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Objective: This study explores the frequency of human leukocyte antigen (HLA)
genes, particularlyHLA-B alleles, within the Kuwaiti population. We aim to identify
alleles with known associations to adverse drug reactions (ADRs) based on
existing literature. We focus on the HLA-B gene due to its well-documented
associations with severe cutaneous adverse reactions and the extensive
pharmacogenetic research supporting its clinical relevance.

Methods: We utilized the HLA-HD tool to extract, annotate, and analyse HLA-B
alleles from the exome data of 561 Kuwaiti individuals, sequenced on the Illumina
HiSeq platform. HLA typing was conducted using the HLA-HD tool with a
reference panel from the IPD-IMGT/HLA database. The major HLA-B
pharmacogenetic markers were obtained from the HLA Adverse Drug
Reaction Database, focusing on alleles with significant ADR associations in
published literature.

Results: The distribution of HLA-B alleles in the Kuwaiti population revealed that
the most frequent alleles were HLA-B*50:01 (10.52%), HLA-B*51:01 (9.89%),
HLA-B*08:01 (6.06%), HLA-B*52:01 (4.55%), HLA-B*18:01 (3.92%), and HLA-
B*41:01 (3.65%). Notably, alleles HLA-B*13:01, HLA-B*13:02, HLA-B*15:02,
HLA-B*15:13, HLA-B*35:02, HLA-B*35:05, HLA-B*38:01, HLA-B*40:02, HLA-
B*44:03, HLA-B*51:01, HLA-B*57:01 and HLA-B*58:01 were identified with
known associations to various ADRs. For example, HLA-B*51:01 was
associated with clindamycin, phenobarbital, and phenytoin, and was found in
18% of individuals.

Conclusion: Our study enriches the regional genetic landscape by delineating
HLA-B allele variations within Kuwait and across the Arabian Peninsula. This
genetic insight, along with the identification of markers previously linked to drug
hypersensitivity, provides a foundation for future pharmacogenetic research and
potential personalized medicine strategies in the region.
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Introduction

Adverse drug reactions (ADRs) manifesting as hypersensitivity
drug reactions are significant health concerns, often leading to
hospitalizations and fatalities (Lazarou et al., 1998; Pirmohamed
et al., 2004; Davies et al., 2009). These reactions, triggered by various
chemicals, involve the immune system, particularly delayed
hypersensitivity responses mediated by T cells (Shapiro and
Shear, 1996; Pichler, 2003).

The major histocompatibility complex (MHC), located on
chromosome 6, plays a crucial role in both innate and adaptive
immunity due to its high degree of polymorphism and linkage
disequilibrium (The MHC sequencing consortium, 1999; Mungall
et al., 2003). The human leukocyte antigen (HLA) system, a part of
the MHC, consists of genes inherited from both parents, which are
expressed on the surface of antigen-presenting cells. HLA molecules
are classified into three classes (I, II, and III) based on their gene
location, function, expression patterns, and biochemical properties
(Howell et al., 2010). Class I molecules (HLA-A, HLA-B, HLA-C)
present intracellular peptides to cytotoxic T cells (CD8+), while class
II molecules (HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1,
HLA-DRA, HLA-DRB1) present exogenous peptides to helper
T cells (CD4+) (Dendrou et al., 2018).

The HLA-B gene, characterized by a high frequency of
polymorphisms and complex linkage disequilibrium, is
particularly challenging for traditional genotyping techniques.
Next-generation sequencing (NGS) offers high-throughput and
accurate HLA typing, essential for studying genetic diversity and
phenotypic correlations worldwide (Claeys et al., 2023). Studies have
identifiedHLA-B as a key genetic factor in ADRs, particularly severe
cutaneous adverse reactions (SCARs) such as Stevens-Johnson
syndrome (SJS), toxic epidermal necrolysis (TEN), and drug rash
with eosinophilia and systemic symptoms (DRESS)
(Jantararoungtong et al., 2021; Kloypan et al., 2021). For
instance, HLA-B*15:02 is linked to carbamazepine-induced SJS/
TEN (Ferrell and McLeod, 2008; Chang et al., 2011; Wei et al.,
2012), and HLA-B*58:01 is associated with allopurinol-induced
SCARs (Gonçalo et al., 2013). Screening for these alleles before
prescribing medications can significantly reduce severe reactions,
underscoring the clinical utility of pharmacogenetic testing (Chen
et al., 2018).

Our focus on the HLA-B gene is based on the extensive body of
pharmacogenetic research available. According to the HLA Adverse
Drug Reaction Database (HLA-ADR) on the Allele Frequency Net
Database (allelefrequencies.net), HLA-B alleles are more extensively
studied compared to HLA-A and HLA-C genes. Other studies have
similarly focused on the HLA-B gene in various populations due to
its strong associations with pharmacogenomics (Koomdee et al.,
2022; Yuliwulandari et al., 2024) and immunogenetics (Sajulga et al.,
2022; Darbas et al., 2023). The Arabian Peninsula populations are
underrepresented in global studies, and data on HLA-B allele
frequencies can aid in understanding drug hypersensitivity in
these populations (Arnaiz-Villena et al., 2019; Jawdat et al., 2020;
Alfraih et al., 2021; Hajjej et al., 2020; Albalushi et al., 2014; Dashti
et al., 2022; Ameen et al., 2020).

The latest attempt to explore HLA-B alleles in the Kuwaiti
population was conducted by Ameen et al. (2020), focusing on
reporting the most frequent alleles of classical HLA class I and class

II genes using low-resolution typing. The most common group of
HLA-B alleles reported was B*50:01, with a frequency of 12%
(Ameen et al., 2020). Additionally, neither the study by Ameen
et al. (2020) nor other studies have explored HLA-B alleles as
pharmacogenetic markers in Kuwait (Moussa et al., 1985; Al-
Bader et al., 2019)

Therefore, this study aims to explore the frequency of HLA-B
alleles in the Kuwaiti population using high-resolution typing and to
identify alleles with known associations to ADRs based on existing
literature. Our goal is to determine the prevalence of these
pharmacogenetically relevant HLA-B alleles in Kuwait and
compare our data with those from other Gulf countries,
contributing to a foundational understanding that may inform
future personalized medicine initiatives in the region.

In a previous study, we ranked NGS-based HLA typing tools,
focusing on those that are alignment-based and utilize the genetic
diversity catalogued in the IPD-IMGT/HLA database (Robinson
et al., 2020) for accurate allele calling. Our ranking was based on
multiple independent benchmarking studies (Chen et al., 2021;
Thuesen et al., 2022; Claeys et al., 2023), where we prioritized
the top tools based on their performance (Dashti et al., 2024).
We then evaluated the computational efficiency and capabilities
of these top HLA typing tools on whole exome sequencing (WES)
data, identifying HLA-HD (Kawaguchi et al., 2017) as one of the top
performers. Additionally, we compared the performance of the
HLA-HD tool against clinical grade HLA typing tool using
various NGS datasets, confirming its reliability and consistency
across multiple HLA loci (Dashti et al., 2024).

This work provides a solid foundation for using the HLA-HD
tool in our current research, ensuring that our findings are both
accurate and relevant to population-scale studies of HLA-B allele
frequencies and their potential implications for drug
hypersensitivity.

Methods and materials

Ethics Statement

The study was approved by the Ethical Review Committee at
Dasman Diabetes Institute in Kuwait, in accordance with the
guidelines outlined in the Declaration of Helsinki. The project
reference number is RAHM 2019-025.

Study samples

Whole exome sequence data from 561 Kuwaiti individuals used
in this study were sequenced on the Illumina HiSeq platform using
the TruSeq Exome Enrichment kit and the Nextera Rapid Capture
Exome kit (Illumina Inc., United States). A total of 561 Kuwaitis,
including 271 males and 290 females, with an average age of
52 years, participated in the study. All participants provided
informed consent prior to recruitment. These samples are part of
an ongoing project on the Kuwaiti population aimed at capturing the
extent of exome variation within the population, involving a larger
cohort than previously reported (John et al., 2018). All participants
were healthy and free of Mendelian or rare genetic disorders. For
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more details about the sequencing protocol used in the initial phase
of this project, please refer to John et al., 2018.

HLA-B typing

Raw sequencing data in BCL format obtained from the Illumina
sequencing platform were converted to Fastq format using the
bcl2fastq v2.20 Conversion Software (Illumina, United States).
The converted raw paired-end reads of 561 Kuwaiti individuals
were then processed with the HLA-HD tool version 1.4.0
(Kawaguchi et al., 2017) to determine the HLA-B alleles. This
was achieved by mapping the reads to the relevant region of the
human genome reference using Bowtie 2 tool version 2.5.2
(Langmead and Salzberg, 2012). A comprehensive reference panel
from the IPD-IMGT/HLA database version 3.46 (accessible at
http://hla.alleles.org and https://www.ebi.ac.uk/ipd/imgt/hla/
licence/) (Robinson et al., 2020) was used for genomic
imputation, and a score based on weighted read counts was
calculated to select the most suitable pair of alleles.

HLA-B pharmacogenomic markers

The major HLA-B pharmacogenetic markers were obtained
from the HLA Adverse Drug Reaction Database website (http://
www.allelefrequencies.net/) using a p-value filter of <0.01 across all
ethnicities (accessed on 15 July 2024). Given that the database is
continually updated by researchers, a comprehensive manual
review was performed to identify relevant markers. This
review aimed to confirm the association of each marker with
drug hypersensitivity, ensuring they met the criteria of being risk
alleles, having passed multivariate analysis with significant
adjusted p-values, and being correctly typed. This process
resulted in the identification of 17 unique HLA-B alleles
associated with pharmacogenetic risk: HLA-B*13:01, HLA-
B*13:02, HLA-B*15:02, HLA-B*15:11, HLA-B*15:13, HLA-
B*15:27, HLA-B*35:02, HLA-B*35:05, HLA-B*38:01, HLA-
B*39:05, HLA-B*40:02, HLA-B*44:03, HLA-B*51:01, HLA-
B*57:01, HLA-B*58:01, HLA-B*58:05, and HLA-B*59:01.

Comparison of HLA-B top alleles with Arab
Gulf countries and other ethnic groups

In addition to analysing the HLA-B allele frequencies within the
Kuwaiti population, we compared these frequencies with those
reported in other Arab Gulf countries and in various continental
ethnic groups.

For the regional comparison, we utilized published literature on
HLA-B alleles in Gulf countries, including Saudi Arabia (Jawdat
et al., 2020), Qatar (Dashti et al., 2022), Bahrain (Hajjej et al., 2020),
the United Arab Emirates (Arnaiz-Villena et al., 2019), and Oman
(Albalushi et al., 2014). We extracted and compared the 10 most
frequent HLA-B alleles in each population with the top 10 most
frequent HLA-B alleles identified in the Kuwaiti population.

For the broader comparison with other ethnic groups, we
utilized the Allele Frequency Net Database (accessed on

13 August 2024). This database provides comprehensive allele
frequency data from a variety of ethnic groups. We queried the
top 10 frequent HLA-B alleles in the Kuwaiti population and
compared them with those in regions such as Europe, North
Africa, North America, South Asia, Western Asia, and Sub-
Saharan Africa. The data sources were filtered based on
literature, and the study type was set to anthropology. We sorted
the studies based on cohort size, selecting the most representative
studies for each region. In cases where a specific allele was not
investigated in the primary study, we used the next best study by
cohort size for our comparative analysis.

Statistical analysis

The HLA-B allele frequencies were calculated by manually
counting the occurrences of each allele and dividing them by the
total number of HLA-B alleles in the cohort. For a diploid cohort,
this total is twice the number of individuals, as each individual has
two HLA-B alleles.

To assess the deviation from Hardy-Weinberg equilibrium
(HWE), we utilized the R software, version 3.6.2 (R Core Team,
2023). The observed genotype frequencies were compared to the
expected frequencies under HWE assumptions. Expected genotype
counts were estimated based on the observed allele frequencies,
while the actual genotype counts represented the genotypes
observed in the cohort. Genotype frequencies were calculated as
the proportion of each genotype among the total number of
observed genotypes. The significance of the deviation from HWE
was evaluated using p-values, with a threshold of p < 0.05 indicating
significant deviation.

For the comparison of the most frequent HLA-B alleles in the
Kuwaiti population with those in other ethnic groups, we calculated
95% confidence intervals using the R software. The confidence
intervals were derived based on the extracted allele frequencies
and the corresponding sample sizes of each ethnic group. This
statistical approach allowed us to determine the range within which
the true allele frequency is likely to fall, with a 95% level of
confidence. Comparison of allele frequencies, along with their
confidence intervals, was then visualized using stacked bar chart
generated in R, facilitating the assessment of genetic similarities and
differences across the regions.

Results

HLA-B allele frequencies

In total, we identified 160 unique HLA-B alleles in our study of
561 Kuwaiti individuals (Supplementary Table S1). All the identified
HLA-B alleles observed in more than one individual (n > 1) are
presented in Table 1. The frequency of the observed 143 distinct
HLA-B alleles among the 561 Kuwaiti individuals is listed in Table 1.
The most frequent HLA-B alleles identified were HLA-B*50:01
(10.52%), HLA-B*51:01 (9.89%), HLA-B*08:01 (6.06%), HLA-
B*52:01 (4.55%), HLA-B*18:01 (3.92%), and HLA-B*41:01
(3.65%). The HLA-B alleles passed the quality control
for HWE >10−3.
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TABLE 1 Observed HLA-B alleles (n > 1) in Kuwaiti population.

HLA-B
alleles

No. of
alleles

Allele
frequency (%)

Estimated
genotype counta

No. of observed count
of genotypesb

Genotype
frequency (%)c

HW
p-value

B*50:01 118 10.52 6.2 8 1.43 0.79

B*51:01 111 9.89 5.49 10 1.78 0.3

B*08:01 68 6.06 2.06 1 0.18 1

B*52:01 51 4.55 1.16 1 0.18 0.48

B*18:01 44 3.92 0.86 2 0.36 1

B*41:01 41 3.65 0.75 0 0 1

B*35:03 35 3.12 0.55 3 0.53 0.62

B*35:08 33 2.94 0.49 2 0.36 1

B*49:01 32 2.85 0.46 0 0 1

B*07:02 32 2.85 0.46 2 0.36 1

B*35:02 29 2.58 0.37 1 0.18 1

B*14:02 28 2.5 0.35 1 0.18 1

B*40:06 27 2.41 0.32 2 0.36 1

B*35:01 26 2.32 0.3 2 0.36 1

B*15:17 25 2.23 0.28 0 0 1

B*53:01 25 2.23 0.28 0 0 1

B*13:02 25 2.23 0.28 0 0 1

B*58:01 23 2.05 0.24 0 0 1

B*38:01 22 1.96 0.22 1 0.18 1

B*44:03 15 1.34 0.1 0 0 1

B*15:03 14 1.25 0.09 0 0 1

B*57:01 12 1.07 0.06 0 0 1

B*73:01 11 0.98 0.05 1 0.18 1

B*42:01 11 0.98 0.05 0 0 1

B*55:01 11 0.98 0.05 0 0 1

B*15:10 10 0.89 0.04 0 0 1

B*45:01 10 0.89 0.04 0 0 1

B*07:05 9 0.8 0.04 0 0 1

B*44:02 8 0.71 0.03 0 0 1

B*15:220 8 0.71 0.03 0 0 1

B*41:02 7 0.62 0.02 0 0 1

B*51:08 7 0.62 0.02 0 0 1

B*40:01 7 0.62 0.02 0 0 1

B*39:01 6 0.53 0.02 0 0 1

B*42:02 6 0.53 0.02 0 0 1

B*15:08 6 0.53 0.02 0 0 1

B*39:24 5 0.45 0.01 0 0 1

B*58:02 5 0.45 0.01 0 0 1

(Continued on following page)
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TABLE 1 (Continued) Observed HLA-B alleles (n > 1) in Kuwaiti population.

HLA-B
alleles

No. of
alleles

Allele
frequency (%)

Estimated
genotype counta

No. of observed count
of genotypesb

Genotype
frequency (%)c

HW
p-value

B*15:16 5 0.45 0.01 1 0.18 1

B*50:57 4 0.36 0.01 0 0 1

B*14:01 4 0.36 0.01 1 0.18 1

B*37:01 4 0.36 0.01 1 0.18 1

B*40:02 4 0.36 0.01 0 0 1

B*78:02 4 0.36 0.01 0 0 1

B*57:03 4 0.36 0.01 0 0 1

B*40:12 3 0.27 0 0 0 1

B*27:02 3 0.27 0 0 0 1

B*44:05 3 0.27 0 0 0 1

B*51:237 3 0.27 0 0 0 1

B*47:03 3 0.27 0 0 0 1

B*47:01 2 0.18 0 0 0 1

B*27:03 2 0.18 0 0 0 1

B*39:06 2 0.18 0 0 0 1

B*18:03 2 0.18 0 0 0 1

B*13:01 2 0.18 0 0 0 1

B*14:03 2 0.18 0 0 0 1

B*15:09 2 0.18 0 0 0 1

B*51:02 2 0.18 0 0 0 1

B*57:02 2 0.18 0 0 0 1

B*58:08 2 0.18 0 0 0 1

B*44:09 2 0.18 0 0 0 1

B*35:516 2 0.18 0 0 0 1

B*51:151 2 0.18 0 1 0.18 1

B*51:285 2 0.18 0 0 0 1

B*15:01 2 0.18 0 0 0 1

B*15:18 2 0.18 0 0 0 1

B*07:06 2 0.18 0 0 0 1

B*27:05 2 0.18 0 0 0 1

B*39:10 2 0.18 0 0 0 1

B*27:07 2 0.18 0 0 0 1

B*15:29 2 0.18 0 0 0 1

B*13:136 2 0.18 0 0 0 1

aEstimatedgenotype count refers to the expected number of genotypes based on allele frequencies.
bObserved count is the actual number of genotypes observed in the cohort.
cGenotype frequency is the proportion of the genotype among the total genotypes.
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HLA-B genotype frequencies

Examining the HLA-B genotypes of 561 Kuwaiti individuals
revealed 370 distinct genotypes in total. The most frequently
observed genotype among the population, as listed in Table 2,
was B*50:01 + B*51:01, which was the most common at a rate of
3.57%. The frequencies of the rest of the frequent genotypes were
under 3% in the Kuwaiti population.

Prevalence of HLA-B pharmacogenomic
markers in the Kuwaiti population

We identified twelve HLA-B pharmacogenetic markers that
associated with ADRs in 235 of the 561 Kuwaiti individuals
(41.1%) (Table 3). The most prevalent pharmacogenetic
markers were HLA-B*51:01, found in 18% of individuals and
associated with phenytoin, phenobarbital, carbamazepine, and
clindamycin (Niihara et al., 2012; Kaniwa et al., 2013;
Manuyakorn et al., 2020; John et al., 2021), HLA-B*35:02,
present in 5% and associated with minocycline (Urban et al.,
2017), HLA-B*13:02, present in 4.5% and associated with
allopurinol, lamotrigine, and oxcarbazepine (He et al., 2012;
Kim et al., 2017; Wu et al., 2018), and HLA-B*58:01, present in
4.1% and associated with allopurinol (Lonjou et al., 2008; Gonçalo
et al., 2013; Sukasem et al., 2016; Fontana et al., 2021). Other
identified markers included HLA-B*38:01 (3.9%), associated with
lamotrigine and other aromatic antiepileptic drugs (Ramírez et al.,
2017), HLA-B*44:03 (2.7%), associated with phenytoin (Ueta et al.,
2014; Park et al., 2016; Wakamatsu et al., 2021), HLA-B*57:01
(2.1%), associated with abacavir (Mallal et al., 2002), HLA-B*40:02
(0.7%), associated with oxcarbazepine (Moon et al., 2016), HLA-
B*13:01 (0.4%), associated with dapsone, salazosulfapyridine, and
phenytoin (Yang et al., 2014; Wu et al., 2018; Su et al., 2019;
Ahmed et al., 2021), HLA-B*15:02 (0.2%), associated with
carbamazepine and phenytoin (Ferrell and McLeod, 2008;
Chang et al., 2011; Wei et al., 2012; Ahmed et al., 2021), HLA-
B*15:13 (0.2%), associated with phenytoin (Chang et al., 2017),
and HLA-B*35:05 (0.2%), associated with nevirapine (Ahmed
et al., 2021).

Comparison of HLA-B top alleles across Arab
Gulf countries and other regions

Table 4 presents a comparative analysis of the top 10 most
frequent HLA-B alleles in the Kuwaiti population with those
observed in other Arab Gulf countries, including Saudi Arabia,
Qatar, Bahrain, the United Arab Emirates, and Oman. This
comparison highlights the similarities and differences in HLA-B
allele distribution across these closely related regions. The data
indicate that many of the most prevalent HLA-B alleles in the
Kuwaiti population are also commonly found in neighbouring
Gulf countries, suggesting shared genetic backgrounds and
potential regional influences on allele frequencies.

Expanding beyond the Gulf region, Figure 1 illustrates the
differences in the frequencies of the top HLA-B alleles between
the Kuwaiti population and various other ethnic groups, including
populations from Europe, North Africa, North America, South Asia,
Western Asia, and Sub-Saharan Africa.

The analysis reveals that certain HLA-B alleles in the Kuwaiti
population, such as B*50:01 and B*18:01, are more closely aligned
with frequencies observed in other Middle Eastern regions,
including Western Asia. However, these alleles show significant
differences when compared to populations from Europe and North
America, where these alleles are much less common. For instance,
B*50:01, with a frequency of 0.105 in Kuwait, is almost absent in
European (0.0094) and North American (0.009) populations, as
indicated by non-overlapping confidence intervals, suggesting a
distinct genetic profile in these regions.

Conversely, alleles like B*07:02, which is present in the Kuwaiti
population, show more similarity in frequency with North African
and Sub-Saharan African populations, indicating a shared genetic
background or historical gene flow between these regions. In
contrast, alleles such as B*51:01 demonstrate variability across all
regions, with Kuwait showing closer frequencies to South Asia and
Western Asia compared to other regions.

Discussion

In total, we identified 160 unique HLA-B alleles at high
resolution in our study of 561 Kuwaiti individuals. High-
resolution typing can be beneficial for pharmacogenetic studies,
as it has the potential to increase the statistical power and accuracy
in associating specific alleles with diseases and ADRs. This higher
level of detail may help to better understand the variability in drug
responses among individuals. Recent studies suggest that some
synonymous variants, while not altering the protein sequence,
may still impact splicing, RNA stability, RNA folding, translation,
or co-translational protein folding, and could be implicated in
various human diseases (Lin et al., 2023; Sharma et al., 2019).
However, the risk of manifesting an ADR is also likely influenced
by a combination of genetic factors, such as specific HLA alleles, and
environmental variables, reflecting a multifactorial nature to
these outcomes.

The most frequent alleles identified were HLA-B*50:01
(10.52%), HLA-B*51:01 (9.89%), HLA-B*08:01 (6.06%), HLA-
B*52:01 (4.55%), HLA-B*18:01 (3.92%), and HLA-B*41:01
(3.65%). These findings align with the previously reported

TABLE 2 Top 10 observed HLA-B genotypes in Kuwaiti population.

HLA-B genotypes No of individuals Frequency (%)

B*50:01 + B*51:01 20 3.57

B*51:01 + B*51:01 10 1.78

B*08:01 + B*51:01 9 1.60

B*50:01 + B*50:01 8 1.43

B*08:01 + B*50:01 6 1.07

B*35:03 + B*50:01 6 1.07

B*51:01 + B*52:01 5 0.89

B*50:01 + B*52:01 5 0.89

B*41:01 + B*51:01 5 0.89

B*14:02 + B*50:01 5 0.89
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distribution of the most frequent HLA-B alleles in Kuwait (Ameen
et al., 2020), which focused on the top alleles within the classical
HLA class I and class II genes. Our study examines allHLA-B alleles
present in our cohort, with particular emphasis on their relevance as
pharmacogenetic markers. This demonstrates that HLA typing
using WES data can effectively capture the same allele
frequencies identified by the combination of sequence-specific
oligonucleotide (SSO) probe-based hybridization and high-
resolution HLA genotyping, as employed by Ameen et al. (2020).

Furthermore, twelve HLA-B pharmacogenomic markers were
identified in 235 of the 561 (41.1%) Kuwaiti individuals. The most
frequent marker, accounting for 18% of the Kuwaiti individuals, is
HLA-B*51:01. This allele has been previously reported to be
involved in the pathogenesis of SJS/TEN associated with
phenobarbital (an antiepileptic drug used to control seizures) in
the Japanese population (Kaniwa et al., 2013), phenytoin (another
antiepileptic drug) in the South Indian Tamil (John et al., 2021) and

Thai (Tassaneeyakul et al., 2016; Manuyakorn et al., 2020)
populations, carbamazepine (an anticonvulsant and mood
stabilizer) in the Japanese population (Niihara et al., 2012), and
clindamycin (an antibiotic) in the Han Chinese population (Yang
et al., 2017). Therefore, HLA-B*51:01 may serve as a susceptibility
factor for SJS/TEN in Asian populations. Our previous study also
revealed that HLA-B*51:01 is the most frequent pharmacogenetic
HLA-B marker, carried by 26.67% of Qatari individuals (Dashti
et al., 2022). Additionally, the allele frequency of HLA-B*51:01 has
been shown to be high in other Arab Gulf countries (Table 4). These
similarities in allele frequencies may be due to a shared gene pool,
potentially influenced by historical migrations, geographic
proximity, and common ancestry among the Gulf Cooperation
Council (GCC) countries.

The second most frequent pharmacogenetic marker identified is
HLA-B*35:02, which is carried by 5% of the studied Kuwaiti
individuals. This allele has been associated with minocycline (an

TABLE 3 Major HLA-B pharmacogenetics markers and genotypes in Kuwaiti population.

Associated Drug(s)a Pharmacogenetic
marker

Genotype Individuals Percentage of cohort
(number of individuals)

Clindamycin, Phenobarbital, Phenytoin HLA-B*51:01 Homozygous 10 18% (101/561)

Heterozygous 91

Minocycline HLA-B*35:02 Homozygous 1 5% (28/561)

Heterozygous 27

Allopurinol, Lamotrigine, Oxcarbazepine HLA-B*13:02 Homozygous 0 4.5% (25/561)

Heterozygous 25

Allopurinol HLA-B*58:01 Homozygous 0 4.1% (23/561)

Heterozygous 23

Lamotrigine, Antiepileptic drugs HLA-B*38:01 Homozygous 1 3.9% (22/561)

Heterozygous 21

Dipyrone, Phenytoin, Ticlopidine HLA-B*44:03 Homozygous 0 2.7% (15/561)

Heterozygous 15

Abacavir, Carbamazepine, Flucloxacillin, Lamotrigine HLA-B*57:01 Homozygous 0 2.1% (12/561)

Heterozygous 12

Oxcarbazepine HLA-B*40:02 Homozygous 0 0.7% (4/561)

Heterozygous 4

Dapsone, Lamotrigine, Phenobarbital, Phenytoin,
Salazosulfa-Pyridine, Sulfasalazine, Trichloroethylene

HLA-B*13:01 Homozygous 0 0.4% (2/561)

Heterozygous 2

Carbamazepine, Oxcarbazepine, Phenytoin,
Sulfamethoxazole

HLA-B*15:02 Homozygous 0 0.2% (1/561)

Heterozygous 1

Phenytoin HLA-B*15:13 Homozygous 0 0.2% (1/561)

Heterozygous 1

Benznidazole, Nevirapine HLA-B*35:05 Homozygous 0 0.2% (1/561)

Heterozygous 1

Total 41.1% (235/561)

aDrugs assoiated with HLA, alleles were obtained from the HLA, Adverse Drug Reaction Database (HLA-ADR) on the Allele Frequency Net Database (allelefrequencies.net).
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antibiotic commonly used to treat bacterial infections)-induced
drug-induced liver injury in a Caucasian cohort in the
United States (Urban et al., 2017). In the Qatari population, the
allele frequency of HLA-B*35:02 is 1.59% (Dashti et al., 2022), and in
the Emirati population, it is 2.88% (Arnaiz-Villena et al., 2019),
which is very similar to the Kuwaiti population’s allele
frequency of 2.58%.

HLA-B*13:02 allele is the third most prevalent pharmacogenetic
marker, at 4.5%, in the Kuwaiti cohort. The allele frequency of this
marker is higher in the Kuwaiti population compared to other Arab
populations in the Gulf region, where it is less than 1% in Qatar and
not among the top ten HLA-B alleles in the Arabs of the Gulf
countries (Table 4). HLA-B*13:02 allele has been nominally
associated with lamotrigine (an antiepileptic drug used to treat

TABLE 4 Top 10 frequent HLA-B alleles, as ordered considering allele frequency (AF), in the Arab populations from the Gulf region.

Kuwait Saudi Arabia Qatar Bahrain United Emirates Oman

HLA-B AF (%) HLA-B AF (%) HLA-B AF (%) HLA-B AF (%) HLA-B AF (%) HLA-B AF (%)

B*50:01:01 10.25 B*51:01:01 19 B*50:01:01 18.21 B*35:01:02 12.9 B*50:01 14.42 B*35 15.3

B*51:01:01 9.71 B*50:01:01 12.4 B*51:01:01 17.35 B*47:01:01 7.1 B*51:01 13.46 B*51 14.7

B*08:01:01 5.97 B*08:01:01 6.9 B*08:01:01 7.24 B*44:02:03 6.9 B*52:01 5.77 B*08 9.3

B*52:01:01 4.46 B*07:02:01 5 B*07:02:01 4.60 B*18:01:01 6.6 B*15:17 4.81 B*58 9.1

B*41:01:01 3.65 B*53:01:01 3.9 B*40:06:01 4.28 B*15:10 6 B*44:03 4.81 B*40 6.4

B*18:01:01 3.65 B*41:01 3.4 B*58:01:01 3.42 B*58:01:01 6 B*58:01 4.81 B*52 6

B*35:03:01 3.12 B*58:01:01 3.4 B*49:01:01 2.82 B*52:01:01 5.4 B*35:01 3.85 B*15 6

B*35:08:01 2.94 B*35:01:01 2.8 B*18:01:01 2.78 B*51:02:01 5.1 B*35:02 2.88 B*18 4.2

B*49:01:01 2.85 B*18:01:01 2.7 B*53:01:01 2.69 B*08:01:01 4.3 B*40:06 2.88 B*50 4.2

B*07:02:01 2.67 B*49:01:01 2.5 B*35:01:01 2.55 B*42:01:01 4.3 B*58:02 2.88 B*07 3.1

This study Jawdat et al. (2020) Dashti et al. (2022) Hajjej et al. (2020) Arnaiz-Villena et al.
(2019)

Albalushi et al. (2014)

Note: Alleles in italics are also recognized pharmacogenetic markers associated with adverse drug reactions.

FIGURE 1
Comparison of the Top 10 HLA-B Allele Frequencies in the Kuwaiti Population Across Different Ethnic Groups. A comparative analysis of the top
10 most frequent HLA-B alleles in the Kuwaiti region and various other regions, including Europe, North Africa, North America, South Asia, Western Asia,
and Sub-Saharan Africa. The frequencies of these alleles are presented with 95% confidence intervals to highlight genetic similarities and differences.
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epilepsy and bipolar disorder)-induced SCAR in the Korean
population (Kim et al., 2017). It is also a marker for
oxcarbazepine (an antiepileptic drug used to treat partial
seizures)-induced maculopapular eruption in the Southern Han
Chinese population (He et al., 2012). Additionally, HLA-B*13:
02 has been associated with allopurinol (a medication used to
treat gout and hyperuricemia)-induced DRESS in the Shanghai
population (Wu et al., 2018).

The fourth prevalent pharmacogenetic marker is HLA-B*58:01,
which is carried by 4.1% of the Kuwaiti cohort. Upon examining the
frequencies of this allele in neighbouring countries (Table 4), we
found that HLA-B*58:01 is among the top ten most frequent alleles
in the Qatari, Saudi, Bahraini, and Emirati populations. The same
can be said for Oman; however, the available HLA typing in Oman
was conducted at low resolution, where HLA-B*58 is frequent.
Nevertheless, higher resolution typing is needed to confirm the
exact allele. Pharmacogenetic studies have demonstrated an
association between HLA-B*58:01 and allopurinol-induced
SCARs across diverse ethnicities, including African American
(Fontana et al., 2021), European (Lonjou et al., 2008; Gonçalo
et al., 2013), and Asian (Sukasem et al., 2016) populations. The
risk of allopurinol-induced SCARs is associated with a gene dosage
effect of HLA-B*58:01 on renal function (Chung et al., 2015; Ng
et al., 2016), as well as with increased plasma levels of the allopurinol
metabolite (Ng et al., 2016). Allopurinol is used to lower blood uric
acid levels induced by chemotherapy and to prevent the formation of
certain types of kidney stones (Jung et al., 2015). Nevertheless, it has
been suggested that additional genetic variations beyond the HLA
region might also contribute to the risk (Tohkin et al., 2013).

The fifth most prevalent pharmacogenetic marker in our study is
HLA-B*38:01, which is associated with SCARs induced by
lamotrigine and phenytoin in the Spanish Caucasian population
(Ramírez et al., 2017). This allele is carried by 3.9% of the Kuwaiti
cohort. However, it has a low allele frequency in the Qatari
population (Dashti et al., 2022) and is not among the top
frequent alleles in Arab populations from the Gulf region (Table 4).

Another pharmacogenetic marker identified is HLA-B*44:03,
which is carried by 2.7% of the Kuwaiti cohort, a percentage similar
to that observed in the Qatari population (2.8%) (Dashti et al., 2022),
and is very frequent in the Emirati population (Arnaiz-Villena et al.,
2019). This allele has been associated with cold-medicine (multi-
ingredient cold and anti-inflammatory drug remedies)-induced SJS/
TEN in Japanese (Ueta et al., 2014) and Brazilian (Wakamatsu et al.,
2021) populations. Additionally, another study suggests a potential
correlation between HLA-B*44:03 and lamotrigine-induced SJS/
TEN in Koreans (Park et al., 2016).

In addition, the HLA-B*57:01 pharmacogenetic marker is
carried by 2.1% of the Kuwaiti individuals in this study. This
allele is also present at a similar percentage in the Qatari
population (Dashti et al., 2022); however, it is not among the top
10 most common HLA-B alleles in any of the Gulf countries
(Table 4). As a pharmacogenetic marker, HLA-B*57:01 is known
to be associated with abacavir (an antiretroviral medication)-
induced hypersensitivity (Mallal et al., 2002) and is more
prevalent in Caucasian populations compared to Asian
populations (Jung et al., 2018).

Moreover, we have identified several pharmacogenetic markers,
each carried by less than 1% of the Kuwaiti cohort, and none are

among the top frequent alleles of Arabs from the Gulf region
(Table 4). Among these are the HLA-B*40:02 allele, associated
with oxcarbazepine-induced maculopapular eruption in the
Korean population (Moon et al., 2016), and the HLA-B*13:
01 allele, linked to dapsone-induced SCARs in Thai and Han
Chinese populations (Ahmed et al., 2021), salazosulfapyridine-
induced drug rash with DRESS in the Shanghai and Han Chinese
populations (Yang et al., 2014; Wu et al., 2018), and phenytoin-
related SCARs in East Asians (Su et al., 2019). Additionally, the
HLA-B*15:02 allele is known for its association with carbamazepine
and phenytoin-induced SJS/TEN, particularly in Southeast Asian
populations (Ferrell and McLeod, 2008; Chang et al., 2011; Wei
et al., 2012; Ahmed et al., 2021), while the HLA-B*15:13 allele is
associated with phenytoin-induced SCARs in the Malay population
(Chang et al., 2017). Furthermore, the HLA-B*35:05 allele has been
linked to nevirapine-induced hypersensitivity reactions in various
ethnic groups (Ahmed et al., 2021).

In general, our data shows that the majority of the most
prevalent HLA-B alleles in the Kuwaiti population are common
in other Gulf countries (Table 4). This demonstrates that
repurposing WES datasets for HLA typing to explore the
frequency of HLA genes relevant to disease or pharmacology
on a population scale is feasible. Additionally, some of the
frequent HLA-B alleles serve as pharmacogenetic markers,
indicating potential opportunities for collaborative regional
health strategies to address shared pharmacogenetic risks.
However, there are slight variations in the top frequent HLA-
B alleles among these countries, reflecting genetic diversity
influenced by factors such as genetic drift, selection pressure,
or historical migration.

Our study highlights significant differences in the frequencies of
various HLA-B alleles between the Kuwaiti population and other
regions, underscoring the unique genetic heritage of Kuwait,
particularly when compared to Europe, North America, and even
neighbouring regions like Western Asia. The distinct allele
frequencies observed, such as those of B*50:01 and B*18:01,
reflect true population-specific patterns, as indicated by non-
overlapping confidence intervals.

Incorporating other ethnic groups into the analysis further
enriches our understanding of the genetic diversity across
regions. For example, while alleles like B*07:02 show similar
frequencies across diverse populations, others, such as B*51:01,
exhibit considerable variability. These findings emphasize the
influence of regional and ethnic factors in shaping HLA-B allele
distribution, which may have important implications for disease
susceptibility, transplantation compatibility, and other health-
related outcomes in the Kuwaiti population.

The current study has a few limitations. First, the relatively
small sample size in our investigation may have influenced the
accuracy of frequency estimates for the loci examined, and there
is a possibility of overlooking low-frequency alleles due to this
limitation. Additionally, it is important to note that the HLA-B
pharmacogenetic markers analysed in this study are reference
markers derived from databases and studies conducted in other
populations, such as those from the HLA Adverse Drug Reaction
Database. These markers may be ethnicity-specific and might not
be causative of ADRs in our Kuwaiti population. As a result, we
may have missed additional potential markers specific to the
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Kuwaiti population that reflect differences in genetic
backgrounds. Furthermore, this study used the HLA-HD tool
for HLA typing. While benchmark studies (Chen et al., 2021;
Thuesen et al., 2022; Claeys et al., 2023) have shown that other
top-performing tools, such as HLA*LA (Dilthey et al., 2019) and
HISAT-genotype (Kim et al., 2019), might be more consistent
and accurate in typing HLA Class I genes, the difference in
consistency is marginal. Additionally, some of these tools are
computationally intensive, making them less suitable for
population-scale projects. Importantly, the HLA-HD tool does
not detect novel alleles; this limitation was known prior to the
study’s design, as our aim was to analyse the distribution of
known HLA-B alleles rather than to discover novel ones.
Therefore, further studies are needed to confirm the
association of the current pharmacogenetic markers with
ADRs in our population and to identify additional
pharmacogenetic markers that may be relevant.

Conclusion

Our study enriches the regional genetic landscape by
delineating HLA-B allele variations within Kuwait and across
the Arabian Peninsula. This detailed characterization is
invaluable for future studies on genetic diversity, disease risk,
and pharmacogenetics, ultimately contributing to personalized
medicine strategies in the region. By determining the frequency
of pharmacogenetic markers, previously reported in different
populations, within the Kuwaiti population, we provide a solid
foundation for future pharmacogenetic research. While these
markers are not necessarily causative of ADRs in our
population, they offer valuable insights. Future research
should focus on hypersensitivity studies involving different
drugs and HLA-B alleles, as well as exploring additional HLA
genes variations, to further advance personalized healthcare
strategies in the Gulf region.
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