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Background: YinChen WuLing Powder (YCWLP) has been recommended by
consensus for the treatment of non-alcoholic steatohepatitis (NASH);
nevertheless, its specific pharmacological mechanisms remain to be
elucidated. This study aims to dissect the mechanisms underlying the
therapeutic effects of YCWLP on NASH using a hybrid approach that
encompasses network pharmacology, molecular docking, and in vitro
experimental validation.

Methods:We compiled the chemical constituents of YCWLP from the Traditional
Chinese Medicine System Pharmacological Database and Analysis Platform
(TCMSP), while potential targets were predicted using the
SwissTargetPrediction database. To identify NASH-related candidate targets,
comprehensive retrieval was carried out using five authoritative databases.
Protein-Protein Interaction (PPI) networks of direct targets of YCWLP in NASH
treatment were then constructed using the String database, and functional
enrichment analyses, including Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway, were conducted through the Database
for Annotation, Visualization, and Integrated Discovery (DAVID) database. Core
targets were discerned using the Molecular Complex Detection (MCODE) and
cytoHubba algorithms. Subsequently, molecular docking of key compounds to
core targets was conducted using AutoDock software. Moreover, we established
a free fatty acid-induced HepG2 cell model to simulate NASH in vitro, with
YCWLP medicated serum intervention employed to corroborate the network
pharmacology-derived hypotheses. Furthermore, a combination of enzyme-
linked immunosorbent assay (ELISA), and Western blotting analyses was
employed to investigate the lipid, hepatic enzyme, SHP2/PI3K/NLRP3 signaling
pathway and associated cytokine levels.

Results: The network pharmacology analysis furnished a list of 54 compounds
from YCWLP and 167 intersecting targets associated with NASH. Through analytic
integration with multiple algorithms, PTPN11 (also known as SHP2) emerged as a
core target of YCWLP in mitigating NASH. The in vitro experiments validated that
10% YCWLP medicated serum could remarkably attenuate levels of total
cholesterol (TC, 1.25 vs. 3.32) and triglyceride (TG, 0.23 vs. 0.57) while
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ameliorating alanine aminotransferase (ALT, 7.79 vs. 14.78) and aspartate
aminotransferase (AST, 4.64 vs. 8.68) leakage in NASH-afflicted cells. In
addition, YCWLP significantly enhanced the phosphorylation of SHP2 (0.55 vs.
0.20) and downregulated the expression of molecules within the SHP2/PI3K/
NLRP3 signaling axis, including p-PI3K (0.42 vs. 1.02), NLRP3 (0.47 vs. 0.93),
along with downstream effectors-cleaved Caspase-1 (0.21 vs. 0.49), GSDMD-NT
(0.24 vs. 0.71), mature interleukin-1β (IL-1β, 0.17 vs. 0.48), pro-IL-1β (0.49 vs. 0.89),
mature interleukin-18 (IL-18, 0.15 vs. 0.36), and pro-IL-18 (0.48 vs. 0.95).

Conclusion: Our research reveals that YCWLP exerts therapeutic effects against
NASH by inhibiting lipid accumulation and inflammation, which involves the
attenuation of pyroptosis via the SHP2/PI3K/NLRP3 pathway.

KEYWORDS

YinChen WuLing powder, network pharmacology, molecular docking, in vitro
validation, SHP2

1 Background

Non-alcoholic fatty liver disease (NAFLD) represents a spectrum of
liver diseases marked by steatosis in more than 5% of hepatocyte,
commonly occurring with minimal or no alcohol consumption (Han
et al., 2023). Attributable to a dramatic surge in metabolic syndrome,
obesity, type 2 diabetes mellitus, and dyslipidemia across the globe, the
prevalence of NAFLD has escalated from 25.3% (1990–2006) to 38.2%
(2016–2019), representing a staggering increase of 50.4% (Younossi
et al., 2023). It is now the second most common reason behind liver
transplants, on a swift trajectory to become the leading cause, thereby
escalating the economic healthcare costs (Younossi et al., 2021). Non-
alcoholic steatohepatitis (NASH), the more severe progression of
NAFLD, involves pericellular fibrosis and frequently evolves into
cirrhosis, subsequently heightening the risk of hepatocellular
carcinoma (HCC) (Tokushige et al., 2021). While NASH is
acknowledged as a significant health concern globally, the
therapeutic options are limited, with no approved medications or
surgeries; management is primarily based on lifestyle modifications
such as weight loss, adherence to the Mediterranean diet, and increased
physical activity (Paternostro and Trauner, 2022). Therefore, it is urgent
to determine effective therapeutic drugs in clinical practice.

Traditional Chinese medicine (TCM) has been recognized
worldwide as a complementary and alternative therapy, with
unique advantages in treating NASH. YinChen WuLing Powder
(YCWLP), entrenched in history and first documented in “Synopsis
of the Golden Chamber,” is a composite of Artemisia capillaris
herba, Polyporus umbellatus, Poria, Alismatis rhizoma, Atractylodes
lancea and Cinnamomi ramulus, and it is a classic prescription used
in treating hyperlipidemia (Ye et al., 2021). Recently, YCWLP
gained popularity in managing various liver conditions, spanning
from cholestatic liver disease to liver fibrosis and cirrhosis (Xie et al.,
2020; Zhang et al., 2021a; Zhang et al., 2021b; You et al., 2023).
Furthermore, contemporary guidelines have endorsed YCWLP for
treating NASH characterized by damp-heat accumulation syndrome
(Branch of Hepatobiliary Diseases CAoCM, 2023). Nonetheless, the
complex therapeutic mechanisms by which YCWLP affects NASH
remain to be fully elucidated.

Contrasting with conventional chemical medications, TCM
boast a unique complexity with multi-component, multi-target,
and multi-pathway actions. The intricate nature of TCM has

historically challenged the understanding of its biological
mechanisms, positioning it as an alternative therapeutic avenue
(Jiashuo et al., 2022). Network pharmacology, however, offers a
progressive scientific approach to deconstruct the mechanisms upon
which traditional formulas exert their efficacious breadth against a
plethora of diseases (Wu et al., 2022). Its comprehensive and
systematic essence is congruent with overall holistic philosophy
of TCM and aligns with its diagnostic and treatment theories.
Complementing this approach, molecular docking is a
sophisticated computer simulation craft that models the
interaction between molecules and proteins at an atomic scale,
while evaluating binding efficacy through parameters like affinity
values (Pinzi and Rastelli, 2019). Our study aims to elucidate the
therapeutic mechanisms of YinChen WuLing Powder (YCWLP) in
treating non-alcoholic steatohepatitis (NASH) through a
combination of network pharmacology, molecular docking, and
cellular assays. Specifically, we seek to identify the key
constituents of YCWLP and their interactions with molecular
targets implicated in NASH pathology. Additionally, we
hypothesize that YCWLP exerts its therapeutic effects through
multi-component, multi-target, and multi-pathway actions,
aligning with the holistic principles of traditional Chinese
medicine. Through this comprehensive approach, we aim to
provide insight into the complex mechanisms underlying the
efficacy of YCWLP in NASH treatment.

2 Materials and methods

2.1 Network pharmacology

2.1.1 Candidate compounds of YCWLP
Compounds of Yinchenhao (Artemisia capillaris herba),

Zhuling (Polyporus umbellatus), Fuling (Poria, Zexie (Alismatis
rhizoma), Baizhu (Atractylodes lancea) and Guizhi (Cinnamomi
ramulus) were retrieved from the Traditional Chinese Medicine
System Pharmacological Database and Analysis Platform (TCMSP,
http://lsp.nwu.edu.cn/tcmsp.php, accessed on 18 December 2023)
(Ru et al., 2014). TCMSP provides comprehensive information on
various molecular aspects, such as molecular name, composition
number, molecular weight, hydrogen bond donor-acceptor count,
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fat-water partition coefficient, oral bioavailability (OB), intestinal
epithelium permeability, drug similarity (DL), blood-brain barrier
(BBB) drug half-life (HL), and permeability. We performed a
preliminary screening using criteria such as OB ≥ 30% (Xu et al.,
2012) and DL ≥ 0.18 (Agoni et al., 2020), as these indicate that the
compounds have good oral bioavailability and drug-like properties,
which are important for the compounds’ efficacy as drugs.

2.1.2 Potential targets of YCWLP
The SMILES notations of the resulting main compounds were

obtained by searching the PubChem database (https://pubchem.
ncbi.nlm.nih.gov/, accessed on 22 December 2023) and input into
Swiss Target Prediction (http://www.swisstargetprediction.ch/,
accessed on 22 December 2023) to obtain potential targets for
the main compounds. Swiss Target Prediction is a web tool based
on the principle of similarity, designed to predict the most likely
protein targets of small molecules through reverse screening (Daina
et al., 2019). Any targets with a credibility value of 0 were excluded.

2.1.3 Candidate targets related to NASH
We searched for “non-alcoholic steatohepatitis” in the

GeneCards (https://www.genecards.org/, accessed on
23 December) (Safran et al., 2010), PharmGKB (https://www.
pharmgkb.org/, accessed on 23 December 2023) (Barbarino et al.,
2018), DrugBank (https://go.drugbank.com/, accessed on
23 December 2023) (Wishart et al., 2018), OMIM (https://www.
omim.org/, accessed on 23 December 2023) (Amberger et al., 2015)
and TTD (https://db.idrblab.net/ttd/, accessed on 23 December
2023) (Zhu et al., 2012) databases to uncover potential targets
related to NASH. Potential targets of YCWLP in the context of
treating NASH were determined by intersecting the aforementioned
potential targets with candidate targets related to NASH (http://
www.bioinformatics.com.cn/, accessed on 23 December 2023),
leading to the identification of significant component-disease
target networks, which were then visualized using Cytoscape
software (Version 3.9.1).

2.1.4 Construction of PPI network
A Protein-Protein Interaction (PPI) network was constructed

using the String database (Version 12.0, https://string-db.org/,
accessed on 23 December 2023) to obtain information on the
potential targets of YCWLP in treating NASH. String database
contains 9,643,763 proteins and 1,380,838,440 protein interaction
information (Szklarczyk et al., 2019). The biological species was set
to “Homo sapiens” and the minimum required interaction score was
set to medium confidence (0.700). Visualization of the PPI network
was achieved using Cytoscape software (Version 3.9.1) was used to
construct a network of potential key targets and to perform a
systematic analysis and visualization of the network parameters
(Franz et al., 2023).

2.1.5 GO and KEGG pathway enrichment analysis
The aforementioned potential targets were exported to Database

for Annotation, Visualization, and Integrated Discovery (DAVID,
https://david.ncifcrf.gov/, accessed on 24 December 2023) (Dennis
et al., 2003), with “Homo sapiens” as the set biological species. We
conducted GO and KEGG enrichment analyses to elucidate the
underlying biological context, particularly pertaining to cellular

components (CC), molecular functions (MF), and biological
processes (BP) alongside KEGG pathways. We highlighted the
top 10 most relevant GO items and KEGG signaling pathways
using bar graphs and Sankey diagrams (http://www.
bioinformatics.com.cn/, accessed on 24 December), with an
adjusted p-value ≤ 0.05 indicating significant enrichment.

2.1.6 Screening of core targets
The potential targets identified previously were imported into

Cytoscape (Version 3.9.1) for further refinement. Core targets were
isolated through the use of Molecular Complex Detection
(MCODE) and the cytoHubba plugins. The MCODE and
cytoHubba plugins are downloaded from the app manager of
Cytoscape software.

2.2 Molecular docking

We obtained the PDB file of the core target protein from the
AlphaFold Protein Structure Database (https://alphafold.ebi.ac.uk/,
accessed on 24 December 2023) (Varadi et al., 2022) and sourced the
corresponding 3D compounds files from the PubChem (https://
pubchem.ncbi.nlm.nih.gov/, accessed on 24 December 2023).
Subsequently, the SDF format files were converted to
mol2 format using OpenBabel software (Version 2.4.1). We
removed extraneous elements such as non-protein molecules (e.g.
, water molecules) and receptor-independent ligands from the target
proteins with PyMoL software (Version 2.5.7). This pre-processing
allowed us to set up the Grid Box centered around the ligand and
identify the docking active site using the Autogrid module. The
docking was then performed with AutoDock Vina (Version 1.1.2) to
ascertain the affinity value, with the final visualization of the results
carried out using PyMoL.

2.3 In vitro validation

2.3.1 Preparation of YCWLP
The herbs of the YCWLP were purchased from Tianjiang

Pharmaceutical Co. Ltd (Jiangyin, China). The Artemisia
capillaris herba, Polyporus umbellatus, Poria, Alismatis rhizoma,
Atractylodes lancea and Cinnamomi ramuluswere mixed in the ratio
of 30:20:20:20:20:20 (g). The above concentrated herbal granules
were dissolved in distilled water at the rate of 127.015 mL of distilled
water for every 130 g of mixed herbal granules to reach a final drug
concentration of 1.0235 g/mL (in crude drug) before use.

2.3.2 Preparation medicated serum
Following a week of adjustment, twenty male SD rats sourced

from Charles River (Beijing, China) were split into two groups: a
control and YCWLP treatment group. The clinical dose of YCWLP
for adults is 130 g/60 kg, and the intragastric dose for rats is 6.3 times
the clinical dose based on body surface area. Rats in the YCWLP
group were given YCWLP by gavage at a dose of 13.65 g/kg, whereas
the control group received an identical volume of distilled water.
Both administrations occurred twice daily for 3 days. Blood was
collected from the abdominal aorta of rats under anesthesia with 3%
pentobarbital (45 mg/kg, intraperitoneal injection) 1.5 h after the
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last administration. The blood was incubated for 1 h at room
temperature and then centrifuged at 3,000 rpm at 4°C for
15 min. The upper clear serum layer was inactivated for 30 min
at 56°C in a water bath, filtered with 0.22 μm microporous
membrane and stored in a −80°C refrigerator for in vitro
experiments.

2.3.3 Cell culture
The HepG2 cell line was obtained from Beyotime Biotechnology

(Shanghai, China), which was maintained in DMEM (Gibco, NY,
United States) supplemented with 10% FBS (Gibco, NY,
United States) and antibiotics (Gibco, NY, United States). Cells
were cultured in an incubator with 5% CO2 at 37°C. The cells were
treated with 1 mM free fatty acids (FFAs, sodium palmitate: sodium
oleate = 1:2) to create the hepatocyte steatosis model in vitro, as
previously described (Lee et al., 2019). After reaching 80%
confluence, the HepG2 cells were cultured with serum-free
medium containing 1% fat-free bovine serum albumin (BSA) or
exposed to 1 mM of FFAs with BSA, with or without YCWLP
medicated serum, for 24 h.

2.3.4 Cytotoxicity
Cell viability was measured by CCK-8 (cat. no. AR1160, Boster,

Wuhan, China) assay. In brief, HepG2 cells, after exposure to 1 mM
FFAs or BSA, were seeded at a density of 5 × 103 cells/well in 96-well
plates and treated with blank serum or YCWLP medicated serum
diluted with blank serum (1%, 5%, 10%, 20%, 30%, and 40%) for
24 h. Subsequent to the treatment, CCK-8 (10 μL/well) was added to
the wells and the plates were incubated at 37°C for 2 h. The optical
density (OD) of the cells was measured at 450 nm using a microplate
reader (Thermo Fisher Scientific, MA, United States) to calculate
cell viability.

2.3.5 Enzyme-linked immunosorbent assay (ELISA)
HepG2 cells were inoculated in 6-well plates at 1.0 × 105 cells/

well and divided into five groups, including normal control group
(NC), NASH group (FFAs: 1 mM), 1% YCWLP group (FFAs:
1 mM, 1% YCWLP medicated serum), 5% YCWLP group (FFAs:
1 mM, 5% YCWLP medicated serum), and 10% YCWLP group
(FFAs: 1 mM, 10% YCWLP medicated serum). Then, the
supernatant and cell lysate were collected for detection after
24 h. The levels of AST (cat. no. BC1565, Solarbio, Beijing,
China) and ALT (cat. no. BC1555, Solarbio, Beijing, China) in
supernatants, and TC (cat. no. BC1985, Solarbio, Beijing, China)
and TG (cat. no. BC0620, Solarbio, Beijing, China) in cell lysate
were determined by an ELISA assay kit according to the
manufacturer’s instructions.

2.3.6 Western blot analysis
HepG2 cells were inoculated in 6-well plates at 1.0 × 105

cells/well and divided into three groups, namely, the NC group,
the NASH group (FFAs: 1 mM), and the 10% YCWLP group
(FFAs: 1 mM, 10% YCWLP medicated serum). Cells were
collected after 24 h and then centrifuged and lysed on ice.
The total protein concentration was determined by using a
BCA kit (P0009, Beyotime Biotechnology, Shanghai, China).
Following this, the protein samples were separated by SDS-
PAGE on an 8%–10% gradient gel. The separated proteins

were then transferred to a 0.45 μm PVDF membrane. After
incubating with primary antibodies at 4°C overnight: phospho-
SHP-2 (cat. no. AF2218, 1:1,000, Beyotime Biotechnology,
Shanghai, China), SHP-2 (cat. no. AF2260, 1:1,000, Beyotime
Biotechnology, Shanghai, China), phospho-PI3K (cat. no.
ab182651, 1:1,000, Abcam, Cambridge, United Kingdom),
PI3K (cat. no. ab133595, 1:1,000, Abcam, Cambridge,
United Kingdom), NLRP3 (cat. no. 27458-1-AP, 1:1,000,
Proteintech, Wuhan, China), Caspase-1 (cat. no.83383, 1:
1,000, Cell Signaling Technology, MA, United States),
Gasdermin D (cat. no.39754, 1:1,000, Cell Signaling
Technology, MA, United States), IL-1β (cat. no.12703, 1:
1,000, Cell Signaling Technology, MA, United States), IL-18
(cat. no. ab243091, 1:1,000, Abcam, Cambridge, United States),
and GAPDH (cat. no. 2118, 1:1,000, Cell Signaling Technology,
MA, United States). After overnight incubation, the membrane
was exposed to secondary antibodies (cat. no. RGAR001, 1:
6,000, Proteintech, Wuhan, China) at room temperature for
2 h. Each band was detected by ECL chromogenic kit (cat.
no. PK10002, 1:6,000, Proteintech, Wuhan, China). Images
were analyzed by Image J (Version 1.5.2). Expression levels of
the target proteins were subsequently normalized to the
GAPDH protein.

2.4 Statistical analysis

All data were processed with SPSS software (Version 27.0) and
presented as means ± standard deviation. Differences between two
groups were evaluated using Student’s t-test, while differences
among multiple groups were assessed with one-way analysis of
variance (ANOVA), followed by Tukey’s post hoc comparison
test. Statistical significance was denoted by p-value < 0.05.

3 Results

3.1 Construction of compounds-
target network

We retained 9, 66, 67, 885, and 393 potential targets related to
NASH in the TTD, OMIM, PharmGKB, DrugBank, and GeneCards
databases, respectively (Figure 1A). A total of 54 compounds of
YCWLP were extracted from the TCMSP database (Table 1). Using
Swiss Target Prediction, we identified 602 potential targets of
YCWLP. By overlapping the potential targets of YCWLP with
the candidate targets related to NASH, we obtained 167 unique
targets of YCWLP against NASH (Figure 1B). These targets were
then used to construct a compounds-target network which was
visualized in Figure 2.

3.2 Construction of PPI networks and
enrichment analysis

Upon inputting the 167 intersection targets obtained above into
String, we obtained 151 targets and generated the PPI network of
YCWLP for NASH using Cytoscape (Figure 3A). There are
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151 nodes and 682 edges in the network. After analyzing the
network, it is concluded that the average number of
neighbors is 9.033.

Next, we conducted a functional enrichment analysis on the
167 candidate targets with the DAVID database. The results
indicate that BP such as positive regulation of ERK1 and
ERK2 cascades, T cell costimulation, positive regulation of
peptidyl-tyrosine phosphorylation, glucose homeostasis, heart
development, Ephrin receptor signaling pathway, cytokine-
mediated signaling pathway, positive regulation of interleukin-6
production, positive regulation of the insulin receptor signaling
pathway, and stress response, CC such as cytosol, cytoplasm,
macromolecular complex, endoplasmic reticulum,
mitochondrion, integral component of plasma membrane,
nucleoplasm, nucleus, lysosome, and interleukin-6 receptor
complex, MF such as SH2 domain binding, oxidoreductase
activity, ion channel activity, phosphotyrosine binding, protein
kinase binding, insulin receptor binding, transcription regulatory
region sequence-specific DNA binding, iron ion binding, protein
tyrosine phosphatase activity, and fatty acid binding were closely
related to YCWLP in treating NASH (Figure 3B and
Supplementary Table S1).

KEGG enrichment analysis showed that the candidate targets
were mainly associated with signaling pathways such as metabolism,
inflammation, and immunity, such as Insulin signaling pathway,
insulin resistance, C-type lectin receptor signaling pathway, Non-
alcoholic fatty liver disease, Th17 cell differentiation, MAPK

signaling pathway, Ras signaling pathway, Natural killer cell
mediated cytotoxicity, and T cell receptor signaling
pathway (Figure 3C).

3.3 Screening of core targets of YCWLS in
treating NASH

Employing the MCODE plugin in Cytoscape, we identified
tightly connected protein clusters in the target network which
represent important modules in the PPI network (Bader and
Hogue, 2003). Six modules were obtained through the MCODE
algorithm, and this result suggests that YCWLP can synergize in
NASH treatment through these six aspects. Module 1 has 11 targets
and 44 edges with a score of 8.8; Module 2 has 21 targets and
73 edges with a score of 7.3; Module 3 has 8 targets and 19 edges with
a score of 5.429; Module 4 has 8 targets and 19 edges with a score of
5; Module 5 has 4 targets and 6 edges with a score of 4; Module 6 has
3 targets and 2 edges with a score of 3 (Figure 4).

In addition, another plug-in of Cytoscape “Cytohubba” is a
practical and user-friendly tool for obtaining hub genes in biological
networks, which has been widely used (Chin et al., 2014). We also
obtained the top 20 core targets of YCWLP for NASH by five
algorithms (including closeness, MCC, DMNC, EPC and MNC) in
cytoHubba analysis (Figures 5A–E). The core targets of YCWLP for
NASH were obtained by overlapping the results of Module 1 of the
MCODE algorithm and the five algorithms in the cytoHubba

FIGURE 1
Acquisition of YCWLP targets against NASH. (A) Candidate targets related to NASH were obtained from five databases, namely, TTD, OMIM,
PharmGKB, DrugBank, andGeneCards, respectively. The targets related to NASHwere subsequently united by Venn. The bar chart displays the number of
targets in each database. (B) Potential targets of YCWLP in treating NASHwere obtained by the overlap between potential targets of YCWLP and candidate
targets related to NASH. The bar chart in the middle row shows the number of targets related to NASH and potential targets of YCWLP by Swiss
Target Prediction. The bar chart in the bottom row shows the number of potential targets of each herb in YCWLP by Swiss Target Prediction.
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TABLE 1 Candidate compounds of YCWLP.

NO. Compound Molecule
ID

Oral
bioavailability (%)

Drug-
likeness

1 Isorhamnetin MOL000354 49.60 0.31

2 Beta-sitosterol MOL000358 36.91 0.75

3 Areapillin MOL004609 48.96 0.41

4 Genkwanin MOL005573 37.13 0.24

5 Skrofulein MOL007274 30.35 0.3

6 Isoarcapillin MOL008039 57.40 0.41

7 Eupalitin MOL008040 46.11 0.33

8 Eupatolitin MOL008041 42.55 0.37

9 4′-Methylcapillarisin MOL008045 72.18 0.35

10 Demethoxycapillarisin MOL008046 52.33 0.25

11 Artepillin A MOL008047 68.32 0.24

12 Quercetin MOL000098 46.43 0.28

13 Sitosterol MOL000359 36.91 0.75

14 Alisol B MOL000830 34.47 0.82

15 Alisol B monoacetate MOL000831 35.58 0.81

16 Alisol, b, 23-acetate MOL000832 32.52 0.82

17 16β-methoxyalisol B monoacetate MOL000849 32.43 0.77

18 (5R,8S,9S,10S,11S,14R)-17-[(2R,4R)-4-[(2R)-3,3-dimethyloxiran-2-yl]-4-hydroxybutan-2-yl]-
11-hydroxy-4,4,8,10,14-pentamethyl-1,2,5,6,7,9,11,12,15,16-decahydrocyclopenta[a]

phenanthren-3-one

MOL000853 36.76 0.82

19 Alisol C MOL000854 32.70 0.82

20 Alisol C monoacetate MOL000856 33.06 0.83

21 1-Monolinolein MOL002464 37.18 0.3

22 [(1S,3R)-1-[(2R)-3,3-dimethyloxiran-2-yl]-3-[(5R,8S,9S,10S,11S,14R)-11-hydroxy-4,4,8,10,14-
pentamethyl-3-oxo-1,2,5,6,7,9,11,12,15,16-decahydrocyclopenta[a]phenanthren-17-yl]butyl]

acetate

MOL000862 35.58 0.81

23 12-senecioyl-2E,8E,10E-atractylentriol MOL000020 62.40 0.22

24 14-acetyl-12-senecioyl-2E,8E,10E-atractylentriol MOL000021 60.31 0.31

25 α-Amyrin MOL000028 39.51 0.76

26 (3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R,5S)-5-propan-2-yloctan-2-yl]-
2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

MOL000033 36.23 0.78

27 3β-acetoxyatractylone MOL000049 54.07 0.22

28 8β-ethoxy atractylenolide Ⅲ MOL000072 35.95 0.21

29 14-acetyl-12-senecioyl-2E,8Z,10E-atractylentriol MOL000022 63.37 0.3

30 (2R)-2-[(3S,5R,10S,13R,14R,16R,17R)-3,16-dihydroxy-4,4,10,13,14-pentamethyl-
2,3,5,6,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthren-17-yl]-6-methylhept-5-enoic acid

MOL000273 30.93 0.81

31 Trametenolic acid MOL000275 38.71 0.8

32 7,9(11)-dehydropachymic acid MOL000276 35.11 0.81

33 Cerevisterol MOL000279 37.96 0.77

(Continued on following page)
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analysis. In the intersection results, we identified the essential core
target for NASH treatment as PTPN11 (also known as
SHP2) (Figure 5F).

3.4 Molecular docking of SHP2

SHP2, which is encoded by PTPN11, is a non-receptor PTP
ubiquitously expressed consisting of both C-SH2 and N-SH2
domains (Richards et al., 2023). To facilitate an in-depth study,
Q06124, a PDB format file containing the full-length structure of
the SHP2, was obtained from the AlphaFold protein structure
database. Compared to other results in PDB database, although it
is not a protein detected by X-ray but predicted by AlphaFold, it
has a full-length result that has been confirmed by multiple
studies. The AlphaFold algorithm, relying on a deep neural
network, combines features of homologous templates and
multiple sequence analyses to generate highly accurate
predicted structures, particularly for proteins with previously
unknown folds (David et al., 2022). Compounds corresponding
to PTPN11 were performed molecular docking with SHP2, and

the docking results showed that most of them possessed excellent
binding activities. Affinity value indicates the binding ability of
the ligand with the receptor, the larger the absolute affinity
value, shows that the better binding ability (But it must be
negative value) (Shang et al., 2023). The most optimal affinity
value of (2R)-2-[(5R,10S,13R,14R,16R,17R)-16-hydroxy-3-keto-
4,4,10,13,14-pentamethyl-1,2,5,6,12,15,16,17-octahydrocyclopenta[a]
phenanthren-17-yl]-5-isopropyl-hex-5-enoic acid, Hederagenin,
3beta-Hydroxy-24-methylene-8-lanostene-21-oic acid, α-Amyrin,
(2R)-2-[(3S,5R,10S,13R,14R,16R,17R)-3,16-dihydroxy-4,4,10,13,14-
pentamethyl-2,3,5,6,12,15,16,17-octahydro-1H-cyclopenta[a]
phenanthren-17-yl]-5-isopropyl-hex-5-enoic acid, Dehydroeburicoic
acid, Trametenolic acid, Polyporusterone G, and (2R)-2-[(3S,5R,
10S,13R,14R,16R,17R)-3,16-dihydroxy-4,4,10,13,14-pentamethyl-2,3,5,
6,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthren-17-yl]-
6-methylhept-5-enoic acid to SHP2 were −7.9, −7.1, −4.9,
−7.0, −7.2, −7.5, −5.4, −8.7, and −7.1, respectively. Each small
molecule has access to the active pocket of the protein, showing
appropriate matching characteristics. The highest scoring
Polyporusterone G can form hydrogen bonds with residues
GLN466 and GLU481 on the receptor protein SHP2,

TABLE 1 (Continued) Candidate compounds of YCWLP.

NO. Compound Molecule
ID

Oral
bioavailability (%)

Drug-
likeness

34 (2R)-2-[(3S,5R,10S,13R,14R,16R,17R)-3,16-dihydroxy-4,4,10,13,14-pentamethyl-
2,3,5,6,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthren-17-yl]-5-isopropyl-hex-5-enoic

acid

MOL000280 31.07 0.82

35 Ergosta-7,22E-dien-3beta-ol MOL000282 43.51 0.72

36 Ergosterol peroxide MOL000283 40.36 0.81

37 (2R)-2-[(5R,10S,13R,14R,16R,17R)-16-hydroxy-3-keto-4,4,10,13,14-pentamethyl-
1,2,5,6,12,15,16,17-octahydrocyclopenta[a]phenanthren-17-yl]-5-isopropyl-hex-5-enoic acid

MOL000285 38.26 0.82

38 3beta-Hydroxy-24-methylene-8-lanostene-21-oic acid MOL000287 38.70 0.81

39 Pachymic acid MOL000289 33.63 0.81

40 Poricoic acid A MOL000290 30.61 0.76

41 Poricoic acid B MOL000291 30.52 0.75

42 Poricoic acid C MOL000292 38.15 0.75

43 Hederagenin MOL000296 36.91 0.75

44 Dehydroeburicoic acid MOL000300 44.17 0.83

45 (22e,24r)-ergosta-6-en-3beta,5alpha,6beta-triol MOL000796 30.20 0.76

46 (22e,24r)-ergosta-7,22-dien-3-one MOL000797 44.88 0.72

47 Ergosta-7,22-diene-3β-ol MOL000798 43.51 0.72

48 5alpha,8alpha-epidioxy-(22e,24r)-ergosta-6,22-dien-3beta-ol MOL000801 44.39 0.82

49 Peroxyergosterol MOL011169 44.39 0.82

50 Ergosta-7,22-dien-3-one MOL000816 44.88 0.72

51 Ergosta-5,7,22-trien-3-ol MOL000817 46.18 0.72

52 Polyporusterone E MOL000820 45.71 0.85

53 Polyporusterone G MOL000822 33.43 0.81

54 Capillarisin MOL008043 57.56 0.31
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respectively, thereby stabilizing the Polyporusterone G-SHP2
complex (Figure 6).

3.5 Cytotoxicity analysis of YCWLP
on HepG2

Initially, we assessed the cytotoxicity of various concentrations
of YCWLP medicated serum, after dilution with blank serum, on
HepG2 cells. The findings demonstrated a significant reduction in
HepG2 cellular activity when the concentration of YCWLP
medicated serum exceeded 20%, leading us to deem
concentrations ranging from 1% to 10% as non-cytotoxic.
Following this, we developed a NASH cell model using FFAs
treatment, and the results confirmed no significant change in

cellular activity of HepG2 in the presence of FFAs alone or
combined with 1%–10% YCWLP medicated serum.
Consequently, concentrations of 1%, 5%, and 10% YCWLP
medicated serum were selected for further investigation
(Figures 7A, B).

3.6 Effect of YCWLP on lipid accumulation
and hepatic enzyme release on HepG2

Upon FFAs induction, a significant increase in the
intracellular TG and TC contents was observed in
HepG2 cells; however, treatment with YCWLP medicated
serum significantly reduced these lipid accumulations, with
only the 10% concentration showing a therapeutic effect

FIGURE 2
Construction of compounds-target network. Compounds-target network was visualized using Cytoscape. The small blue circles represent
potential targets of YCWLP in treating NASH. Large circles represent compounds, where grass green represents compounds from Alismatis rhizoma, lime
green indicates compounds from Artemisia capillaris herba, pink represents compounds from Poria, yellow represents compounds from Atractylodes
lancea, orange represents compounds from Cinnamomi ramulus, and blue-purple represents compounds from Polyporus umbellatus. Multiple
colors are used to mark compounds when they come from different herbs.
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(Figure 7C). A parallel increase in ALT and AST release was seen
following FFAs induction, and the hepatoprotective effect of
YCWLP was similarly observed exclusively at the 10% serum
concentration. Based on these results, we opted to utilize the 10%
concentration of YCWLP medicated serum for subsequent
experiments (Figure 7D).

3.7 Effect of YCWLP on SHP2/PI3K/
NLRP3 expression in HepG2

To further explore the mechanism of YCWLP regulation of
hepatic steatosis, we detected the expression of related proteins in
the SHP2/PI3K/NLRP3 pathway in HepG2 cells. Western blot
analysis showed that the expression of p-PI3K, NLRP3, cleaved

caspase-1, GSDMD-NT, mature IL-1β, pro-IL-1β, mature IL-18,
pro-IL-18 was significantly increased in the NASH group compared
with the NC group, and the expression of p-SHP2 and GSDMD-FL
was decreased. 10% concentration of YCWLP medicated serum
inhibited the expression of p-PI3K, NLRP3, cleaved caspase-1,
GSDMD-NT, mature IL-1β, pro-IL-1β, mature IL-18, pro-IL-
18 and upregulated the expression of p-SHP2 and GSDMD-
FL (Figure 8).

4 Discussion

The clinical efficacy of YCWLP has now been confirmed.
However, the exact mechanism of YCWLP for the treatment of
NASH is currently less studied, especially at the molecular level. In

FIGURE 3
Construction of PPI networks and enrichment analysis. (A) Protein-protein interaction network was constructed using the String database to obtain
information on the potential targets of YCWLP in treating NASH. Visualization of the PPI network was achieved using Cytoscape. (B) GO enrichment
analysis was conducted using the Database for Annotation, Visualization, and IntegratedDiscovery (DAVID). The results of the GO enrichment analysis are
presented in bar charts. The top ten most relevant GO programs for BP, CC, and MF are represented in red, light blue, and green, respectively. (C)
KEGG enrichment analysis was conducted using DAVID. The results of the KEGG enrichment analysis are presented in a Sankey bubble chart. On the left
side of the Sankey bubble chart were the genes involved, in the middle are the enriched signaling pathways, and on the right side, the bubble chart shows
the number of genes involved in enrichment and the corresponding Log10 (p-value) in each signaling pathway.
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this study, a network pharmacology approach was employed to
elucidate the mechanism of YCWLS systematically and
comprehensively for the treatment of NASH, thus providing a
theoretical basis for clinical application.

NASH is a dynamic process, the etiology of which is complex
and is affected by factors such as diet, environment, metabolism,
genetics, and gene polymorphisms; however, the pathogenesis is
still not fully understood. The more accepted theory of
pathogenesis is that the “multiple hits” hypothesis supersedes
the “two hits” theory for the onset and progression of NASH
(Buzzetti et al., 2016). The “first hit” is caused by a high-fat diet,
which provides large amounts of FFAs. Moreover, a diet rich in
excess carbohydrates induces de novo lipogenesis (DNL) in the
liver and adipose tissue.

Increased DNL, coupled with impaired lipolytic inhibition in
adipose tissue, leads to increased FFAs flow to the liver. This
process promotes hepatic cytokine secretion and gluconeogenesis,
thereby inhibiting insulin signaling and reducing glycogen
production (Tessari et al., 2009). Insulin resistance, stemming
from increased adiposity, then forms the “second hit” in the
mechanism of hepatic NASH development (Guilherme et al.,
2008). During this process, the massive accumulation of lipids
triggers intracellular peroxidative stress, endoplasmic reticulum
stress, and the activation of the inflammatory cascade in
hepatocytes (Fang et al., 2018). Furthermore, the impaired
hepatic microcirculation, coupled with increased plasma FFAs,
exacerbates disturbances in lipid metabolism, further driving

oxidative necrosis, stress-induced apoptosis, mitochondrial
dysfunction, and endoplasmic reticulum stress in hepatocytes,
eventually leading to hepatic stellate cell activation, collagen
deposition, hepatocyte ischemia and necrosis, and
reconstruction of the hepatic lobule, culminating in cirrhosis.
These events are termed the “third hit” of NASH (Guilherme
et al., 2008).

Inflammasomes are intracellular multiprotein complexes
identified by their core proteins, the pattern recognition
receptors (PRRs). The PRRs that form inflammasomes are
principally members of the intracytoplasmic NOD-like
receptors (NLR) family and the AIM-like receptor (ALR)
family (Tartey and Kanneganti, 2020). The NOD-like receptor
(NLR) family displays a tripartite domain architecture
comprising: an N-terminal effector domain, which consists of
caspase recruitment domain (CARD), pyrin domain (PYD), or
baculovirus inhibitor of apoptosis protein repeat (BIR) domain; a
centrally located nucleotide-binding oligomerization domain
(NOD); and a series of leucine-rich repeat (LRR) sequences at
the C-terminus. Upon recognition of endogenous or exogenous
danger signals, NLR can activate caspase-1 by facilitating the
recruitment of pro-caspase-1 by CARD-CARD interactions or
activating caspase-1 through PYD recruitment of the CARD-
containing cadherin ASC linkage pro-caspase-1 (Fu and
Wu, 2023).

GSDMD is widely expressed in various tissues as an effector
of pyroptosis and belongs to the gasdermin family (Burdette

FIGURE 4
Screening of core targets by MCODE cluster analysis. Using the MCODE plugin in Cytoscape, six clusters were obtained in the PPI network, where
(A–F) represents clusters 1–6. Module 1 scored 8.8; Module 2 scored 7.3; Module 3 scored 5.429; Module 4 scored 5; Module 5 scored 4; Module
6 scored 3.
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et al., 2021). Caspase-1 activation leads to cleavage of GSDMD,
resulting in the N-terminal fragment GSDMD-NT, which
interacts with membrane lipids to form cell membrane pores,
inducing pyroptosis (Li et al., 2022). Additionally, active caspase-
1 promotes the maturation and release of IL-1β and IL-18
through the cleavage of their precursors, causing the cell to

undergo inflammatory cell death-pyroptosis (Vasudevan
et al., 2023).

Through network pharmacology analysis, we identified
54 compounds of YCWLP and 167 targets of YCWLP against
NASH. Enrichment analysis revealed that these targets were
associated with positive regulation of peptidyl tyrosine

FIGURE 5
Screening of core targets by cytoHubba analysis. The top 20 core targets for YCWLP treatment of NASHwere obtained through five algorithms in the
CytoHubba plugin of Cytoscape, including tightness, MCC, DMNC, EPC, and MNC (A–E). The core target of YCWLP for treating NASH was obtained
through overlapping the results of Module 1 of the MCODE algorithm and five algorithms in the cytoHubba analysis (F). PTPN11 (also known as SHP2) was
identified as the essential core target for NASH treatment.

FIGURE 6
Molecular docking of drug small molecules with core target proteins. PDB format file containing the full-length structure of the SHP2 was obtained
from the AlphaFold protein structure database. Compounds corresponding to PTPN11 were performedmolecular docking with SHP2. Nine best docking
results of MOL000285 (A), MOL000296 (B), MOL000287 (C), MOL000028 (D), MOL000280 (E), MOL000300 (F), MOL000275 (G), MOL000822 (H), and
MOL000273 (I), and SHP2.
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phosphorylation, glucose homeostasis, cytokine-mediated
signaling pathways, insulin receptor signaling pathways, and
stress response. Using various algorithms, we obtained
SHP2 as the core target of YCWLP against NASH. Docking
compounds corresponding to SHP2 showed that most of the
compounds from YCWLP had good binding activity. In vitro
experiments verified the therapeutic effect and mechanism of
YCWLP on NASH. Results showed that 10% of YCWLP
significantly suppressed the accumulation of TC and TG in
the cell and reduced the release of ALT and AST.
Mechanistically, YCWLP achieved the above effect by
promoting the phosphorylation level of SHP2. SHP2, a protein
tyrosine phosphatase with oncogenic potential, is widely
expressed in various human tissues (Asmamaw et al., 2022).
Interestingly, SHP2 exerts a protective effect in myocardial
resurgence post-myocardial infarction by inhibiting the GRK2/
SMAD/ERK pathway (Lu et al., 2021).

In terms of NASH, it has been shown that knockdown of
SHP2 and PTEN in hepatocytes induces early-onset NASH and
promotes hepatic tumor-initiating cells, which may be due to
enhanced cJun expression/activation in the hepatic
microenvironment and elevated ROS and inflammation (Luo
et al., 2016). Among the 21 proteins interacting with SHP2 in the
PPI network, we obtained three important proteins based on co-
expression, experimentally determined interaction, and
combined score, namely, PIK3CA, PTK2, and IL6ST. Among
them, only PIK3CA is one of the targets in the results of the
previous five algorithms. This has also been confirmed by recent
study that in HFD-induced NAFLD and an FFAs-induced
cellular models, targeted knockdown of Notch-1 regulates the
PI3K/NLRP3 pathway through SHP2 phosphorylation, thereby

mitigating NAFLD (Gao et al., 2023). Our findings are in line
with previous research, showing YCWLP upregulates p-SHP2
expression and downregulates p-PI3K, NLRP3 expression
levels, reinforcing the validity of these observations.
Moreover, our study confirms that YCWLP significantly
suppresses caspase-1, GSDMD-NT, mature IL-1β, pro-IL-1β,
mature IL-8, and pro-IIL-18 expression in FAA-induced lysed
HepG2 cells, which inhibits pyroptosis and reduces
inflammation.

Our combination of network pharmacology, molecular
docking, and cellular experiments suggests that YCWLP has
great potential for the treatment of NASH. However, our
study has several limitations. First, as the available drug and
gene databases may not be fully complete, reducing the credibility
of the predicted results. Second, we only investigated the
therapeutic effects of YCWLP on NASH and did not
specifically study its active ingredients. For certain active
ingredients, we plan to conduct specific experiments in the
future to gain a more comprehensive understanding of the
therapeutic effects of YCWLP. Third, our validation was
limited to in vitro cellular models only, which does not
completely characterize the pathological mechanisms of
NASH. Also, for the specificity of SHP2, we did not validate it
using inhibitors and knockdown. Therefore, in the future, it may
be necessary to use multiple cell models combined with animal
experiments to confirm the therapeutic effect of YCWLP on
NASH, and to further confirm the role of SHP2 in the
pathological mechanism of NASH (especially in terms of
glucose homeostasis, insulin receptor signaling pathways, and
stress response) and the therapeutic targets of YCWLP. Finally,
considering that the current clinical studies of YCWLP for NASH

FIGURE 7
Effects of YCWLPmedicated serumonHepG2 toxicity, cellular lipid accumulation and hepatic enzyme release. (A)HepG2 cells were treatedwith 1%,
5%, 10%, 20%, 30%, and 40% YCWLP medicated serum, respectively, and the cellular activity of HepG2 was detected by CCK8 assay. Cell activity was
normalized by NC group (n = 3). (B) The FFAs-inducedHepG2 cell model was treatedwith 1%, 5% and 10% YCWLPmedicated serum, respectively, and the
cellular activity of HepG2 was detected by CCK8 assay. Cell activity was normalized by NC group (n = 3). (C) The FFAs-induced HepG2 cell model
was treated with 1%, 5% and 10% YCWLPmedicated serum, respectively, and the intracellular TG and TC contents of HepG2weremeasured by ELISA (n =
3). (D) The FFAs-induced HepG2 cell model was treated with 1%, 5% and 10% YCWLP-containing serum, respectively, and the levels of ALT and AST in the
cell supernatants of HepG2 were measured by ELISA (n = 3).
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are mostly limited to small-sample clinical trials, it is feasible that
large-sample clinical studies on the therapeutic effect of YCWLP
on NASH could be conducted on the basis of the current study.

5 Conclusion

In this study, we preliminarily predicted the compound
components and their targets and pathways of YCWLP for the
treatment of NASH by network pharmacology and verified the
effects of YCWLP on lipid accumulation and inflammation in
NASH by in vitro experiments, and the mechanism of its
pharmacological efficacy may be related to the inhibition of
pyroptosis mediated by the SHP2/PI3K/NLRP3 pathway.
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FIGURE 8
Effects of YCWLP on the expression of related proteins in the SHP2/PI3K/NLRP3 signaling pathway in HepG2 cells. (A) FFAs-induced
HepG2 cell model was treated with 10% YCWLP medicated serum, and the levels of SHP2, PI3K, and NLRP3 proteins and phosphorylation were
detected in the cells of HepG2 by Western blot. The expression of aim proteins was normalized by GAPDH, and the expression level of
phosphorylated proteins was normalized by the expression of total proteins (n = 3). (B,C) FFAs-induced HepG2 cell model was treated with
10% YCWLP medicated serum, and the levels of Caspase-1, GSDMD, IL-1β, and IL-18 proteins and maturation were detected in the cells of
HepG2 by Western blot. The expression of target proteins was normalized by GAPDH, while cleaved caspase-1 was normalized by pro caspase-1
(n = 3).
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