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The transition of fibroblasts to myofibroblasts (FMT) represents a pivotal process
in wound healing, tissue repair, and fibrotic diseases. This intricate transformation
involves dynamic changes in cellular morphology, gene expression, and
extracellular matrix remodeling. While extensively studied at the molecular
level, recent research has illuminated the regulatory roles of non-coding RNAs
(ncRNAs) in orchestrating FMT. This review explores the emerging roles of
ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs),
and circular RNAs (circRNAs), in regulating this intricate process. NcRNAs
interface with key signaling pathways, transcription factors, and epigenetic
mechanisms to fine-tune gene expression during FMT. Their functions are
critical in maintaining tissue homeostasis, and disruptions in these regulatory
networks have been linked to pathological fibrosis across various tissues.
Understanding the dynamic roles of ncRNAs in FMT bears therapeutic
promise. Targeting specific ncRNAs holds potential to mitigate exaggerated
myofibroblast activation and tissue fibrosis. However, challenges in delivery
and specificity of ncRNA-based therapies remain. In summary, ncRNAs
emerge as integral regulators in the symphony of FMT, orchestrating the
balance between quiescent fibroblasts and activated myofibroblasts. As
research advances, these ncRNAs appear to be prospects for innovative
therapeutic strategies, offering hope in taming the complexities of fibrosis and
restoring tissue equilibrium.
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1 Introduction

Fibroblast to myofibroblast transition (FMT) is a fundamental process that holds
immense significance in various physiological contexts such as wound healing, tissue repair,
and the pathogenesis of fibrotic diseases (Zhang et al., 2016; Usher et al., 2019; Blessing et al.,
2021; Wang et al., 2023). This intricate transition is characterized by profound changes in
cellular phenotype, encompassing alterations in cellular morphology, gene expression
profiles, and the synthesis of extracellular matrix components (Michalik et al., 2018).
These modifications collectively culminate in substantial tissue remodeling, which is
essential for restoring tissue integrity and function following injury or damage (D’Urso
and Kurniawan, 2020).
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The process of FMT can be broadly divided into four stages
(Wynn and Ramalingam, 2012). Initially, quiescent fibroblasts are
activated in response to injury or stress signals, leading them to start
proliferating. Following this, activated fibroblasts differentiate into
myofibroblasts, characterized by the expression of alpha-smooth
muscle actin (α-SMA) and increased production of extracellular
matrix (ECM) components. Myofibroblasts then play a crucial role
in extracellular matrix remodeling, depositing collagen and other
ECM proteins to repair tissue. Normally, myofibroblasts undergo
apoptosis once the tissue is repaired. However, in pathological
conditions, myofibroblasts persist, leading to fibrosis. Several key
signaling pathways regulate FMT (Zhang et al., 2023), including the

Transforming Growth Factor-beta (TGF-β) pathway, which is a
major driver of FMT, promoting myofibroblast differentiation and
ECM production. The MAPK pathway is involved in fibroblast
activation and differentiation, while the PI3K/Akt pathway plays a
role in cell survival and proliferation during FMT.

The exploration of the molecular intricacies governing FMT has
been a subject of extensive research, driven by the imperative to
comprehend the underlying mechanisms that drive tissue repair and
fibrosis (Li et al., 2015). In this context, recent scientific exploration
has evaluated the pivotal role of non-coding RNAs (ncRNAs) as
indispensable orchestrators of the FMT process (Zhang et al., 2023).
Traditionally overlooked due to their lack of protein-coding capacity

FIGURE 1
Mechanistic Roles of ncRNAs in Fibroblast-Myofibroblast Transition and Fibrosis.
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(Ilieva and Uchida, 2022), ncRNAs are now recognized as key
players in shaping the delicate equilibrium between quiescent
fibroblasts and their activated myofibroblast counterparts during
FMT (Creemers and van Rooij, 2016).

The ensemble of ncRNAs, including microRNAs (miRNAs) (Lu
and Rothenberg, 2018), long non-coding RNAs (lncRNAs)
(Fernandes et al., 2019), and circular RNAs (circRNAs) (Li et al.,
2018a), showcases a multifaceted array of regulatory molecules that
converge to finely tune the transition from fibroblasts to
myofibroblasts (Wang et al., 2014; Fan et al., 2021; Su et al.,
2021). This cascade of molecular events encompasses miRNAs
that function as fine-tuners (Miao et al., 2018), lncRNAs that
orchestrate complex gene expression networks (Dong et al.,
2022), and circRNAs that act as dynamic sponges and
orchestrators of intricate interactions (Yang et al., 2022). These
ncRNAs are far from being bystanders; rather, they intricately
interweave with signaling pathways, transcription factors, and
epigenetic modulators to steer the gene expression programs that
govern FMT (Zhou et al., 2018; Niu et al., 2022; Hertig et al., 2023).

The pivotal roles of these ncRNAs do not exist in isolation
(Figure 1). Rather, they synergistically contribute to a complex
regulatory network that dictates the fine balance between
fibroblast quiescence and myofibroblast activation (Wang et al.,
2020). Dysregulation of these ncRNAs has been found to be a
common thread linking to the development of pathological
fibrosis across diverse tissues (Tao et al., 2016; Tarbit et al., 2019;
Senavirathna et al., 2020). Their dysregulated expression levels or
altered interactions can have profound implications, leading to
exaggerated myofibroblast activation (Wasson et al., 2020a),
excessive extracellular matrix deposition (Zhang et al., 2018), and
ultimately tissue fibrosis (Lino Cardenas et al., 2013).

In this review, our primary emphasis will be on elucidating the
involvement of ncRNAs in both FMT process and fibrotic diseases,
highlighting their significant therapeutic promise. Insights into their
roles not only deepen our comprehension of fibrotic processes but
also offer potential avenues for therapeutic interventions aimed at
mitigating the excessive activation of myofibroblasts and inhibiting
the progression of fibrosis.

2 MicroRNAs (miRNAs) in FMT

MicroRNAs (miRNAs) are a class of small non-coding RNA
molecules, typically about 22 nucleotides in length, that play crucial
roles in post-transcriptional gene regulation. MiRNAs exert their
regulatory effects by binding to the 3’untranslated region (UTR) of
target messenger RNAs (mRNAs), leading to mRNA degradation or
translational repression. In the context of fibrotic diseases, miRNAs
are significantly altered (Selman et al., 2016). Emerging evidence
highlights the substantial impact of miRNAs in modulating FMT
dynamics. MiRNAs play intricate roles in both promoting and
inhibiting FMT, making them key regulators of this transition.

Several miRNAs have been identified as promoters of FMT by
targeting key regulators of the transition. Notably, miR-21 has
emerged as a potent inducer of FMT (Liu et al., 2010; Yao et al.,
2011; Liang et al., 2012; Wang et al., 2012; Bullock et al., 2013;
Glowacki et al., 2013; Gong et al., 2014; Hedbäck et al., 2014;
Lorenzen et al., 2015; Cui et al., 2018; Xu et al., 2018; Li et al.,

2019; Kilari et al., 2019; Schipper et al., 2020; Wang et al., 2021;
Nonaka et al., 2021; Ramanujam et al., 2021; Yang et al., 2021; Liao
et al., 2022) (Figure 2). Its impact on FMT is primarily mediated
through its ability to regulate the transforming growth factor-beta
(TGF-β) signaling pathway (Liu et al., 2010; Yao et al., 2011; Liang
et al., 2012; Cui et al., 2018; Nonaka et al., 2021; Yang et al., 2021).
TGF-β is a pivotal cytokine that plays a central role in fibrotic
processes (Fernandez and Eickelberg, 2012; Yousefi et al., 2020).
MiR-21 achieves this regulatory effect by targeting TGF-β receptor
inhibitors, leading to their downregulation. This downregulation
results in an increased responsiveness of fibroblasts to TGF-β
signaling, effectively priming them for myofibroblast
differentiation. MiR-21 also promotes the expression of various
extracellular matrix (ECM) components, such as collagens (Liang
et al., 2012; Cui et al., 2018; Nonaka et al., 2021) and fibronectin (Cui
et al., 2018), thereby contributing to the phenotypic shift of
fibroblasts into myofibroblasts. This induction of ECM
components strengthens the fibrotic matrix, leading to tissue
remodeling and fibrosis development. Additionally, miR-146b
have been shown to facilitate FMT by targeting interleukin
1 receptor-associated kinase 1 (IRAK1) and carcinoembryonic
antigen-related cell adhesion molecule 1 (CEACAM1) that inhibit
myofibroblast activation (Liao et al., 2021). The research revealed
that miR-146b led to increased proliferation and migration of
fibroblasts, the conversion of fibroblasts into myofibroblasts, and
disrupted signaling among macrophages. Likewise, miR-125b
contributes to FMT by downregulating apelin that would
otherwise repress the activation of fibroblasts into myofibroblasts
(Nagpal et al., 2016). This downregulation effectively removes
barriers that restrain the transition process, resulting in enhanced
myofibroblast formation. Collectively, these miRNAs exemplify the
intricate regulatory landscape of FMT. Their effects extend beyond
singular pathways, intertwining with the TGF-β, WNT, and PI3K/
AKT signaling pathways (Zhang et al., 2023), ultimately driving the
progression of fibrosis.

Conversely, certain miRNAs act as suppressors of FMT. These
miRNAs play a crucial role in counteracting the signals and factors
that drive fibroblasts towards myofibroblast differentiation,
ultimately contributing to the maintenance of tissue homeostasis
and preventing excessive fibrosis. The miR-29 family stands out as a
group of miRNAs that counteract FMT by targeting collagen
synthesis and deposition, essential processes in fibrosis
(Kwiecinski et al., 2011; Wang et al., 2021; Yu et al., 2021; Yang
et al., 2022; Xi et al., 2023). miR-29 directly targets and
downregulates the expression of various collagens, including
collagen type I (Yu et al., 2021), III (Wang et al., 2019), and IV
(Kwiecinski et al., 2011), as well as other extracellular matrix
components (Zhang et al., 2023). This regulatory mechanism
orchestrated by miR-29 efficiently dampens the excessive
accumulation of collagen fibers, which is a hallmark of fibrotic
tissue remodeling. By inhibiting collagen production, miR-29 acts as
a protection against the pathological transformation of fibroblasts
into myofibroblasts, thus preventing the progression of fibrosis.
Moreover, the miR-200 family members counteract FMT by
targeting transcription factors ZEB1 (Bhome et al., 2022) and
ZEB2 (Liao et al., 2018), which are integral to the epithelial-
mesenchymal transition. By inhibiting ZEB1 and
ZEB2 expression, miR-200 miRNAs effectively impede the
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transition of fibroblasts into myofibroblasts, contributing to the
maintenance of the fibroblast phenotype and preventing fibrotic
tissue remodeling. Similarly, miR-214 plays a role in inhibiting FMT
by targeting factors that repress the activation of myofibroblasts
(Izawa et al., 2015; Zhu et al., 2016; Yang et al., 2019). By suppressing
these inhibitory elements, miR-214 helps tilt the balance in favor of
myofibroblast differentiation. In brief, the balanced interplay
between miRNAs that promote and those that suppress fibroblast
to myofibroblast transition is crucial for maintaining tissue integrity
and preventing pathological fibrosis. The opposing actions of these
miRNAs create a finely tuned regulatory network that governs the
dynamic equilibrium between fibroblasts and myofibroblasts.

In fibrotic conditions, miRNAs undergo various modifications
that affect their expression and function. These modifications include
changes in miRNA transcription, processing, and stability. Fibrotic
signals such as TGF-β can induce or repress the transcription of
specific miRNAs (Selman et al., 2016). Additionally, alterations in
miRNA processing enzymes, such as Drosha and Dicer, can impact
miRNAmaturation and stability (Mishra et al., 2009; Cho et al., 2020).
Epigenetic modifications, including DNA methylation and histone
modifications, also play a role in regulating miRNA expression in
fibrotic tissues (Yang et al., 2015). These mechanisms collectively
contribute to the dysregulation of miRNAs in fibrosis, influencing
their ability to modulate gene expression during FMT.

FIGURE 2
miR-21 in Fibroblast to Myofibroblast Transition (FMT) and Fibrosis.
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The regulatory roles of miRNAs in FMT are far from linear, as
manymiRNAs participate in intricate regulatory networks. MiRNAs
often target multiple genes and pathways simultaneously,
influencing the balance between pro-fibrotic and anti-fibrotic
processes. This phenomenon allows miRNAs to fine-tune the
overall outcome of FMT by modulating the expression of various
genes that are involved in different stages of the transition. One key
feature of miRNA-mediated regulation in FMT is the concurrent
targeting of multiple genes within the same or related signaling
pathways (Kwiecinski et al., 2011; Gong et al., 2014; Lorenzen et al.,
2015; Nagpal et al., 2016; Wang et al., 2021; Medzikovic et al., 2023).
This results in a synergistic impact on the cellular processes
associated with FMT. This multi-targeting capacity enables
miRNAs to exert a more potent and coordinated influence on
FMT compared to a linear one-to-one relationship between
miRNA and target gene. Cross-talk between miRNAs and other
non-coding RNAs, such as lncRNAs(Li et al., 2018b; Wang et al.,
2019) and circRNAs(Zhang et al., 2020; Ma et al., 2023), further
complicates the regulatory landscape. The interplay between
miRNAs, target genes, and other ncRNAs collectively constitutes
a systems-level regulatory network that governs FMT. This network-
based perspective highlights the interconnectedness and
interdependence of various components in shaping the
outcome of FMT.

MiRNAs play pivotal roles in orchestrating fibroblast to
myofibroblast transition. Their dual nature as promoters and
inhibitors of FMT underscores their complex regulatory
functions in fibrosis. As our understanding of the roles of
miRNAs in FMT continues to evolve, the prospects for
innovative therapeutic strategies in fibrotic diseases become
increasingly promising. The ability to manipulate miRNAs to
finely tune the fibrotic response offers a level of precision that
was previously unimaginable.

3 Long non-coding RNAs (lncRNAs)
in FMT

Long Non-Coding RNAs (lncRNAs) constitute a diverse group of
RNAmolecules exceeding 200 nucleotides in length that lack protein-
coding capacity but exert critical regulatory roles across various
cellular processes. Within the intricate processes of FMT, a recent
focus has emerged on lncRNAs as key regulatory elements. These
lncRNAs establish their presence within the framework of FMT by
orchestrating complex molecular interactions. They serve as
regulators, directing the delicate interplay among chromatin
modifiers, transcription factors, and a competing endogenous RNA
(ceRNA) that govern gene expression patterns critical to FMT. These
orchestrated activities assume a crucial role in the transformation of
fibroblasts into myofibroblasts, a pivotal event in the development of
tissue fibrosis. A diverse group of lncRNAs, including notable
examples such as MALAT1 (Wu et al., 2015), H19X (Pachera
et al., 2020), ZFAS1 (Yang et al., 2020), and SAFE (Hao et al.,
2019), have garnered attention for their role as promoters of
myofibroblast differentiation. Their contributions add a novel layer
of regulatory intricacy to the evolving narrative surrounding FMT.

lncRNAs have emerged as key regulators of chromatin
remodeling in the process of myofibroblast differentiation. These

lncRNAs act as guides, directing chromatin modifiers to specific
genomic loci that are strategically poised to undergo transformation.
Through their interaction with chromatin-modifying complexes,
these lncRNAs initiate a cascade of epigenetic changes that play a
central role in the activation of genes critical for FMT. For example,
HOTAIR and H19X have important effects on chromatin. Their
strategic interaction with chromatin modifiers, including histone
methyltransferases (Wasson et al., 2020b; Wang et al., 2023) and
chromatin accessibility (Pachera et al., 2020), initiates the
unwinding of the tightly packed chromatin structure. This allows
for increased accessibility of transcription factors, such as GLI2, and
other regulatory molecules to the gene promoters that drive
myofibroblast differentiation. As chromatin remodeling takes
place under the guidance of these lncRNAs, a series of events
unfold that culminate in the activation of genes pivotal to FMT.
These activated genes include those encoding extracellular matrix
components, cytoskeletal proteins, and signaling molecules that are
characteristic of the myofibroblast phenotype. The orchestrated
chromatin changes initiated by lncRNAs lead to the
establishment of a permissive transcriptional environment that
favors the expression of genes essential for myofibroblast
differentiation.

Through their intricate interplay with transcription factors
smad, lncRNAs wield significant influence over the gene
expression landscape that guides fibroblasts through the intricate
process of myofibroblast differentiation. In zheng’s study (Zheng
et al., 2019), Smad3 activated the expression of Crnde, revealing
insights into the molecular process. Intriguingly, Crnde also
suppressed Smad3’s transcriptional activation of target genes,
thus blocking the expression of myofibroblast-specific marker
genes in cardiac fibroblasts. Lin’s research demonstrated that
GAS5-AS1 levels were significantly reduced in oral submucous
fibrosis tissues and fibrotic buccal mucosal fibroblasts (Lin et al.,
2018). Furthermore, increasing GAS5-AS1 expression led to
inhibition of both p-Smad expression and myofibroblast markers.
Their presence ensures the coordination, precision, and fidelity of
gene expression programs essential for driving FMT. By functioning
as transcriptional regulators, lncRNAs contribute to orchestrating a
complex series of molecular events culminating in the acquisition of
the myofibroblast phenotype.

In the realm of gene expression regulation, transcription factors
assume the role of master regulators, directing the intricate sequence
of molecular events that govern cellular differentiation. However,
this role is not undertaken in isolation. lncRNAs serve as adept
collaborators, guiding the transformative process of FMT. LncRNAs
emerge as crucial co-regulators in this complex transcriptional
symphony, intricately woven into the regulatory landscape to
ensure the precise execution of gene expression programs that
steer fibroblasts along the path of myofibroblast differentiation.
Through specific interactions with transcription factors, they play
a role beyond conventional transcriptional regulation.
LINC00941 act as co-regulators, interacting transcription factors
ATF3 and histone 3 lysine 27 acetylation to play its pro-fibrotic role
(Zhang et al., 2022). This coordinated collaboration guarantees the
timely and accurate activation of the genes necessary for driving the
transformation of fibroblasts into myofibroblasts.

Furthermore, the co-regulator role of lncRNAs extends beyond
mere guidance; LncRNA Airn actively participate in modulating the
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development of cardiac fibrosis via IMP2-p53 axis in an m6A
dependent manner (Peng et al., 2022). Serving as molecular
scaffolds, lncRNA H19X create a conducive environment for the
assembly of complexes, thereby influencing the accessibility of target
gene enhancer (Pachera et al., 2020). This interaction fine-tunes
transcriptional activity, either amplifying or attenuating the
expression of genes involved in FMT.

The incorporation of lncRNAs into the narrative of FMT
introduces a fresh and intricate layer to the multifaceted story of
fibrosis. These elusive molecules, previously overshadowed by
protein-coding genes, now emerge as critical protagonists,
orchestrating the delicate balance between fibroblast quiescence
and the transformative process into myofibroblasts. By seamlessly
integrating themselves into the complex molecular choreography of
FMT, lncRNAs exert their influence in previously unforeseen ways.
Their roles as guides, regulators, and network architects has
provided new insights into our understanding of fibrosis,
suggesting their potential as therapeutic targets for the benefit of
patients afflicted with fibrotic conditions.

4 Circular RNAs (circRNAs) in FMT

Circular RNAs (circRNAs) are a class of non-coding RNAs
(ncRNAs) characterized by their covalently closed loop structure.
Unlike linear RNAs, circRNAs lack 5′caps and 3′polyadenylated
tails, making them resistant to exonucleases. This unique structure
imparts remarkable stability, allowing circRNAs to persist longer in
cells compared to their linear counterparts (Kristensen et al., 2019).
These stable molecules are involved in various cellular processes by
acting as miRNA sponges, interacting with RNA-binding proteins,
and influencing gene expression. In the intricate landscape of FMT,
circRNAs have emerged as pivotal players, wielding their regulatory
influence through multifaceted mechanisms that are now elucidated
by recent studies.

One of the prominent roles that circRNAs play in FMT is that of
miRNA sponges, implying that circRNAs have sequences that can
bind to and interact with miRNAs, preventing them from carrying
out their usual regulatory functions on other messenger RNAs.
CircRNAs possess a remarkable ability to sequester miRNAs, small
regulatory RNAs that modulate gene expression by binding to
mRNA targets and suppressing their translation or promoting
their degradation (Patop et al., 2019). By acting as miRNA
sponges, circRNAs effectively titrate miRNAs away from their
mRNA targets, thus preventing their inhibitory effects. This
intricate regulation allows circRNAs to regulate gene expression
programs that are crucial for FMT (Zhu et al., 2019; Hu et al., 2022;
Zou et al., 2023). Notably, circRNAs like circHIPK3 have been
identified as potent regulators of FMT-associated genes (Zhang
et al., 2019). By binding to miR-338-3p, circHIPK3 prevents the
miR-338-3p from interacting with their intended mRNA targets. As
a result, the expression of target gene SOX4 and COL1A1, is spared
from miRNA-mediated suppression, leading to the enhancement of
fibroblast activation. This mechanism underscores the pivotal role
circRNAs play in modulating gene expression patterns that drive the
transition of fibroblasts into myofibroblasts.

Beyond their role as miRNA sponges, circRNAs also interact
with RNA-binding proteins, adding another layer of complexity to

their regulatory functions. For example, Circ-sh3rf3 (circular RNA
SH3 domain containing Ring Finger 3) interacts with RNA-binding
protein GATA-4 to promote the expression of miR-29a, thereby
inhibiting FMT and myocardial fibrosis (Ma et al., 2023). These
interactions can impact RNA stability, localization, and translation,
further expanding the repertoire of mechanisms through which
circRNAs influence FMT. Through their interactions with both
miRNAs and RNA-binding proteins, circRNAs wield a dynamic
and multifaceted influence on the regulatory networks
that govern FMT.

Recent studies have also shed light on circRNAs’ role in
modulating signaling pathways critical for FMT. CircTTN, for
instance, has been implicated in the PI3K/AKT pathway, a key
signaling cascade in myofibroblast differentiation. By spongingmiR-
432, circTTN regulates the expression of genes like IGF2, thereby
influencing the activation of the PI3K/AKT signaling pathway
(Wang et al., 2019). This regulation demonstrates how circRNAs
can modulate specific signaling pathways, affecting the cellular
transitions in fibrosis.

Furthermore, circRNAs like circ004463 have been found to
interact with AKT/ERK pathways. Circ004463 sponges miR-23b,
which targets the mRNA of AKT and ERK. By regulating
CADM3 and MAP4K4 expression, circ004463 plays a significant
role in promoting fibroblast proliferation and collagen type I
synthesis (Zou et al., 2023). Another notable circRNA is hsa_
circ_0020792, which acts as a sponge for miR-193a-5p, thereby
regulating the expression of pro-fibrotic genes such as TGF-β1 (Hu
et al., 2022). This interaction is crucial in the context of fibrosis, as
TGF-β1 is a key cytokine driving fibrogenesis, and collagen type I is a
major component of the extracellular matrix.

The intricate regulatory function of circRNAswithin the context of
FMT suggests their significance in shaping cell fate. Their capacity to
sponge miRNAs and interact with RNA-binding proteins underscores
their ability to modulate gene expression programs, thus determining
whether fibroblasts remain in their quiescent state or transition into
myofibroblasts. As ongoing research unravels the intricacies of these
regulatory mechanisms, circRNAs hold the promise of becoming not
only diagnostic markers but also potential therapeutic targets for
mitigating the progression of fibrotic diseases.

5 Role of non-coding RNAs (ncRNAs) in
fibrotic diseases

Recent research reveals a substantial exploration into the
contribution of dysregulated ncRNAs to the intricate landscape
of pathological fibrosis. These ncRNAs have emerged as critical
players in driving the development and progression of fibrotic
diseases across diverse tissues. MiRNAs exhibit a multifaceted
role in pathological fibrosis. Pro-fibrotic miRNAs, exemplified by
miR-21, facilitate fibrosis by augmenting fibroblast responsiveness
to profibrotic stimuli and promoting extracellular matrix deposition.
Conversely, anti-fibrotic miRNAs like miR-133a (Wei et al., 2019),
counteract fibrosis by targeting multiple components of TGF-β1
profibrogenic pathways. LncRNAs exert significant influence on
pathological fibrosis. Pro-fibrotic lncRNAs such as HOTAIR and
H19X contribute to myofibroblast differentiation by engaging with
chromatin modifiers, transcription factors, and regulatory
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molecules. This interaction modulates gene expression profiles and
drives fibroblasts towards the myofibroblast phenotype. In contrast,
certain lncRNAs such as PFI (Sun et al., 2021) and LOC344887 (Liu
et al., 2021) act as suppressors of fibrosis, impeding myofibroblast
activation and promoting tissue equilibrium. CircRNAs, with their
circular structure, introduce an additional layer of complexity to the
fibrotic scenario. Operating as miRNA sponges and interacting with
RNA-binding proteins, circRNAs regulate gene expression patterns
with precision. CircRNAs like circHIPK3 exemplify this role by
sequestering miRNAs targeting key genes involved in fibrotic
processes, thereby modulating gene expression profiles that
underpin fibrosis. In summary, prior studies underscore the
integral roles of dysregulated ncRNAs in driving pathological
fibrosis. These ncRNAs impact the equilibrium between fibroblast
activation and tissue health.

The formation and expression of ncRNAs are tightly regulated
processes that are often altered during disease conditions. ncRNAs
are transcribed by RNA polymerase II and III, and their maturation

involves complex processing steps, including splicing, editing, and
modifications. For example, primary miRNAs (pri-miRNAs) are
processed by Drosha and Dicer enzymes to generate mature
miRNAs that can bind to target mRNAs (Herrera et al., 2018;
Cho et al., 2020). Similarly, lncRNAs undergo splicing and
modifications that influence their stability and function (Hao
et al., 2019). The expression of ncRNAs is tightly regulated under
normal conditions but can become dysregulated during fibrosis.
This dysregulation plays a crucial role in the pathological
progression of fibrosis by affecting the balance between fibroblast
quiescence and myofibroblast activation. In kidney fibrosis, the
upregulation of miR-21 correlates with increased kidney stiffness
and fibrosis severity, indicating its role in disease progression
(Glowacki et al., 2013). Similarly, reduced levels of miR-449a are
observed in fibrotic lung tissues and correlate with the severity of
lung lesions induced by silica, suggesting its involvement in the
Silicosis (Han et al., 2016). Understanding the correlation between
ncRNA expression and fibrosis progression provides valuable

TABLE 1 ncRNAs spectrum of diverse fibrotic diseases.

miRNAs lncRNAs circRNAs

cardiac fibrosis miR-9 (Wang et al., 2016c), miR-21 (Liang et al., 2012; Lorenzen et al., 2015;
Nonaka et al., 2021; Ramanujam et al., 2021), miR-22 (Zhang et al., 2018b), miR-
23a-3p (Su et al., 2022), miR-29 b (Horii et al., 2023), MiR-32–5p (Shen et al.,
2019), miR-34a/miR-93 (Zhang et al., 2018a), miR-101a (Zhou et al., 2018), miR-
125 b (Nagpal et al., 2016; Dufeys et al., 2021), miR-130a (Li et al., 2017a; Feng
et al., 2022), miR-133a (Matkovich et al., 2010), miR-135a (Wei et al., 2020),
miR-142–3p (Wang et al., 2016d; Cai et al., 2020a), miR-150 (Deng et al., 2016),
miR-152–3p (Xu et al., 2021b), miR-155 (Zhang et al., 2016b; Wei et al., 2017),
miR-195–3p (Carvalho et al., 2023), miR-214–3p (Zhu et al., 2016; Yang et al.,
2019), miR-216a (Qu et al., 2019), miR-327 (Ji et al., 2018), miR-331 (Yousefi
et al., 2021), miR-338–3p (Huang et al., 2022), miR-369–5p (Tao et al., 2018),
miR-409–3p (Wang et al., 2022), miR-433 (Tao et al., 2016b), miR-451a (Deng
et al., 2022), miR-486 (Chen et al., 2022), miR-574–5p (Cui et al., 2020)

Airn (Peng et al., 2022)
Crnde (Zheng et al., 2019)
Gm41724 (Kong et al., 2023)
PFL (Liang et al., 2018)
RMST (Ma et al., 2023b)
Safe (Hao et al., 2019)
SRA1(Zhang et al., 2019c)
SNHG7(Wang et al., 2020b)
TUG1 (Zhu et al., 2018)

circNFIB(Zhu et al., 2019)
circHRCR (Wang et al., 2016b)
circ-sh3rf3 (Ma et al., 2023a)
circSMAD4 (Jeong et al., 2023)

pulmonary fibrosis let-7 (Elliot et al., 2019; Thakur et al., 2022; Xu et al., 2022), miR-7 (Zhang et al.,
2020b), miR-9-5p (Fierro-Fernández et al., 2015), miR-19a (Fujita et al., 2023),
miR-21 (Yamada et al., 2013; Cui et al., 2018; Wang et al., 2021a), miR-22 (Kuse
et al., 2020), miR-24 (Ebrahimpour et al., 2019), miR-26a (Liang et al., 2014),
miR-27a-3p (Cui et al., 2016), miR-29 (Herrera et al., 2018), miR-30c (Kanno
et al., 2021), miR-30d (Zhao et al., 2018), miR-34a (Cui et al., 2017; Bulvik et al.,
2020), miR-34b-5p (Hu et al., 2019), miR-96 (Nho et al., 2014), miR-124 (Lu
et al., 2019), miR-133a (Wei et al., 2019), miR-144–3p (Bahudhanapati et al.,
2019), miR-145 (Yang et al., 2013), miR-155 (Artlett et al., 2017), miR-199a-5p
(Lino Cardenas et al., 2013; Yi et al., 2018), miR-200 (Chilosi et al., 2017), miR-
338–3p (Rackow et al., 2022), miR-424 (Xiao et al., 2015; Huang et al., 2020),
miR-375 (Zhang et al., 2020c), miR-449a (Han et al., 2016), miR-497–5p (Chen
et al., 2017), miR-541–5p (Ren et al., 2017), miR-627 (Li et al., 2019a), miR-
877–3p (Wang et al., 2016a), miR-7219–3p (Niu et al., 2022)

CTD-2528L19.6 (Chen et al.,
2021a)
DNM3OS(Savary et al., 2019)
GAS5 (Wang et al., 2023b)
H19 (Xiao et al., 2021)
ITPF(Song et al., 2019)
LINC00941(Zhang et al.,
2022)
LOC344887(Liu et al., 2021)
LOC103691771(Cai et al.,
2020b)
PFI(Sun et al., 2021)
PFAL(Li et al., 2018b)
SNHG1(Wu et al., 2021)
SNHG20(Cheng et al., 2021)
ZFAS1(Yang et al., 2020)

circ0044226 (Zhang et al., 2020a)
circHIPK3(Zhang et al., 2019b; Xu
et al., 2021a)

renal fibrosis miR-34a (Saito et al., 2023), miR-132 (Bijkerk et al., 2016), miR-335–5p (Qiu
et al., 2022), miR-378a-5p (Zhang et al., 2023b)

Rian and Miat (Bijkerk et al.,
2019)

—

hepatic fibrosis miR-16 (Pan et al., 2020), miR-19 b (Brandon-Warner et al., 2018), miR-29
(Kwiecinski et al., 2011; Kwiecinski et al., 2012), miR-132 (Mann et al., 2010),
miR-214 (Izawa et al., 2015)

MALAT1 (Wu et al., 2015) —

dermal fibrosis miR-130a (Zhang et al., 2019a), miR-192 (Li et al., 2017b; Li et al., 2021), miR-
196b-5p (Baral et al., 2021)

HOTAIR (Wasson et al.,
2020b)

circAMD1 (Su et al., 2021)

oral submucous
fibrosis

miR-10 b (Fang et al., 2020), miR-21 (Yang et al., 2021; Liao et al., 2022), miR-
29c (Yang et al., 2022a), miR-200 b (Liao et al., 2018)

GAS5-AS1 (Lin et al., 2018)
HOTTIP(Lee et al., 2021)
H19 (Yu et al., 2021)

—

musculoskeletal
tissues

miR-29a (Millar et al., 2015),miR-214–3p (Arrighi et al., 2021) — circTTN (Wang et al., 2019b)
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insights into the molecular mechanisms underlying fibrotic diseases.
These insights highlight the potential of ncRNAs as biomarkers for
disease diagnosis and prognosis and as therapeutic targets for
modulating fibrotic processes and restoring tissue homeostasis.

Notably, ncRNAs exhibit their multifaceted roles across a
diverse spectrum of fibrotic conditions, ranging from cardiac
fibrosis, hepatic fibrosis, pulmonary fibrosis, renal fibrosis, dermal
fibrosis, and musculoskeletal tissues (Table 1). This broad influence
underscores the significance of ncRNAs as central regulators of
fibrotic processes across diverse tissues and organs. In particular,
arthrofibrosis is a common and debilitating complication that can
occur following knee surgery (Lee et al., 2022). Abdel et al. have
identified differentially expressed genes associated with
arthrofibrosis by comparing tissue samples from fibrotic and
non-fibrotic human knee joints using RNA sequencing (Bayram
et al., 2020). Further, Chen et al. carried out further bioinformatics
analysis and reported new biomarkers for diagnosing arthrofibrosis,
shedding light on the role of transforming growth factor-beta
receptor 1 (TGFBR1) (Chen et al., 2021). These data provide
further insight into the role of ncRNAs in the regulation of
joint fibrosis.

ncRNAs exhibit both ubiquitous and tissue-specific functions,
which together shape the initiation and progression of fibrosis.
Ubiquitous ncRNAs, such as miR-21, are widely expressed across
different tissues and play a central role in fibrosis by modulating
common fibrogenic pathways. miR-21 enhances fibroblast
activation and extracellular matrix deposition by targeting
multiple genes involved in the TGF-β signaling pathway,
including SMAD7 and PTEN, thus promoting fibrosis in various
organs (Glowacki et al., 2013; Li et al., 2019; Wang et al., 2021;
Nonaka et al., 2021; Liao et al., 2022). In contrast, tissue-specific
ncRNAs are expressed in particular organs and contribute to
localized fibrotic processes. For instance, lncRNA MALAT1 is
prominently expressed in the liver and contributes to hepatic
fibrosis by interacting with the silent information regulator
1(SIRT1) and promoting the expression of pro-fibrotic genes
such as COL1A1 and α-SMA (Wu et al., 2015). Similarly,
circNFIB is predominantly expressed in the heart and, where it
activates the TGF-β–Smad3 signaling pathway and is crucial in
cardiac fibrosis (Zhu et al., 2019).

ncRNAs can exert paracrine effects, influencing cells beyond
their origin and contributing to multi-organ fibrosis. These
ncRNAs can be secreted into the extracellular environment and
transported to distant cells and tissues through extracellular
vesicles (EVs), such as exosomes and microvesicles. This capability
allows ncRNAs to participate in intercellular communication and
influence various physiological and pathological processes across
different organs.

In the context of fibrosis, ncRNAs can be secreted by fibroblasts
or other cell types and taken up by neighboring cells, thereby
modulating their behavior. For example, miR-21, a well-known
pro-fibrotic miRNA, can be packaged into EVs and transferred
from myofibroblasts to adjacent endothelial cells. This transfer can
induce a pro-angiogenic process of endothelial cells, a process
contributing to the fibrotic response (Li et al., 2019). Similarly,
miR-200, another miRNA implicated in fibrosis, can be secreted by
endothelial cells and taken up by fibroblasts, influencing fibroblast
heterogeneity in colorectal cancer (Bhome et al., 2022).

NcRNAs can enter the systemic circulation, allowing them to
travel to distant organs and exert their effects. Circulating miRNAs,
for instance, have been detected in blood, urine, and other body
fluids, serving as biomarkers for various diseases (De Guire et al.,
2013). These circulating ncRNAs extend their impact beyond the
local tissue environment, affecting distant organs and contributing
to the pathology of multi-organ diseases. For instance, miR-29,
which regulates extracellular matrix production, is involved in
cutaneous, prostate, cardiac and oral submucous fibrosis. Its
dysregulation in one organ can have implications for fibrotic
processes in others.

LncRNAs also exhibit multi-organ effects. LncRNAH19, known
for its role in pulmonary fibrosis, can influence fibrotic buccal
mucosal myofibroblast activities, such as collagen gel contractility
and migration ability when dysregulated, highlighting its potential
impact on both pulmonary and oral submucous tissues. Similarly,
the lncRNA GAS5, which modulates fibrotic pathways in the skin,
can have systemic effects, potentially affecting other fibrotic
conditions in organs like the lung.

Understanding the paracrine andmulti-organ effects of ncRNAs
is crucial for developing therapeutic strategies targeting fibrotic
diseases. Therapies designed to modulate ncRNA levels in one
organ might have beneficial effects on fibrosis in other organs,
offering a systemic approach to treating multi-organ fibrotic
conditions. For example, therapeutic inhibition of miR-21 has
shown promise in reducing fibrosis in both the heart and lung,
demonstrating the potential of ncRNA-targeted therapies to address
multi-organ fibrosis.

ncRNAs may have distinct impacts on acute versus chronic
diseases, reflecting their roles in immediate injury responses versus
long-termmaladaptive processes. During acute injury, the rapid and
transient changes in ncRNA expression are crucial for the
immediate response to cellular damage and stress. For instance,
miR-101a is rapidly upregulated following myocardial infarction
(MI) and plays a critical role in promoting cardiac fibroblast
activation and fibrosis to stabilize the injured tissue (Zhou et al.,
2018). In contrast, chronic conditions and aging involve sustained
ncRNA dysregulation, contributing to persistent fibrosis and organ
dysfunction. For example, miR-34A is consistently dysregulated in
chronic liver and renal fibrosis, leading to sustained extracellular
matrix production and fibrogenesis (Cui et al., 2017; Saito et al.,
2023). Understanding the distinct roles of ncRNAs in acute and
chronic conditions can inform the development of targeted
therapies. In acute injury, therapeutic strategies may aim to
modulate ncRNAs to enhance tissue repair and limit damage. In
chronic diseases and aging, ncRNA-based therapies could focus on
reversing maladaptive gene expression patterns and reducing
fibrosis and inflammation.

In short, the regulatory influence of various ncRNAs extends
across diverse fibrotic diseases. The pervasive presence of these
ncRNAs within the fibrotic milieu underscores the need for a
comprehensive understanding of their intricate functions.
Unraveling the precise molecular mechanisms through which
ncRNAs exert their regulatory effects could pave the way for the
development of targeted therapeutic strategies. By targeting these
ncRNAs or modulating their interactions with key regulatory
molecules, it might be possible to attenuate fibrosis progression
and restore tissue homeostasis in a range of fibrotic diseases.
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6 Therapeutic implications

The intricate involvement of ncRNAs in FMT has opened new
avenues for therapeutic interventions in fibrotic diseases. These
regulatory molecules have been identified as critical players in
fine-tuning gene expression programs that govern the delicate
balance between fibroblast quiescence and myofibroblast
activation. By deciphering the precise roles of ncRNAs in
regulating this transition, researchers have uncovered potential
targets that could be manipulated to mitigate the excessive
activation of myofibroblasts and slow the progression of fibrosis.

Therapeutic strategies involving miRNAs typically include
miRNA mimics to restore the function of downregulated
miRNAs or miRNA antagonists (antagomirs) to inhibit the
function of upregulated miRNAs. For instance, MiR-29 family
mimics exhibit antifibrotic effects across various tissues by
targeting collagen synthesis and extracellular matrix remodeling.
A completed open-label phase 2 RCT clinical trial (Clinical Trial
Number: NCT03601052) has defined the efficacy, safety, and
tolerability of Remlarsen (MRG-201), which is designed to mimic
the activity of miR-29 that may be an effective therapeutic to prevent
cutaneous fibrosis. This study demonstrated that administering high
doses of this miR-29 mimic could effectively decrease fibrosis
(Gallant-Behm et al., 2019). It is worth noting that the dosage
utilized in this research was excessively high for practical use in
human patients. Nevertheless, these findings provided encouraging
evidence for investigators working towards the development of
microRNA mimics as potential therapeutics for fibrosis. Anti-
miR oligonucleotides, designed to inhibit the function of pro-
fibrotic miRNAs, also show potential; for example, targeting
miR-21, a pro-fibrotic miRNA, has shown promise in reducing
fibrosis in preclinical models. Anti-miR-21 therapies aim to decrease
fibroblast responsiveness to pro-fibrotic stimuli and reduce
extracellular matrix deposition.

LncRNA-based therapeutics involve targeting pro-fibrotic
lncRNAs, such as ASLNCS5088 (Chen et al., 2019) and
Gm41724 (Kong et al., 2023), to mitigate fibrosis by disrupting
their interactions with RNA-binding proteins, and M2 macrophage
modulation. By preventing these interactions, it is possible to
modulate gene expression profiles that drive fibroblast activation
and myofibroblast differentiation. Additionally, boosting the
expression of anti-fibrotic lncRNAs like GAS5 can help inhibit
myofibroblast activation and fibrogenesis through suppressing
TGF-β/Smad3 signaling (Tang et al., 2020). Therapeutic strategies
may involve gene therapy approaches to deliver these lncRNAs or
small molecules that enhance their endogenous expression.

CircRNA-based therapeutics focus on the unique abilities of
circRNAs to act as miRNA sponges or interact with RNA-binding
proteins. CircHIPK3 serves as a prime example, as it influences
myofibroblast differentiation by sponging miR-338-3p that target
SOX4 and COL1A1 (Zhang et al., 2019). Designing synthetic
circRNA sponges can regulate miRNA activity and modulate
gene expression patterns involved in fibrosis. Additionally,
modulating circRNA-protein interactions can impact the
regulatory networks driving fibrosis. For example, Circ-sh3rf3
can bind to GATA-4 proteins and decrease their expression,
which prevents GATA-4 from suppressing miR-29a expression.
As a result, miR-29a expression is increased, leading to the

inhibition of fibroblast-to-myofibroblast differentiation and
myocardial fibrosis. Targeting these ncRNAs might offer a means
to disrupt the regulatory networks that drive fibroblast activation.
Such precision-based approaches could revolutionize the treatment
landscape for fibrotic diseases, allowing for tailored interventions
that target the underlying molecular mechanisms.

While the potential of ncRNA-based therapies for fibrosis is
exciting, several challenges must be navigated for successful
translation into clinical applications. One significant hurdle is the
delivery of ncRNA-based therapeutics to target tissues. Ensuring
efficient and specific delivery remains a key obstacle. Strategies such
as viral vectors (Tang et al., 2020), nanoparticle-mediated delivery
(Zahir-Jouzdani et al., 2018), or organ-targeted liposomes (Yan
et al., 2023) are being explored to address this challenge.
Additionally, the specificity of ncRNA-targeting therapies is
crucial to avoid off-target effects and unintended consequences
(Yan et al., 2023). Ensuring that therapies selectively target the
dysregulated ncRNAs while preserving the physiological functions
of others is essential for clinical success. The stability and
bioavailability of ncRNA-based therapeutics are critical factors
for their effectiveness. Chemical modifications, such as locked
nucleic acids (LNAs) and phosphorothioate backbones, can
enhance the stability and resistance of ncRNA-based therapeutics
to degradation. These modifications improve the pharmacokinetic
properties and therapeutic efficacy of ncRNA-based treatments (Ali
Zaidi et al., 2023). ncRNA-based therapeutics, particularly those
involving viral vectors, may elicit immune responses. Strategies to
minimize immunogenicity include optimizing vector design, using
tissue-specific promoters, and developing non-viral delivery systems
(Awan et al., 2017). Furthermore, the complex regulatory networks
involving ncRNAs add another layer of complexity. Many ncRNAs
participate in intricate crosstalk with other regulatory molecules,
such as transcription factors and signaling pathways, leading to a
network of interdependencies. Designing therapies that effectively
modulate these networks requires a deep understanding of the
molecular interactions and their consequences.

Future directions and prospects in ncRNA-based therapies for
fibrotic diseases include combination therapies, personalized
medicine, advancements in delivery systems, and robust
translational research efforts. Combining ncRNA-based therapies
with existing antifibrotic drugs or other therapeutic modalities may
enhance efficacy and overcome resistancemechanisms. Personalized
approaches tailored to individual patients’ specific ncRNA
expression profiles can improve treatment outcomes and
minimize adverse effects. Ongoing advancements in delivery
systems, such as exosome-based delivery and tissue-specific
nanoparticles, hold promise for improving the targeted delivery
of ncRNA-based therapeutics. Collaborative efforts between
academia, industry, and regulatory agencies can accelerate the
development and approval of ncRNA-based therapies.

The emerging roles of ncRNAs in FMT offer novel avenues for
therapeutic intervention in fibrotic diseases. By targeting specific
ncRNAs, it is possible to intervene in the processes that drive
myofibroblast activation and tissue fibrosis. However, the journey
from bench to bedside requires the successful resolution of delivery
challenges, the mitigation of off-target effects, and in depth
understanding of the complex regulatory networks involved. As
research in this field advances, the development of effective and
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precise therapies holds the promise of transforming the landscape of
fibrotic disease treatment.

7 Conclusion

In summary, recent research highlights the crucial involvement of
ncRNAs in the complex process of FMT. These ncRNAs, including
miRNAs, lncRNAs, and circRNAs, collectively constitute a regulatory
ensemble that finely modulates the equilibrium between quiescent
fibroblasts and their activated myofibroblast counterparts. Recent
studies have meticulously unraveled the multifaceted mechanisms
by which these ncRNAs exert their influence.

The narrative begins with miRNAs, which play a central role by
targeting key regulators of FMT. MiR-21 assumes a prominent
position as a potent inducer of FMT, primarily by inhibiting
TGF-β receptor inhibitors. This action sensitizes fibroblasts to
TGF-β signaling, thereby promoting myofibroblast differentiation
and subsequent fibrosis. MiR-146b and miR-125b also contribute to
FMT by targeting factors that otherwise restrain myofibroblast
activation. Conversely, miRNAs such as miR-29 and the miR-200
family act as suppressors of FMT, counteracting excessive collagen
synthesis and inhibiting myofibroblast differentiation through their
targeting of related genes.

LncRNAs act as pivotal regulators of FMT. Notable lncRNAs
like H19X and GAS5 emerge as regulators in the FMT process. They
engage with chromatin modifiers, transcription factors, and
regulatory molecules, facilitating chromatin remodeling,
reprogramming of gene expression, and the orchestration of
transcriptional forces that guide fibroblasts toward the
myofibroblast lineage. LncRNAs further their influence by
fostering crosstalk among regulatory molecules, perpetuating
essential signaling cascades crucial for FMT progression.

Simultaneously, circRNAs embrace their role as miRNA
sponges, intricately fine-tuning gene expression during FMT.
Notable circRNAs like circHIPK3 demonstrate their ability to
sequester miRNAs targeting genes associated with FMT. In doing
so, these circRNAs release these genes from miRNA-mediated
suppression, ultimately enhancing the differentiation of
fibroblasts into myofibroblasts. Moreover, the intricate
interactions of circRNAs with RNA-binding proteins add an
additional layer of complexity to their regulatory repertoire.

In a broader context, these ncRNAs collaboratively interweave
their actions, constructing a complex network of regulatory
interactions that modulate the transformation of fibroblasts into
myofibroblasts. Their contributions extend beyond individual roles,
creating a dynamic interplay that profoundly influences the delicate
equilibrium between fibroblast quiescence and myofibroblast
activation. Dysregulation of these ncRNAs has been closely linked
to the development of pathological fibrosis in various tissues,
underscoring their significance as potential therapeutic targets.

As we stand on the cusp of a new era in the treatment of fibrotic
diseases, the emerging roles of ncRNAs in FMT offer substantial
therapeutic promise. By deciphering the intricacies of ncRNA-
mediated regulatory networks, researchers could uncover
innovative therapeutic avenues that could effectively counteract
the progression of fibrotic diseases. However, translating these
insights into clinical applications presents challenges such as

efficient delivery methods, specificity, and the potential for off-
target effects. As the journey continues, the potential to harness the
power of ncRNAs may illuminate a path toward restoring tissue
health and function, offering renewed hope to those affected by these
debilitating conditions.

In conclusion, the process of FMT occupies a central role in
tissue repair and the pathogenesis of fibrotic diseases. The intricate
interplay of cellular morphological changes, altered gene expression
profiles, and extracellular matrix remodeling underscores its
significance. With recent discoveries revealing the pivotal roles of
ncRNAs, including miRNAs, lncRNAs, and circRNAs, in
orchestrating FMT, a new chapter has opened in our
understanding of tissue remodeling. These ncRNAs act as master
regulators, shaping the symphony of FMT by influencing a diverse
array of molecular players. Their regulatory capabilities extend
across signaling cascades, transcriptional programs, and intricate
interactions, and their dysregulation can lead to pathological
fibrosis. As research continues to elucidate the precise
mechanisms by which ncRNAs guide FMT, their therapeutic
potential emerges as a promising frontier, offering novel
strategies to combat fibrotic diseases and restore tissue health.
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