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Background: Alcoholic hepatitis is a severe inflammatory liver disease. In recent
years, the incidence of AH has been on the rise, leading to an increasingly severe
disease burden. Currently, there is a lack of specific biomarkers for the diagnosis
and prognosis of AH in clinical practice. Therefore, the main objective of this
study is to identify biomarkers closely associated with the progression of AH, to
address the shortcomings in pathological diagnosis, and to identify potential
therapeutic targets.

Methods: Bioinformatics and machine learning methods were used to
comparatively study the differentially expressed genes (DEGs) between AH
patients and healthy individuals by analyzing four mRNA microarray data sets
obtained from the GEO database. Subsequently, the role of potential biomarkers
in AH and their mechanism of action were further confirmed by AH patients and
in vitro and in vivo experiments.

Results: Using differential analysis and WGCNA of the data set, a total of 167 key
genes that may be related to AH were obtained. Among 167 genes, the LASSO
logistic regression algorithm identified four potential biomarkers (KCNJ10,
RPL21P23, ADRB2, and AC025279.1). Notably, ADRB2 showed biomarker
potential in GSE28619, GSE94397, and E-MTAB-2664 datasets, and clinical
liver samples. Furthermore, AH patients and in vivo experiments demonstrated
ADRB2 inhibition and suppression of SIRT1/PPARα/PGC-1α signaling pathways,
accompanied by elevated inflammatory factors and lipid deposition. In vitro
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experiments showed that ADRB2 overexpression mitigated the inhibition of the
SIRT1/PPARα/PGC-1α signaling pathway, reversing the decrease in mitochondrial
membrane potential, cell apoptosis, oxidative stress, and lipid deposition induced
by alcohol exposure. Besides, the results also showed that ADRB2 expression in AH
was negatively correlated with the levels of inflammatory factors (e.g., CCL2,
CXCL8, and CXCL10).

Conclusion: This study points to ADRB2 as a promising biomarker with potential
diagnostic and prognostic value in clinical cohort data. In addition, in AH patients, in
vivo and in vitro experiments confirmed the key role of ADRB2 in the progression of
AH. These findings suggest that ADRB2 may alleviate AH by activating the SIRT1/
PPARα/PGC-1α pathway. This finding provides a new perspective for the diagnosis
and treatment of AH.
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1 Introduction

TheWorldHealthOrganization reports that in 2016, the number of
deaths worldwide due to alcohol abuse reached three million,
accounting for 5.3% of the total number of deaths (Gomez-Medina
et al., 2023). Recently, as the standard of living improves and the
number of individuals consuming alcohol increases, alcohol-related
liver disease (ALD), especially alcoholic hepatitis (AH) has gradually
evolved into a serious public health issue (Bataller et al., 2022; European
Association for the Study of the Liver, 2018). AH is a severe
inflammatory liver disease, and substantial evidence indicates
elevated short-term and long-term morbidity and mortality rates,
with a prognosis that is cause for concern. It has been reported that
the average 30-day mortality rate in patients with severe alcoholic
hepatitis may range from 17% to 50% (Singal and Shah, 2019; Bataller
et al., 2022). Unfortunately, the current therapeutic approaches, such as
corticosteroids and pentoxifylline, have limited efficacy, and new
therapeutic targets and the development of safer and more effective
therapeutic drugs are urgently needed. Notably, several recent studies
have identified a number of biomarkers that are considered potential
therapeutic targets for modulating liver inflammation pathways
(McClain et al., 2021; Szabo et al., 2022).

AH is a disease type that urgently requires biomarker support. Due
to the challenging nature of obtaining accurate patient alcohol
consumption histories and the lack of entirely unique clinical,
laboratory, or imaging features for AH, biomarkers play a crucial
role in its diagnosis and management (Rutledge and Im, 2021).
Recently, a study involving 114 ALD patients who underwent liver
biopsy revealed that the positive predictive value (PPV) of the NIAAA-
diagnosedAH criteria was 81%, with a false-negative rate of 30% (Crabb
et al., 2016; Avitabile et al., 2020). Evidence suggests that only one-third
of heavy drinkers will exhibit obvious clinical liver damage. This
characteristic makes it challenging to predict, prevent, and tailor
individualized treatment, thereby increasing the risk of progression
to advanced stages of ALD inAHpatients (Avila et al., 2020). Therefore,
there is an urgent need to find a new and accurate method to predict or
assist in the diagnosis of AH, addressing the limitations of pathological
diagnosis and identifying potential therapeutic targets.

In recent years, many emerging studies have identified biomarkers
that significantly correlate with the degree and severity of liver damage

and inflammation by integrating sequencing technologies, machine
learning, and bioinformatics (Habash et al., 2022; Niu et al., 2022).
Weighted Gene Co-expression Network Analysis (WGCNA), as a
systematic biology approach, plays a key role in identifying highly
correlated gene clusters (modules), candidate biomarkers, and
therapeutic targets. The approach contributes to predicting potential
therapeutic targets and associated pathways in diseases (Larsen et al.,
2023). However, there is a lack of effective non-invasive biomarkers in
clinical practice to measure AH, ascertain the probability of an
individual being affected by AH, and assess the severity and risk of
disease progression (Avila et al., 2020). In this study, we employed
bioinformatics methods and machine learning strategies to identify
characteristic genes of AH and established a predictive model for AH.
Furthermore, we have validated the role of potential AH biomarkers
and mechanism of action in AH using in vitro and in vivo experiments,
providing important insights into the diagnosis, progression, and
treatment strategies of AH.

2 Materials and methods

2.1 Data collection and processing

The Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/
geo/) and Array Express (www.ebi.ac.uk/arrayexpress) databases
served as the sources for acquiring GSE142530, GSE28619,
GSE94397, and E-MTAB-2664 datasets. Table 1 presents
comprehensive information about these datasets. The “limma”
program was used to background-correct, normalize, and convert
the datasets to gene symbols referencing the probe annotation files
for probe names. GSE142530 was used as metadata, while
GSE28619, GSE94397, and E-MTAB-2664 were used to validate
the diagnostic genes identified from the metadata.

2.2 Identification and gene set enrichment
analysis of DEGs

The identification of differentially expressed genes (DEGs) and
subsequent Gene Set Enrichment Analysis (GSEA) were conducted
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utilizing the “limma” and “GSEABase” packages. Criteria for
screening DEGs between the AH and control groups were adj.
p-value <0.05 and |Log2FC| > 1.5. Expression heat maps were
generated using the R package pheatmap, showing the top
30 genes exhibiting the most significant upregulation and
downregulation. Furthermore, the volcano plots highlighted genes
with a p-value <0.05 and |Log2FC| > 0.58.

2.3 Construction of the WGCNA co-
expression network

Unsigned co-expression networks were constructed using
WGCNA to detect co-expression modules. Samples were initially
screened for missing values before clustering. To construct a
biologically significant scale-free network, a “soft” threshold
power (β) was computed based on scale-free topology criteria.
Additionally, an adjacency matrix was employed to create a
topological overlap matrix. A dynamic tree-cutting technique was
utilized to identify gene modules. Subsequently, the network of
feature genes was visualized after computing gene significance (GS),
module membership (MM), and related modules with clinical
characteristics. The intersection of WGCNA-derived significant
module genes and DEGs was employed to identify potential gene
targets associated with AH.

2.4 Functional enrichment analysis

The study conducted an intersection between AH-associated
modules identified by WGCNA and DEGs. The shared targets
underwent enrichment analysis utilizing Gene Ontology (GO),
Disease Ontology (DO), and Kyoto Encyclopedia of Genes and
Genomes (KEGG). Functional analysis was performed using the
“clusterProfiler” package, applying a filtering threshold
of p-value <0.05.

2.5 Diagnostic gene screening and
diagnostic model construction

To identify relevant prognostic factors among the overlapping
genes, study employed the “glmnet” package, employing the Least
Absolute Shrinkage and Selection Operator (LASSO) regression
analysis approach, known for its regularization and variable
selection. Genes strongly associated with AH were identified
using LASSO. Subsequently, a diagnostic model predicting AH
occurrence was developed using logistic regression analysis and

visualized as a nomogram. Receiver operating characteristic (ROC)
curves were built, and the area under the curve (AUC) was
calculated using the “pROC” package to evaluate the diagnostic
significance of screened signature genes. Additionally, the
differential expression of identified biomarkers was confirmed in
the GSE142530 dataset. In addition, we analyzed the expression
levels of the screened biomarkers in liver tissues in other different
types of liver diseases to determine whether the potential biomarkers
were AH-specific.

2.6 The patient sample collection

In this study, we analyzed biopsy specimens from eight patients
with AH from the Fourth Affiliated Hospital of Zhejiang University
School of Medicine. The inclusion criteria for AH patients are as
follows: according to the 2018 EASL Clinical Practice Guidelines for
the Management of Alcoholic Liver Disease, patients who actively
abuse alcohol and have consumed excessive amounts of alcohol
(>60 g/day) for at least 3 months prior to admission; Elevated levels
of transaminase (AST>ALT, high serum levels of gamma-
glutamyltranspeptidase and bilirubin, and histological diagnosis
of AH are characterized by the presence of liver cell damage
(hepatocyte ballooning and the presence of Mallory bodies),
inflammatory infiltration (neutrophils), and peri cellular
fibrosis. Inclusion and exclusion criteria for AH patients:
Patients with other causes of liver disease, including chronic
hepatitis B, non-alcoholic fatty liver disease, autoimmune liver
disease, drug-induced liver injury, and hepatocellular carcinoma,
were excluded. The control group included adjacent biopsy
specimens from six patients with hepatocellular carcinoma
(HCC). All study participants have obtained informed consent.
This study has been approved by the Ethics Committee of the
Fourth Affiliated Hospital of Zhejiang University School of
Medicine (Approval No.: K2020157).

2.7 Immunohistochemical staining

For immunohistochemical analysis, liver samples embedded in
paraffin were sectioned into 5-μm-thick slices. Antigen retrieval was
performed, and endogenous peroxidase activity was blocked in the
paraffin-embedded liver tissue sections. The sections were then
treated with ADRB2 antibody (AF6117, Affinity), followed by
washing with phosphate-buffered saline (PBS) and
counterstaining with DAB (ab64238, Abcam). Digital images
were captured using an optical microscope (Nikon, Tokyo,
Japan) at a magnification of × 400 post-staining.

TABLE 1 Information on microarray datasets.

Dataset Control Alcoholic hepatitis Alcoholic steatosis

GSE142530 12 10 0

GSE28619 7 15 0

GSE94397 0 71 6

E-MTAB-2664 12 30 0
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2.8 Disease-related gene collection and
processing

The investigation into genes associated with “alcoholic liver
disease” was conducted across various databases, including IPA,
GeneCLIP3 (http://cismu.net/genclip3/analysis.php), MalaCards
(https://www.malacards.org/), GeneCards (https://www.genecards.
org/), TTD (https://db.idrblab.net/ttd/), OMIM (https://www.
omim.org/), and DisGeNET (https://www.disgenet.org/). To
refine the data, an average Relevance score from the GeneCards
database and an average gda-score from the DisGeNET database
were employed as filtering criteria. The collected information from
these sources underwent UPSET analysis, pinpointing genes
occurring frequently (N ≥ 3 times), possibly linked to AH.
Moreover, high-frequency genes (N ≥ 3 times) from clinical
datasets were recognized as potentially associated with AH. The
UpSetR program was utilized to analyze DEGs from multiple AH-
related clinical datasets through an UpSet plot. Subsequently, the
VENNY2.1 tool (https://bioinfogp.cnb.csic.es/tools/venny/)
facilitated the identification of the intersection between DEGs
from the mouse liver transcriptome, ADRB2 downstream genes
in the IPA database, AH-related genes database, and AH-related
clinical dataset DEGs. Finally, the expression values of ADRB2 and
the intersection of genes from the mouse liver RNA-Seq data and
AH-related clinical chip data were extracted, followed by Spearman
correlation analysis of their expression values.

2.9 Inflammatory factor analysis and gene
correlation analysis

The investigation began by sourcing two hundred inflammatory
factors from the gene set base (HALLMARK_INFLAMMATORY_
RESPONSE). These factors underwent spearman correlation
analysis with ADRB2, considering a p-value <0.05 as the
criterion for filtering. The DEGs of the GSE28619 dataset were
derived through differential analysis, using p-value <0.05 and
|log2FC| > 0.58 as filtering parameters. Intersection analysis was
conducted among the DEGs of GSE28619, the 200 inflammatory
factors, and Spearman-genes. Subsequently, the intersecting genes
underwent Protein-Protein Interaction (PPI) analysis utilizing the
String database (https://cn.string-db.org/). Cytoscape (3.6.0) was
employed for result visualization and refinement. Targets related
to alcoholic liver disease were extracted from Geneclip3, GeneCards,
DisGeNET, and IPA databases. These targets were then intersected
with spearman-genes, resulting in the identification of common
genes. Simultaneously, the common genes were further intersected
with the DEGs of microarrays GSE28619, GSE142530, and
E-MTAB-2664. Criteria for DEGs remained consistent with
p-value <0.05 and |log2FC| > 0.58. Intersection analysis was
performed, and the resulting genes underwent Spearman
correlation analysis with ADRB2.

2.10 Establishment of an animal AH model

In the establishment of the NIAAA model, procedures adhered
to previously defined protocols (Bertola et al., 2013). And 24 male

C57BL/6 mice housed in a climate-controlled facility with a 12-h
light/dark cycle and a temperature range of 21°C–25°C. After 1 week
of adaptive feeding, the mice were randomly divided into a control
group and a NIAAA group (n = 12 in each group). The NIAAA
group was fed with a Lieber-DeCarli diet containing 5% (v/v)
ethanol for 10 days (phase 1), while the control group mice were
pair-fed with an isocaloric control diet (same calories). On day 11,
ethanol-fed and pair-fed mice were gavaged with a single dose of
ethanol (binge; 5 g/kg body weight) or an equal dose of maltodextrin
in the early morning.

In addition, we also used the traditional Lieber-De Carli mouse
model of ALD. After 1 week of adaptive feeding, another 24 mice
were randomly divided into normal and ALD model groups (n =
12 in each group). The ALD group mice were fed a liquid diet
containing 5% (vol/vol) ethanol (Lieber-DeCarli Ethanol Diet) for
7 weeks, while normal mice were fed an isocaloric pair-fed control
liquid diet.

All animal care and procedures strictly followed the guidelines
for the care and use of laboratory animals, approved by the local
committee and were approved by the Institutional Animal Care and
Use Committee of Zhejiang Chinese Medical University (code:
IACUC-20211220-01, IACUC-20230918-15).

2.11 Biochemical analysis and
histological assay

Serum levels of alanine transaminase (ALT), aspartate
transaminase (AST), alkaline phosphatase (AKP), and lactate
dehydrogenase (LDH) were assessed using an automatic
biochemical analyzer (Hitachi 7020, Tokyo, Japan). Glutathione
(GSH) and malondialdehyde (MDA) levels were measured using
kits from Nanjing Jiancheng Bioengineering Institute (Nanjing,
China) after centrifugation and separation of the supernatant.
Concentrations of CCL2, CXCL8, and CXCL10 were determined
using enzyme-linked immunosorbent assay (ELISA) kits from
Fankewei (Shanghai, China). Liver homogenate samples
underwent preparation according to commercial assay kit
instructions.

After the mice were sacrificed, the liver tissues were fixed in 10%
neutral-buffered formalin for histological studies. Paraffin-
embedded liver tissue samples were sectioned into 4-μm-thick
slices, stained with hematoxylin and eosin (H&E), imaged at ×
400 magnification using an optical microscope. After embedding the
frozen liver tissue in OCT compound, sections of 10 µm thickness
were cut and stained with Oil Red O for histological examination of
hepatic steatosis.

2.12 RNA-Seq and bioinformatics analysis

Mouse liver tissue was used for total RNA extraction employing
TRIzol reagent following the manufacturer’s protocol. An RNA
quality control method was adopted to evaluate RNA content,
purity, and integrity. The workflow encompassed mRNA
enrichment, cDNA amplification, end repair for blunt end
generation, A-tailing, adaptor ligation, and amplification through
polymerase chain reaction assay. Novogene Biotechnology Co., Ltd.,
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conducted Illumina RNA sequencing and subsequent analysis.
Differential Expressed Genes (DEGs) meeting the criteria of a
p-value of 0.05 and a log2 (fold change) of 1.5 were chosen for
further functional investigation.

2.13 Cell culture

The mouse hepatocyte cell line (AML12) was obtained from the
ATCC collection (Manassas, United States) and cultured in a 6-well
plate at 37°C in a humidified atmosphere of 5% CO2 in Dulbecco’s
modified Eagle’s minimum essential medium (DMEM; Thermo Fisher
Scientific, United States): F-12-Ham’s medium (GE Healthcare Life
Science, United States) at a 1:1 ratio supplemented with 10% fetal
bovine serum (Thermo Fisher Scientific, United States), 1:500 insulin-
transferrin-selenium (Corning, United States), 40 ng/mL
dexamethasone (Sigma-Aldrich, Germany), 1% nonessential amino
acids (Thermo Fisher Scientific, United States), 1% amphotericin B
(1000 mg/mL; Thermo Fisher Scientific, United States), 1% penicillin
(1000U/mL; Thermo Fisher Scientific) and 1% streptomycin (1000mg/
mL; Thermo Fisher Scientific, United States). This medium was
removed after the AML12 cells reached 90%–100% confluence, and
the cells were washed oncewith PBS before being given themedium free
of fetal bovine serum and amphotericin B.

Human immortalized liver cell line THLE-2 was obtained from
ATCC (Manassas, VA, United States). THLE-2 cells were cultured
using the BEGM Bullet Kit (Lonza, Walkersville, MD, United States),
according to themanufacturer’s instructions. The frozen cell suspension
in a cryovial containing 1 mL was rapidly thawed in a 37°C water bath,
mixed with 5 mL of culture medium, and centrifuged at 1000 rpm for
5 min. Post-centrifugation, the supernatant was discarded, and 4–6 mL
of complete culture medium was added. The resulting cell suspension
was cultured overnight in a flask or a 6 cm dish. Passage was performed
when cell density reached 80%–90%.

2.14 CCK8 and biochemical
indicators detection

For CCK8 detection, 10 μL CCK8 reagent was added to the
culture medium 4 h before analysis. Optical density (OD) 450 values
were measured using a microplate reader (Thermo Fisher Scientific,
United States). In addition, the cells were harvested at the indicated
times, and then the levels of ALT, AST, and LDH were detected in
the culture medium. The protein concentrations of AML12 cells
were measured using a bicinchoninic acid (BCA) protein assay kit
(Beyotime Institute of Biotechnology, Shanghai, China). The GSH
and MDA in AML12 cells were determined using commercially
available assay kits, following the manufacturer’s protocol
(Jiancheng Bioengineering Institute, Nanjing, China).

2.15 Nile red staining

After seeding in a 6-well plate, AML12 cells underwent transfection
with the pCMV-ADRB2-Flag plasmid and were exposed to ethanol
(100 mM) for 24 h. Subsequently, the cells were fixed in 4%
paraformaldehyde for 10 min, followed by three PBS washes. Nile

red solution (1 μM) was applied for 15 min at room temperature in the
dark for staining. Post-staining, cells were rinsed with PBS and observed
under a Zeiss Axio Observer fluorescent microscope.

2.16 Cell ROS detection

According to previously described research with modifications,
THLE-2 cells were cultured in 6-well plates at a density of 2 × 105

cells per well and exposed to 100 mM ethanol for 24 h. Cellular reactive
oxygen species (ROS) levels were measured using the FITC channel of a
flow cytometer (BD Biosciences, FACSuite™, United States) after
treatment with the ROS Assay Kit (S0033S, Beyotime Biotechnology).

2.17 Detection of mitochondrial membrane
potential and cell apoptosis

THLE-2 cells were seeded in a 24-well plate, transfected with the
pCMV-ADRB2-Flag plasmid, and stimulated with 100 mM ethanol for
24 h. Subsequently, cells were washed with PBS and stained using
MitoTracker Red CMXRos, Annexin V-FITC, and Hoechst
33,342 following the manufacturer’s protocol. Incubation was
performed in the dark at room temperature for 30 min, and the
cells were observed and imaged using a Zeiss fluorescence microscope.

2.18 Western blot analysis

Total protein from THLE-2 cells and liver tissues was isolated,
separated using sodium dodecyl sulfate–polyacrylamide gel
electrophoresis, and transferred onto a polyvinylidene difluoride
membrane. The membrane was blocked with 5% nonfat milk at
room temperature for an hour, following which primary antibodies
targeting GAPDH (AC002, ABclonal), ADRB2 (AF6117, Affinity),
Sirt1 (BF0189, Affinity), PGC1a (66369-1-Ig, Proteintech), and
PPARα (AF5301, Affinity) were incubated overnight at 4°C. After
rinsing, the membrane underwent secondary antibody incubation
and was examined using an Odyssey CLx imager (LI-COR,
Biosciences, Lincoln, NE). Image Studio v5.2 was employed to
capture signals, and the results were normalized as fold changes
relative to GAPDH expression levels.

2.19 Immunofluorescence staining

Liver samples embedded in paraffin were sectioned into 5-μm-
thick slices. Antigen retrieval was performed, and endogenous
peroxidase activity was blocked in the paraffin-embedded liver
sections. Subsequently, these sections were treated with
ADRB2 antibody (AF6117, Affinity) and SIRT1 antibody
(BF0189, Affinity). After washing with PBS, the sections were
incubated with FITC-labeled goat anti-rabbit IgG (F-2761;
Invitrogen) and Cy5-labeled goat anti-mouse IgG secondary
antibodies (A10524; Invitrogen). Following washing, DAPI
counterstaining was performed, and digital images were collected
at × 400 magnification using a fluorescence microscope (Nikon,
Tokyo, Japan).
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2.20 Statistical analysis

Statistical analysis was performed using Prism 8.0 (GraphPad
Software, Inc.). Two-tailed unpaired t-tests were employed for two-
group comparisons, while one-way analysis of variance was used for
multiple-group comparisons. All data were presented as mean ±
SEM. A p-value of <0.05 was considered statistically significant,
while a p-value of <0.01 was considered highly statistically
significant.

3 Results

3.1 Identification of DEGs and
enrichment analysis

Box plots were used to present normalized data, where rows
represented various samples and columns depicted the gene
expression levels in those samples (Figure 1A). The Volcano plot
(Figure 1B) illustrates 1344 DEGs discovered, consisting of

FIGURE 1
Identification of DEGs between AH liver tissues and normal samples in the metadata (GSE142530 dataset) cohort. (A) Box graphs showing raw data
normalized across samples. (B) Volcano plot of the DEGs. (C) Heatmap of the DEGs. (D) Curve plot for gene set enrichment analysis of the DEGs.
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FIGURE 2
Building the co-expression network through weighted gene co-expression network analysis. (A) Sample clustering dendrogram where tree leaves
correspond to each sample. (B) Analysis of the network topology for various soft-threshold powers. (C) A height of 0.25 was used to cut clustered
dendrograms to identify and combine related modules. (D) Initial and combined modules beneath the tree of clustering. (E) Module feature genes on a
collinear heat map. (F) Module feature gene clustering dendrogram. (G) Module-trait correlation heat map. Positive correlations are shown in red,
and negative correlations are shown in blue. (H) Module membership vs gene significance scatter plot of alcoholic hepatitis.
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863 upregulated and 481 downregulated genes. The heatmap
(Figure 1C) displays the expression of the top 30 genes that
exhibited the most significant differences between the AH and
normal control groups. The GSEA results indicate that pathways
related to fatty acid degradation, amino acid metabolism,
cardiomyopathy, and Chemical carcinogenesis - DNA adducts in
the livers of AH patients are abnormal (Figure 1D). The results show
that excessive alcohol intake leads to lipid metabolism disorders in
the livers of AH patients. Moreover, alcohol and its metabolite
acetaldehyde can directly damagemyocardial cells, causing oxidative
stress, inflammation, and dysfunction in these cells, manifested as
cardiac enlargement and arrhythmias (Dominguez et al., 2024). In
addition, the aldehyde metabolites of alcohol can react with DNA to
form DNA adducts, which may lead to cell death and the occurrence
of cancer (Taniai, 2020).

3.2 Weighted gene co-expression network
construction

Co-expression modules, inclusive of genes exhibiting high
topological overlap similarity and co-expression levels, were
formed using WGCNA. Post clustering the data via Pearson’s
correlation coefficient, a sample dendrogram, alongside its
corresponding trait heatmap (Figure 2A), visualizes the
established sample clustering tree. Upon selecting a soft threshold
of 5 (Figure 2B), given R2 > 0.9 and strong average connectedness,
seven modules were chosen for comprehensive examination
following the merging of closely related modules, constrained by
a clustering height constraint of 0.25 (Figure 2C). The revised and
combined modules were then depicted on the clustering tree
(Figure 2D). Analyzing the correlation between modules revealed
no significant associations among them (Figure 2E). Additionally,
transcription correlation analysis within modules exhibited no
substantial relationships, affirming the accuracy of module
delineation (Figure 2F). Examining the relationship between
modules and clinical symptoms revealed a negative correlation
(r = −0.69, P = 4e−04) between the green module and AH
(Figure 2G). Modules demonstrating practical significance were
identified, particularly observing the strong correlation of the
green module with AH in the control MM versus GS scatter plot
(Figure 2H). Further scrutiny was conducted on all genes within the
green module.

3.3 DEGs and functional analysis of critical
module genes

By constructing a Venn diagram to overlap DEGs and key
module genes, 167 overlapping genes were identified (Figure 3A).
Functional analysis was performed to elucidate the biological roles of
these 167 overlapping genes within the modules. Subsequent DO
analysis linked these DEGs to obesity, nutrition-related diseases,
hyperlipidemia, and cardiomyopathy (Figure 3B). Notably, GO
enrichment analysis highlighted the concentration of Module
DEGs in the production of precursor metabolites and energy,
steroid binding, and small molecule catabolic processes
(Figure 3C). Furthermore, KEGG enrichment analysis associated

these DEGs with fatty acid degradation, cholesterol metabolism, and
glycerophospholipid metabolism (Figure 3D).

3.4 ADRB2 were identified as a
diagnostic biomarker

Four genes—KCNJ10, RPL21P23, ADRB2, and
AC025279.1—were identified as potential diagnostic biomarkers
among the 167 overlapping DEGs. Using the LASSO logistic
regression algorithm (Figure 4A), these genes emerged as viable
candidates. A diagnostic model, represented by a nomogram
(Figure 4B), was constructed via logistic regression based on the
expressions of these four genes within the metadata. To validate
their diagnostic value, ROC curve analysis was conducted for
KCNJ10, RPL21P23, ADRB2, and AC025279.1, resulting in
respective AUCs of 0.975, 0.933, 1.000, and 1.000 (Figure 4C),
indicating high diagnostic potential associated with the genes
KCNJ10, RPL21P23, ADRB2, and AC025279.1. Notably, their
expression in the metadata was significantly lower in the AH
group than in the control group, particularly evident in ADRB2
(Figure 4D). To further explore into the role of ADRB2 in AH
involved the validation of its expression using GES28619, E-MTAB-
2664, and GSE94397 datasets. These datasets consistently displayed
reduced ADRB2 expression in AH when compared with either the
control or alcoholic steatosis group (Figure 4E).
Immunohistochemical staining in this study revealed a significant
decrease in ADRB2 expression in liver tissues of patients with AH
when compared with the control group (Figure 4F), aligning with
the results obtained from bioinformatics analysis. Moreover, GEO
clinical data shows that the expression of ADRB2 does not show
significant changes in hepatitis B, hepatitis C, and drug-induced liver
injury, suggesting that ADRB2 may be a specific biomarker for AH
(Supplementary Figure S1).

3.5 The ADRB2/SIRT1 signaling axis was
significantly suppressed in AH

To investigate the potential processes underlyingAH liver damage
due to ADRB2 inhibition, RNA-Seq was employed to evaluate the
gene expression profile in mouse liver tissues. DEGs between AH and
Normal group mice (p-value <0.05 and |log2FC| > 0.58) were
identified (Figure 5A). Subsequently, an UpSet plot indicated
398 targets with a frequency (N) ≥ 3 across seven disease target
databases (Supplementary Table S1; Figure 5B). Venn diagram
analysis suggested SIRT1 as a plausible downstream target of
ADRB2 (Figure 5C). Analysis of RNA-Seq data revealed the
significant downregulation of both SIRT1 and ADRB2 expression
in the livers of AH group mice compared with the normal group
(Figures 5D,E). Similarly, in the E-MTAB-2664, GSE28619, and
GSE142530 datasets, diminished ADRB2 and SIRT1 expression
was observed in the livers of patients with AH compared with the
normal group (Figures 5F, H, J). Spearman correlation analysis further
highlighted a significant positive correlation between ADRB2 and
SIRT1 expression across the three AH datasets (Figures 5G, I, K). The
above results prove that SIRT1 may be a key downstream regulatory
molecule of ADRB2 in AH.
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3.6 A negative correlation between
ADRB2 and the production of inflammatory
factors in AH

Spearman correlation analyses among 200 inflammatory factors
and ADRB2 revealed 71 differentially expressed inflammatory
factors (Figure 6A). Intersection between these 200 factors and
inflammatory factors from microarray GSE28619 revealed
39 shared outcomes (Figure 6B). Notably, CCL2, CXCL8, and
CXCL10 exhibited higher weights in the PPI network
(Figure 6C). Further intersection with alcohol-related hepatitis
target genes sourced from Spearman-Gene databases (Gene
CLIP3, GeneCards, DisGeNET, IPA) revealed six shared genes:
CXCL8, IL10, IL1R1, CCL2, PDE4B, and CXCL10 (Figure 6D).
This analysis, coupled with the exploration of DEGs from
microarrays GSE28619, GSE142530, and E-MTAB-2664, led to
the identification of three common genes: CCL2, CXCL8, and
CXCL10 (Figure 6E). Correlation analysis between CCL2,
CXCL8, CXCL10, and ADRB2 revealed significant negative

correlations (Figures 6F–H, with p-values < 0.05 or <0.01). The
results of microarray differential analysis highlighted a significant
upregulation in the expression levels of these genes (CCL2, CXCL8,
and CXCL10) in the liver tissues of patients with AH compared with
those of normal individuals (Figures 6I–K, *p < 0.05, **p < 0.01).
ELISA results from mouse serum samples further supported this
conclusion (Figures 6L–N).

3.7 Excessive alcohol consumption leads to
increased hepatic inflammation
and steatosis

Compared to the normal group, serum levels of ALT and ASTwere
significantly elevated in both the NIAAA and ALD groups (Figures 7A,
B, D, E *p < 0.05, **p < 0.01). Additionally, serum levels of AKP and
LDHwere significantly increased in the ALD group (Figures 7F, G, *p <
0.05, **p < 0.01). H&E and Oil Red O staining revealed increased
inflammatory infiltration, fat droplets, and substantial lipid deposition

FIGURE 3
Functional analysis of DEGs combined with important module genes. (A) Venn diagram showing DEGs and important module genes. (B) Analysis of
Disease Ontology. (C) Analysis of Gene Ontology. (D) Analysis of Kyoto Encyclopedia of Genes and Genomes.
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FIGURE 4
Identification and verification of the diagnostic biomarkers of alcoholic hepatitis. (A) From the chosen modules, diagnostic markers were screened
using the Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression approach. (B) Diagnostic nomogram. (C) Receiver operating
characteristic curves to assess the diagnostic ability. (D) Box plots for the differential expression analysis in the metadata. (E) Box plots for the
ADRB2 differential expression analysis in the testing data sets. (F) Immunohistochemical analysis of ADRB2 expression in normal groups and patients
with alcoholic hepatitis.
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in the livers of NIAAA and ALD group mice compared to the normal
group (Figures 7C, H). Furthermore, GSH levels in the liver tissue of
ALD mice were significantly reduced, whereas MDA levels were
markedly elevated, indicating oxidative stress in the liver of ALD
mice (Figures 7I, J, *p < 0.05, **p < 0.01). Therefore, these data
together indicate that we successfully constructed the NIAAA mouse
model and ALD mouse model.

3.8 ADRB2/SIRT1/PGC-1α/PPARα pathway
was significantly inhibited in NIAAA and
ALD model

In the NIAAAmodel, western blot results showed that excessive
drinking caused a significant decrease in the expression of
ADRB2 protein in the liver of mice in the alcohol group
compared with the normal group (Figures 8A, B, *p < 0.05,
**p < 0.01). Additionally, the ADRB2, SIRT1, PPARα and PGC-

1α protein expression in liver tissue of ALD model mice decreased
significantly compared with the normal group (Figures 8D, E, *p <
0.05, **p < 0.01). Immunofluorescence results also demonstrated a
noticeable reduction in the fluorescence expression of ADRB2 and
SIRT1 in ALD and NIAAA group mouse livers compared with the
normal group (Figures 8C, F), corroborating the western blot results.

3.9 ADRB2 overexpression upregulates the
SIRT1/PGC-1α/PPARα pathway ameliorating
ethanol-induced hepatocytes damage

In vitro experiments were conducted to elucidate the role of
ADRB2 in protecting from ethanol-induced damage in AML12 and
THLE-2 cells. The results of CCK8 assay revealed a significant
decrease in the viability of AML12 cells after 24 h of stimulation
with 100 mM ethanol compared to the control group (Figure 9A,
*p < 0.05, **p < 0.01). Overexpression of ADRB2 markedly reduced

FIGURE 5
SIRT1 may be a key downstream regulatory molecule of ADRB2 in AH. (A) Volcano plot of mouse liver RNA-Seq (DEGs; p < 0.05 and log2FC > 0.58).
(B) UpSet analysis chart of AH targets in seven disease databases. (C) Venn diagrams illustrate the intersection of DEGs from liver RNA-Seq, AH disease
database targets with a high frequency (N ≥ 3 times), ADRB2 downstream targets from the IPA database, and AH-related targets with a high frequency (N ≥
3 times) in GEO dataset DEGs. (D–E) Relative expression values of ADRB2 and SIRT1 in liver RNA-Seq data. (F, H, J) Relative expression values of
ADRB2 and SIRT1 in the EMATB 2664, GSE28619 and GSE142530 data sets were significantly decreased in the AH group. (G, I, K) Spearman correlation
analysis showing a positive correlation between ADRB2 and SIRT1. * Represents p < 0.05 and ** represents p < 0.01, compared with the wild-type and
normal groups.

Frontiers in Pharmacology frontiersin.org11

Song et al. 10.3389/fphar.2024.1423031

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1423031


FIGURE 6
Analysis of inflammation factors and correlation with ADRB2 in alcoholic hepatitis (AH). (A) Differential inflammatory factors in the Spearman
correlation analysis with ADRB2. (B) Venn diagram of inflammatory factors, Spearman-related genes, and DEGs in GSE28619. (C) Protein-protein
interaction network of inflammatory factors intersected in graph (B). (D) Venn diagram of AH targets from Gene CLIP3, GeneCards, DisGeNET and IPA
databases and Spearman-related genes. (E) Venn diagram of DEGs of the microarrays GSE28619, GSE142530, and E-MTAB-2664 and the
intersected genes of graph (D). (F–H) Spearman correlation analysis of ADRB2 and CCL2 (F), CXCL8 (G), and CXCL10 (H). (I–K)Gene expression levels of
CCL2 (I), CXCL8 (J), and CXCL10 (K) of normal groups and patients with AH. (L–N) Serum CCL2 (L), CXCL8 (M), and CXCL10 (N) levels in mice. *
Represents p < 0.05 and ** represents p < 0.01, compared with the normal or control groups.
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the ethanol-induced increases in ALT, AST and LDH, MDA
expression and significantly restored GSH levels (Supplementary
Figure S2; Figures 9B, C, ##p < 0.01, **p < 0.01). In AML12 cells, nile
red staining showed that ADRB2 overexpression could decrease
ethanol-induced lipid deposition in liver cells (Figure 9D). Flow
cytometry results further showed that ADRB2 overexpression
markedly reduced oxidative stress in liver cells (Figure 9E, **p <

0.01, ###p < 0.001). Fluorescent staining with Mito-Tracker Red
CMXRos and Annexin V-FITC demonstrated that
ADRB2 overexpression significantly reversed ethanol-induced
mitochondrial membrane potential decline and cell apoptosis
(Figure 9F). Additionally, western blot results indicated that
ADRB2 overexpression mitigated the ethanol-induced decrease in
the expression of ADRB2, SIRT1, PGC-1α, and PPARα in THLE-2

FIGURE 7
Excessive alcohol intake induces liver inflammation and oxidative stress in mice. (A, B) Serum ALT and AST levels of NIAAA mice. (C) Liver tissue
sections of NIAAA mice stained with H&E and Oil Red O. (D–G) Serum ALT, AST, AKP and LDH levels of ALD mice. (H) Liver tissue sections of ALD mice
stained with H&E and Oil Red O. (I, J) Liver MDA and GSH levels of ALD mice. * Represents p < 0.05 and ** represents p < 0.01, compared with the
control group.
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FIGURE 8
Low expression of ADRB2, SIRT1, PGC-1α, and PPARα in ethanol-induced alcoholic hepatitis. (A) Western blot analysis of ADRB2 in NIAAA mouse
liver tissues. (B) Statistical results of NIAAAmouse liver western blot analysis. (C) Immunofluorescence of ADRB2 and SIRT1 in NIAAAmouse liver tissue. (D)
Western blot analysis of ADRB2, PPARα, PGC-1α, and SIRT1 in ALD mouse liver tissues. (E) Statistical results of ALD mouse liver western blot analysis. (F)
Immunofluorescence of ADRB2 and SIRT1 in ALD mouse liver tissue. * Represents p < 0.05 and ** represents p < 0.01, compared with the
control group.
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FIGURE 9
ADRB2 reverses ethanol-induced damage to the liver through the SIRT1-PGC-1α-PPARα pathway. (A) Cell viability of AML12 cells stimulated by
alcohol at different concentrations for 24 h (B)MDA concentration in AML12 cells after treatment. (C) GSH concentration in AML12 cells after treatment.
(D) Nile red staining of cellular lipids in AML12 cells. (E) Flow cytometry analysis of reactive oxygen species generation. (F) Mitochondrial membrane
potential and detection of apoptosis of THLE-2 cells. (G) Western blot analysis of ADRB2, PPARα, PGC-1α, and SIRT1 in THLE-2 cells. (H) Statistical
results of western blot analysis. # Represents p < 0.05 and ## represents p < 0.01, compared with the control group. * Represents p < 0.05 and **
represents p < 0.01, compared with the ethanol group.
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cells (Figures 9G, H, *p < 0.05, **p < 0.01, #p < 0.05, ##p < 0.01).
These findings suggest that ADRB2 overexpression activates the
SIRT1/PGC-1α/PPARα pathway, ameliorating ethanol-induced
liver cell damage, lipid deposition, and oxidative stress.

4 Disscussion

ALD is a liver condition caused by long-term excessive alcohol
consumption, with clinical and histopathological forms ranging from
initial simple steatosis to progressive steatohepatitis with accumulating
fibrosis, to cirrhosis and its complications, ultimately developing into
hepatocellular carcinoma. AH is a distinct clinical syndrome
characterized by recent-onset jaundice in patients with continuous
alcohol abuse, with or without other symptoms of liver dysfunction
(Morgan et al., 2010). The underlying cause of this clinical syndrome is
steatohepatitis, a disease histologically characterized by steatosis,
hepatocellular ballooning, and inflammatory infiltration of
polymorphonuclear neutrophils (European Association for the Study
of the Liver., 2018). However, there are limitations in the diagnosis of AH,
and currently, there are no effective biomarkers available for screening
patients with AH for prognosis. Therefore, there is an urgent need to
identify relevant biomarkers of AH and explore their mechanisms of
action to provide new insights into the prevention and treatment of AH.

WGCNA is an analytical method that revolves around gene co-
expression networks. Unlike unweighted gene networks, WGCNA
maintains the continuous characteristics of node connections,
ensuring data integrity and providing more comprehensive and
robust analytical capabilities (Giotti et al., 2017; Li et al., 2018).
Machine learning, rooted in statistical and computer science
algorithms, is widely used for constructing predictive models and
identifying biomarkers (Greener et al., 2022). Frederik et al.
identified SMOC2 as a potential blood biomarker for enhancing
nonalcoholic fatty liver disease (NAFLD) diagnosis through
WGCNA and single-cell sequencing, offering a noninvasive
alternative to liver biopsy (Larsen et al., 2023). In a separate study,
Saeed et al. explored gene co-expression modules in the liver of normal
individuals and those with metabolically associated fatty liver disease
and related liver cancer datasets using WGCNA. They found that
enhancing the expression of CGN, ZNF419, and ZNF551 or reducing
SPATA20 expression might aid in maintaining liver homeostasis and
improving the prognosis of liver cancer patients (Esmaili et al., 2021).
Kong et al. discovered Fmo5 as a key player in apoptosis and
inflammatory responses in alcoholic fatty liver disease (AFLD)
through WGCNA (Kong et al., 2021). Hou et al. employed
WGCNA and other systems biology approaches to pinpoint
potential biomarkers associated with M1 macrophages, ferroptosis,
and cuproptosis in patients with AH, including ALDOA, COL3A1,
LUM, THBS2, and TIMP1(Hou et al., 2023). These studies underscore
how machine learning methods have become reliable tools for
identifying clinical biomarkers, holding significant potential for AH
diagnosis and treatment.

This research employed a combination of WGCNA and machine
learning techniques to examine the GSE28619 dataset. This analysis
successfully identified four diagnostic biomarkers: KCNJ10, RPL21P23,
ADRB2, and AC025279.1. Notably, the integration of literature and
in vitro and in vivo experiments suggested that ADRB2 might function
as a potential biomarker for AH. ADRB2 belongs to the G protein-

coupled receptor family and encodes the beta-2 adrenergic receptor
protein, which exhibits wide distribution in diverse tissues, including the
heart, liver, and vascular smooth muscle. Increasing evidence indicates
that ADRB2 plays a pivotal role in mediating oxidative stress damage
and mitochondrial dysfunction in the pathogenesis and progression of
diseases. Yang et al. revealed that exposure to PM2.5-induced air
pollution can cause oxidative damage to myocardial cells through
ADRB2 hypermethylation, whereas overexpression of ADRB2 can
reverse the abnormal trend. (Yang et al., 2019).

In recent years, extensive research has confirmed the crucial role of
ADRB2 in oxidative stress and inflammatory diseases, indicating that its
activation can impede the progression of systemic oxidative stress and
inflammatory responses (Petkevicius et al., 2021; Hasegawa et al., 2021;
van Beek et al., 2023). Additionally, studies have shown not only
improves aberrant lipid metabolism in the liver but also fosters
hepatic regeneration via the c-met/ERK signaling cascade (Tao et al.,
2019; Tao et al., 2022). Moreover, a separate investigation illustrated that
genetic knockout of the ADRB2 gene exacerbates hepatic lipid
accumulation in mice fed a high-fat diet (van Beek et al., 2021).
Recent studies have identified that METTL14/m6A-mediated
epitranscriptomic alterations disrupt ADRB signaling in adipose tissue,
contributing to the development of obesity, NAFLD, and othermetabolic
disorders (Kang et al., 2023). Nevertheless, the precise mechanism
underlying the role of ADRB2 in chronic alcohol-induced liver
disease remains elusive and necessitates further exploration.

Previous research indicates that activatingADRB2 signaling not only
improves aberrant lipid metabolism in the liver but also fosters hepatic
regeneration via the c-met/ERK signaling cascade (Tao et al., 2019; Tao
et al., 2022). Additionally, a separate investigation illustrated that genetic
knockout of the ADRB2 gene exacerbates hepatic lipid accumulation in
mice fed a high-fat diet (van Beek et al., 2021). Recent studies have
identified that METTL14/m6A-mediated epitranscriptomic alterations
disrupt ADRB signaling in adipose tissue, contributing to the
development of obesity, NAFLD and other metabolic disorders
(Kang et al., 2023). Nevertheless, the precise mechanism underlying
the role of ADRB2 in chronic alcohol-induced liver disease remains
elusive and necessitates further exploration.

In this study, our results indicated that SIRT1 might be a
potential downstream target regulated by ADRB2. SIRT1, a
nicotinamide adenine dinucleotide-dependent deacetylase,
assumes a critical role in oxidative stress, inflammatory
responses, and cellular metabolism, rendering it a promising
therapeutic target for ALD (Wu Q. J. et al., 2022). Nandave et al.
discovered that SIRT1 fosters mitochondrial biogenesis and
activates PGC-1α and downstream Nrf-2 via the deacetylation
process, thereby exerting anti-inflammatory, antioxidant, and
cytoprotective effects (Nandave et al., 2023). Recent studies have
indicated that modulating liver methylation and regulating the
expression of J protein (MCJ) can significantly restore
SIRT1 function, thereby preventing chronic alcohol-induced
mitochondrial dysfunction and increased ROS production
(Goikoetxea-Usandizaga et al., 2023). Zhou et al. revealed that
the consumption of cyanidin-3-O-β-glucoside significantly
amplifies SIRT1 activity, thereby ameliorating oxidative stress
and hepatic inflammation in ALD by deacetylating NF-κB and
deactivating the NLRP3 inflammasome (Zhou et al., 2020).

Emerging evidence indicates that SIRT1 may enhance PGC-1α
expression, contributing to antioxidative stress mechanisms and
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lipid metabolism (Wu D. et al., 2022). PGC-1α, encoded by the
PPARGC1A gene, functions as a transcriptional coactivator for
steroid and nuclear receptors, playing a pivotal role in regulating
hepatic signaling pathways and maintaining energy metabolism
homeostasis. Chronic alcohol exposure suppresses the SIRT1/
PGC-1α signaling cascade, disrupting hepatic lipid metabolism.
Nicotinamide adenine dinucleotide (NAD+) supplements capable
of activating the SIRT1/PGC-1α pathway have demonstrated
efficacy in mitigating hepatic oxidative stress and lipid
accumulation by bolstering NAD + levels. Both in vivo and
in vitro experiments conducted in this study reveal a notable
decline in SIRT1 and PGC-1α protein expression in the liver of
the ethanol-exposed group, concomitant with hepatic lipid
deposition and inflammatory infiltration. These findings suggest
that SIRT1 and PGC-1α could serve as crucial downstream targets of
ADRB2 in mitigating chronic alcohol-induced liver injury.

PPARα, a pivotal downstream regulatory factor in lipid
metabolism modulated by SIRT1, has garnered significant
attention. As a component of the nuclear receptor family,
PPARα, along with its companions β, δ, and γ, plays a critical
role as a transcriptional regulator in lipid transport, fatty acid
oxidation, and inflammation (Xiao et al., 2017; Wang M. et al.,
2019). Notably, PPARα is predominantly expressed in hepatic tissue.
Both in vitro and in vivo investigations have demonstrated that
alcohol abuse markedly impedes the SIRT1/PPARα pathway,
leading to diminished NAD + supply and resulting in
mitochondrial dysfunction and suppressed β-oxidation of fatty
acids within the liver. Recent studies underscore that deficiencies
in PPARα exacerbate hepatic lipid accumulation and exacerbate
liver injury in ALD (Zhang et al., 2023). Importantly, the activation
of PPARα has increasingly been recognized as an effective
therapeutic approach for ALD. Research by Ni et al. has revealed
that dietary supplementation with prickly pear seed oil can diminish
ROS generation and enhance fatty acid oxidation by upregulating
PPARα/PGC-1α, thereby ameliorating liver damage and lipid
deposition induced by oxidative stress (Ni et al., 2022). Another
study has shown that dietary supplementation with astaxanthin can
mitigate liver oxidative stress and inflammation by activating the
Nrf2 and PPARα signaling pathways, thereby mitigating chemical
injury to hepatic cells. In our investigation, we observed a significant
reduction in the expression of SIRT1 and PPARα in the liver under
conditions of excessive alcohol exposure. This inhibition correlates
positively with liver damage induced by oxidative stress and lipid
accumulation. These findings suggest that dysregulation of the
ADRB2/SIRT1/PGC-1α/PPARα signaling pathway may have a
pivotal role in the progression of ALD, especially in AH.

In addition, our study identified that ADRB2 exerts negative
regulation on various cytokines through the integration of
bioinformatics analysis, as well as in vivo and in vitro
experiments. Numerous studies have confirmed that chronic
alcohol consumption promotes the release of pro-inflammatory
cytokines such as C-C motif chemokine ligand 2 (CCL2/MCP-1),
leading to the recruitment of monocytes and exacerbating the
progression of AH (Duryee et al., 2022; Georgakis et al., 2022).
However, Ambade et al. discovered that Cenicriviroc alleviated
inflammation in ALD mice by blocking the CCL2-mediated
signaling pathway (Ambade et al., 2019). Numerous pieces of
evidence indicate a significant elevation of C-X-C motif

chemokine ligand 8 (CXCL8/IL-8) in patients with ALD
cirrhosis, which prompts Kupffer cell activation and leads to
hepatic inflammation infiltration (Martin-Gonzalez et al., 2022).
Recent studies have revealed that neutralizing CXCL8 or specifically
blocking CXCR1/2 (CXCL8 receptors) could be a promising
therapeutic strategy for treating ALD (Wieser et al., 2017;
Nishimura et al., 2021). Furthermore, an increasing body of
evidence suggests that C-X-C motif chemokine ligand 10
(CXCL10/IP-10) plays a crucial role in the progression of ALD
(Liang et al., 2019). Dai et al. found that inhibiting CXCL10 could
disrupt the interaction between Kupffer cells and liver sinusoidal
endothelial cells, thereby reducing hepatic stellate cell activation and
hepatocyte necroinflammation (Dai et al., 2020). Additionally,
Wang et al. propose that modulating the MED23-CCL5/
CXCL10 axis could be a potential approach for clinically
intervening in liver fibrosis (Wang Z. et al., 2019). These findings
collectively suggest that ADRB2may play a critical role in combating
AH inflammatory responses by inhibiting the expression of CCL2,
CXCL8, and CXCL10.

5 Conclusion

In this study, we used weighted gene co-expression network
analysis (WGCNA) and machine learning techniques to discover
that ADRB2 may serve as a potential biomarker for AH.
Additionally, the results of AH patients, NIAAA, and ALD
mouse models have indicated that excessive alcohol consumption
inhibits the ADRB2/SIRT1/PGC-1α/PPARα pathway, leading to
elevated levels of oxidative stress and cytokines such as CCL2,
CXCL8, and CXCL10, accompanied by hepatic steatosis
(Figure 10). Furthermore, similar results were observed in
in vitro cell experiments, whereas overexpression of
ADRB2 could reverse alcohol-induced oxidative stress damage
and lipid deposition in hepatocytes. These findings suggest that
ADRB2 may represent a valuable and promising target for the
diagnosis and treatment of alcoholic liver disease.
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