risks of systemic side effects (Lee et al., 2019; Zigrayova
et al., 2023). Additionally, when combined with the most effective
antibiotics, nano preparations have exhibited synergistic effects and
the potential to address the emerging global crisis of bacterial
resistance (Lee et al., 2019; Zigrayova et al., 2023). Chengyuan
Qin et al. Overcoming colistin resistance in bacterial infections
by negatively charged polyethylene glycol functionalized
liposomal co-delivery of curcumin and colistin. Liposomes
restored the affinity of mucilage to the bacterial membrane and
increased the uptake of curcumin, thereby decreasing efflux pump

activity and realizing the synergistic effect of mucilage and
curcumin. The liposome-loaded group did not exhibit any
toxicity at effective antibacterial doses (Qin et al., 2023).

6 The critical role and complexities of
polymyxins in modern medicine

Polymyxins, specifically Polymyxin B and Colistin (Polymyxin
E), have emerged as pivotal agents in the fight against antibiotic-
resistant bacterial infections. Polymyxin B is often available as a
sulphate for injection, while colistin is available as polymyxin E
sulphate for injection and colistin methane sulfonate for injection.
CMS is a prodrug that is converted to colistin in the body after
administration in order to exert antimicrobial activity. As the global
medical community grapples with the challenges posed by multi-
drug resistant Gram-negative bacteria (MDR-GNB), the significance
and intricacies of these drugs have gained paramount importance.
This article delves into the types, pharmacokinetic properties,
differences, and the potential of personalized treatments with
polymyxins. Additionally, it sheds light on the future research
directions, emphasizing the need to further elucidate their
behavior and interactions, especially in conjunction with
contemporary medical treatments (Figure 7). CMS is a precursor
drug that needs to be converted in the kidneys, and its conversion
rate is affected by a number of factors, resulting in large individual
variations in PK parameters, and blood concentrations are affected
by renal function. PMB is mainly eliminated by non-renal routes
and the total clearance has little correlation with renal function.

TABLE 2 Clinical trial of polymyxin involved in drug resistance.

Status ClinicalTrials.gov
identifier

Condition or disease Drug Combination of drugs

Phase 3 NCT03159078 Trauma Polymyxin
B

Carbapenem

Resistant Infection

Critical Illness

Phase 3 NCT02134106 Bacteremia Polymyxin
B

Doripenem

Healthcare-associated Pneumonia

Ventilator-associated Pneumonia

Completed NCT00753558 Carriage of Carbapemen-resistant Klebsiella pneumoniae polymyxin
E

Oral solution and buccal gel of gentamicin

Recruiting NCT04839653 Respiratory Tract Infections polymyxin
B

Gentamycin, amphotericine B

Critical Illness

Phase 4 NCT04489459 Blood Stream Infections Due to MDR Klebsiella pneumoniae Colistin Meropenem, Tigecycline

Completed NCT01266499 Klebsiella Pneumoniae Carbapenemase Resistant Associated
Bacteremia or Pneumonia

Colistin Garamycin

Early
Phase 1

NCT03950544 Antibiotic-Resistant Infection Polymyxin
B

Fosfomycin, Tigecycline

Recruiting NCT04202861 Antibiotic Therapy Polymyxins Antibiotic combination

Phase 3 NCT05258851 Carbapenem-Resistant Enterobacteriaceae Infection Colistin Ceftazidime-avibactam

Phase 2 NCT02472600 Intestinal Colonization With MDR Bacteria Colistin Neomycin; Fecal microbiota
transplantation; Omeprazole
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Dosage does not need to be adjusted according to renal function, and
effective blood mass concentrations can be achieved rapidly and are
less affected by renal function. Therefore, PMB is more suitable for
bloodstream infections, whereas CMS is more suitable for urinary
tract infections. The antimicrobial activity of different polymyxin E
formulations varies, with CMS being less active than polymyxin E
sulphate and less toxic, while polymyxin E sulphate is less commonly
used due to toxicity and is mainly used for drug sensitivity testing
(Infectious Diseases Society of China et al., 2021). Currently, there
are fewer data from studies related to polymyxin E sulphate, and it is
expected that more relevant studies will enrich the clinical options in
the future.

6.1 Types and drug forms of polymyxins

In current clinical practice, Polymyxin B and Colistin are widely
regarded as the two primary polymyxins, both boasting impressive
antibacterial properties. Due to the rising antibiotic resistance
of MDR-GNB globally, many previously effective antibiotics
have become less effective against MDR Gram-negative
pathogens (El-Sayed Ahmed et al., 2020). This resurgence of

colistin in the mid-1990s emerged as a crucial weapon against
MDR Gram-negative pathogens (El-Sayed Ahmed et al., 2020).
Notably, Klebsiella pneumoniae, a common cause of healthcare-
associated infections, often uses colistin as the treatment of choice
(Uzairue et al., 2022). However, these two polymyxins differ in their
modes and forms of administration. Polymyxin E is commonly
administered intravenously as the prodrug colistin
methanesulphonate, while PMB can be directly intravenously
administered as its active form under physiological pH (Nation
et al., 2015) (Figure 7). Alarmingly, with the clinical discovery of
more and more carbapenem resistant pseudomonas, especially
resistance to polymyxins has begun to appear (Qureshi et al., 2015).

6.2 Pharmacokinetic properties of
polymyxin B

The administration of PMB is versatile, including intravenous,
intrathecal, or nebulized inhalation routes. After intravenous
administration, its steady-state distribution volume ranges from
12.7–34.3 L, with a half-life of about 9–11.5 h. This provides
valuable guidance for clinicians on dose adjustments.

FIGURE 6
Features of Nanotechnology in Improving Polymyxin Resistance. Nanotechnology has emerged as a cornerstone in the battle against antibiotic
resistance. Nano-carriers bolster the resilience of antibiotics amidst the intricacies of physiopathological landscapes. Harnessing the potential of gels and
polymer nanofibers, the longevity of antibiotic release is notably augmented. Moreover, these carriers adeptly prolong the drug’s residence at injury
locales. Their biodegradable and non-invasive nature ensures a harmonious interaction with the human physiology. These nano-carriers deftly
modulate drug release within the gastrointestinal milieu, optimizing absorption and maximizing bioavailability. Beyond that, the strategic design of
nanoparticles and microparticles ensures a precision-guided delivery to infection epicentres, adeptly curbing side effects and magnifying
therapeutic efficacy.
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Interestingly, in both animals and humans, less than 5% of PMB is
excreted in the urine, indicating that the kidneys are not the primary
route of elimination for PMB (Zavascki et al., 2008; Manchandani et al.,
2016). Although biliary excretion might contribute to PMB’s clearance,
further studies are needed to identify other potential clearance
mechanisms (Manchandani et al., 2016). It is worth noting that the
intensity of concentration imposed by polymyxins affects the dynamics
of genetic variation within the bacterial population, leading to different
evolutionary outcomes of resistance. Jinxin Zhao et al. demonstrated
that polymyxin B recurs at a critical threshold concentration (1 mg/L;
i.e., 4× MIC) with low levels of resistance, but without fixed mutations,
and that this resistance reverses upon removal of the antibiotic. This
contrasts with the evolution of polymyxin B at ultra-MIC
concentrations (≥4 × MIC), which drives the evolution of
irreversible resistance, with molecular evolution occurring more
rapidly at higher antibiotic concentrations. This study highlights the
important role of combining evolutionary findings with
pharmacokinetics/pharmacodynamics to optimize antibiotic use in
patients (Zhao et al., 2022). V Aranzana-Climent et al. investigated
a semi-mechanistic PK/PD model for the combination of polymyxin B
andminocycline against polymyxin-resistantAcinetobacter baumannii.
The combination effect was driven by minocycline, with PMB as an
adjunct; simulations at clinically achievable concentrations indicated
that 1.5 mg/L minocycline +0.2 mg/L PMB was expected to produce
sustained killing for more than 30 h, whereas 0.3 mg/L minocycline
+1 mg/L PMB was sufficient for bacterial regeneration. Interaction
equations indicated that synergistic effects were maximized at PMB
concentrations ≥0.1 mg/L and minocycline concentrations ≥1 mg/L.
The possible mechanism is that PMB opens the bacterial membrane
and increases the entry ofminocycline into the cell, and the intracellular
concentration of minocycline increased in bacteria treated with 0.5 mg/
L PMB and minocycline in combination (Aranzana-Climent et al.,
2020). Further studies on the protein binding rates of polymyxins and

their combined antimicrobials in humans are necessary before any
definitive recommendations can be issued. And, caution should be used
in interpreting these modeling results based on in vitro results.

To provide the best treatment for each patient more accurately,
researchers have begun to explore population pharmacokinetics (PPK).
This method considers various physiological, pathological, and genetic
factors that might influence drug efficacy and safety. Combined with
pharmacodynamic (PD) metrics, this allows physicians to better adjust
treatment strategies, achieving personalized treatment and enhancing
therapeutic outcomes (van der Leeuw et al., 2014; Chen N. et al., 2022).
Recent studies have assessed the pharmacokinetics/pharmacodynamics
of Polymyxin B in patients with carbapenem-resistant K. pneumoniae
bloodstream infections (Yu et al., 2022). Furthermore, for other drugs
like paroxetine, population pharmacokinetic models have been
successfully applied to guide personalized treatments (Li et al.,
2022). These studies offer a framework for understanding how to
leverage pharmacokinetic/pharmacodynamic principles to optimize
polymyxin treatment strategies.

6.3 Metabolism, excretion of polymyxin B,
and future research directions

While we have a certain understanding of many aspects of PMB,
its metabolism and excretion mechanisms in the body remain
somewhat elusive. Future research should focus more on these
areas, especially considering the increasing bacterial resistance to
conventional antibiotics. Additionally, with the advancements in
medical technology, more patients now require continuous renal
replacement therapy (CRRT) or extracorporeal membrane
oxygenation (ECMO) support. These treatments might influence
the pharmacokinetics of polymyxins, making it crucial to
understand their interactions. A recent study reported a patient

FIGURE 7
Comparative Pharmacokinetic Profiles of PMB and Colistin. This flowchart elucidates the distinct pharmacokinetic properties of PMB and Colistin.
For PMB, the diagram underscores its distribution, half-life, and excretion pathways, notably the minimal renal excretion and a potential route through
biliary excretion. In contrast, colistin is emphasized for its intravenous administration as the inactive prodrug, colistin methanesulphonate. The
recommended concentrations for both drugs are depicted, with an accent on potential side effects, especially the heightened risk of nephrotoxicity
when exceeding the advised levels.
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with septic shock induced by severe acute pancreatitis who received
life support through ECMO and CRRT and multiple anti-infective
drug treatments. The study monitored the plasma concentration of
Colistin sulfate during ECMO and CRRT, finding no significant
difference before and after ECMO and CRRT (Peng et al., 2022),
implying that ECMO and CRRT might not significantly influence the
pharmacokinetics of Colistin sulfate. Moreover, different connection
modes for ECMO and CRRT have shown that both modalities can
achieve therapeutic goals without necessitating higher levels of
anticoagulation therapy (Liu et al., 2021), providing important
guidance for clinicians on the use of polymyxins in patients
receiving ECMO and CRRT treatments. In conclusion, as our
understanding of the behavior of polymyxins in the body deepens,
future research should focus on their interactions with modern
medical technologies, such as ECMO and CRRT, to optimize
treatment strategies and improve therapeutic outcomes.

7 Conclusion

This review provides an overview of the latest discoveries and
development history of polymyxins, as well as the mechanisms
underlying multidrug resistance to polymyxins. Additionally, we
discuss current research directions to overcome polymyxin
resistance and highlight new antibiotics undergoing clinical
research. Furthermore, we outline the future challenges and
prospects of polymyxins in treating bacterial infectious diseases,
particularly in relation to MDR bacterial infections. Over the past
5 years, numerous studies have explored the impact of the mcr gene
on polymyxin resistance, revealing a much more complex
mechanism of bacterial drug resistance than previously
understood. Future research should focus on elucidating the
causes of colistin resistance to enable the precise design and
development of antibiotic drugs targeting drug-resistant bacteria
and optimize drug administration strategies. These efforts are
crucial to minimize the development of resistance and prolong
the effectiveness of polymyxin as a last-line treatment.

Different forms of polymyxins exhibit significant differences in
pharmacokinetics and toxicity, with some forms being more prone to
induce nephrotoxicity or neurotoxicity. This necessitates a deep
evaluation and careful consideration by physicians when selecting
and using polymyxins (Nation et al., 2014). Specifically, Polymyxin
B is seen as the last line of defense against carbapenem-resistant
microbes, but its common side effects, such as neurotoxicity and
nephrotoxicity, cannot be overlooked (Nation and Li, 2009; Yu
et al., 2022). The toxicity observed in clinical settings stems from
colistin’s antibacterial mechanism, which involves the interaction
and damage inflicted on bacterial bilayer membranes. When
administered at high doses, this same mechanism can cause severe
damage to the cell membranes of human organs, including the liver and
kidneys. Toxicity is typically reversible upon discontinuation, and its
severity is dose-dependent (Li et al., 2006). To address these issues,
developing new polymyxin preparations must focus on reducing
dosage, achieving targeted drug delivery, and controlling drug
release. Using polymyxin-based nanoparticles, liposomes,
microneedles, and composite nanomaterials necessitates collaborative
efforts across disciplines such as chemistry, nanomedicine, and
materials science to address polymyxin delivery, drug resistance, and

toxicity challenges. Conjugation of polymyxin is also a promising
approach that can enhance intestinal permeability and absorption
while preventing microbial resistance. However, it is crucial to
investigate the impact of molecular modifications on drug stability,
antimicrobial activity, and the ability to overcome microbial drug
resistance. The emergence of drug resistance poses a significant
threat to the treatment of MDR-GNB infections since polymyxin
serves as the last line of defense. Therefore, the future of antibiotic
drug development lies in optimizing existing polymyxin drugs to reduce
dosage, increase efficiency, mitigate toxicity, and overcome the
emergence of drug resistance.

Addressing antibiotic resistance demands a comprehensive
approach that includes political agendas, legislation, treatment
development, and educational initiatives. Regular surveillance,
policies, and the implementation of new medical therapies
targeting resistant bacteria are essential for combating
antibiotic resistance in human and agricultural contexts. Given
the varying rates of resistance development across different
antibiotics, multifaceted measures are necessary to ensure the
sustainable development of healthcare. The increasing reliance
on colistin as a last resort antimicrobial necessitates urgent
exploration of its antimicrobial potential and the development
of new, more effective antimicrobial agents to safeguard public
health in the future. Looking ahead, there is growing interest in
using new technological approaches to overcome polymyxin
resistance. Continued advancements in analytical techniques
for the identification and structural interpretation of natural
products will likely lead to the discovery of novel polymyxin
groups and new lipopeptide components within existing
polymyxin groups.
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