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The protein tyrosine phosphatase 1B (PTP1B) is a critical therapeutic target for
type 2 diabetes mellitus (T2DM). Many PTP1B inhibitors have been reported,
however, most of them lack high specificity and have adverse effects. Designing
effective PTP1B inhibitors requires understanding the molecular mechanism of
action between inhibitors and PTP1B. To this end, molecular dynamics (MD)
simulations and molecular mechanics Poisson Boltzmann Surface Area (MM-PB/
SA) methods were used to observe the binding patterns of compounds with
similar pentacyclic triterpene parent ring structures but different inhibition
abilities. Through structure and energy analysis, we found that the positions of
cavities and substituents significantly affect combining capacity. Besides, we
constructed a series of potential inhibitor molecules using LUDI and rational
drug design methods. The ADMETmodule of Discovery Studio 2020 was used to
predict the properties of these inhibitor molecules. Lastly, we obtained
compounds with low toxicity and significant inhibitory activity. The study will
contribute to the treatment of T2DM.
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1 Introduction

Diabetes mellitus (DM) is a common systemic disease of the endocrine system (Ma
et al., 2021; Singh et al., 2022). This major public health issue and socioeconomic burden
endangers human health worldwide (Hünenberger et al., 1995; Lam and LeRoith, 2012). In
2045, there will be 220 million people living with diabetes worldwide, according to the
International Diabetes Federation (Paul et al., 2023). A majority of people with diabetes are
aware of type 2 diabetes, which represents 90%–95% of diabetes cases. Insulin resistance
(IR) and relative insulin deficiency are characteristics of diabetes mellitus type 2 (T2DM)
(Verma et al., 2017; Jiang and Gao, 2019).

The proteins of protein tyrosine phosphatases (PTP) family are a class of phosphatases
that play an essential role in signal transduction pathways that regulate the progression of
cell growth, division, adhesion, and motility (Hunter, 1995; Hunter, 2000). Disruption of
PTP catalytic activity will lead to abnormal tyrosine phosphorylation, resulting in the
development and progression of various diseases (Peters et al., 2003). Protein tyrosine
phosphatase 1B (PTP1B), an essential member of the PTP family, is a negative regulator of
insulin receptor (IR) signaling that negatively regulates insulin signaling through
dephosphorylation of the insulin receptor and its substrates, thereby diminishing the
effect of insulin (Combs, 2010; Lessard et al., 2010). In addition, PTP1B knockout mice
exhibit insulin sensitivity and glycemic control, are resistant to obesity, and have
significantly lower triglycerides levels (Elchebly et al., 1999; Bence et al., 2006; Comeau
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et al., 2010). Hence, PTP1B has emerged as a novel promising
therapeutic target for the treatment of T2DM.

Protein tyrosine phosphatases have high structural conserved
properties at the active site, which makes the design and
modification of selective PTP1B inhibitors very difficult
(Andersen et al., 2001). TCPTP and PTP1B showed 72%
sequence identity in the catalytic region, while mice knocked out
by TCPTP showed hematopoietic defects (Shinde and Sobhia, 2013).
Therefore, competitive inhibitors targeting the catalytic site of
PTP1B may also bind to the catalytic site of TCPTP, causing
hematopoietic dysfunction. Compared with competing inhibitors,
PTP1B allosteric inhibitors have low side effects and do not cause
PTP1B aggregation (Krishnan et al., 2014; Krishnan and Tonks,
2015; Krishnan et al., 2018). At the preclinical level, trodusquemine,
an allosteric inhibitor of PTP1B, demonstrated the ability to
significantly reduce fat and insulin levels in obese mice (Lantz
et al., 2010; Cho and Litwack, 2013; Olloquequi et al., 2022),
which means that allosteric inhibitors can exert inhibitory
activities that are no less potent than competitive inhibitors.
Therefore, the design of novel allosteric inhibitors can be considered.

PTP1B has an N-terminal catalytic phosphatase domain, as well
as a C-terminal membrane localization domain (Tonks et al., 1988).
The active site of PTP1B consists of three parts: (1) P-loop with
Cys215 as the catalytic center; (2) WPD-loop responsible for
substrate identification; (3) Q-loop containing Gln262 residues
(Tonks, 2003). The closed pose of the WPD ring is the result of
the interaction between the α3 (Glu186-Glu200) and α6 (Ala264-
Ile279) helixes (Shinde and Sobhia, 2013). The active site actually
includes α7(Val287-Ser295), but α7 unspins when it binds to an
allosteric inhibitors (Wiesmann et al., 2004a). While the movement
of the WPD ring is the result of the hydrogen-bond network among
α7-α3-α6 helixes. While, allosteric inhibitors can destroy this
hydrogen-bond network by placing themselves among these
helixes, thereby blocking the open or closed conformation of the
PTP1B protein, rendering it unable to function. To this, it is
important to discover novel PTP1B inhibitors with good
inhibitory activity and selectivity.

Currently, the majority of studies are centered on the movement
pattern of PTP1B function and the search for inhibitors of PTP1B.
Regrettably, these literatures carried their own limitations. For
instance, in the articles investigating the movement process,

collaboration, and interaction of PTP1B through molecular
dynamics, the majority failed to present viewpoints on inhibiting
the activity of PTP1B (Akyol and Kilic, 2021), while the literatures
devoted to finding or designing inhibitors of PTP1B did not
undertake subsequent exploration of the action mode for the
discovered inhibitors (Maccari et al., 2023; Zheng et al., 2024).

In the present study, molecular dynamics (MD) simulations
combined with molecular mechanics Poisson Boltzmann Surface
Area (MM-PB/SA) calculations, which have proved to be robust and
valuable tools (Pan et al., 2016; Coskuner and Uversky, 2017; Wen
et al., 2017; Shi et al., 2018;Wang et al., 2018; Alamri et al., 2023; Gao
et al., 2023; Hassan et al., 2023), were used to explore the interaction
and binding capacity between inhibitors and PTP1B. AMDET
property prediction is used to evaluate compounds’ molecular
properties and select and optimize lead compounds according to
their properties. The parent structures with analogous
configurations were exploited to investigate the binding action
mode and motion mode between the intermolecular inhibitors
and PTP1B. Based on this, drug design strategies were proposed.
Eventually, the feasibility of our results was verified via the analysis
of binding free energy and druggability. Our work may provide
valuable clues for drug modification and improve binding affinity to
combat drug resistance.

2 Materials and methods

2.1 Initial structures

The initial structure of PTP1B protein was derived from Protein
Data Bank (PDB code: 1T49) (Figure 1) (Wiesmann et al., 2004b).
Compared with other PDB structures(7KEN, 5T19, 1T48, or
5QDE), 1T49 has relatively high resolution (1.9 Å), mutation-free
amino acid sequence, and the binding ligand in the crystal structure
is similar to those in the present study (Jiang et al., 2022). Protein
pretreatment and energy minimization of small molecules are
performed by Discovery Studio 2020 (DS 2020). The position of
the ligand of the original PDB crystal structure is used as the binding
site. The ligands used in this article were all pentacyclic triterpenoids
reported in the previous literature (Figure 2) (Tables 1, 2) (Xu et al.,
2018; Huang et al., 2022). These studies have experimentally
identified several compounds with inhibitory activity against
PTP1B in Quercus liaotungensis, Paeonia suffruticosa, and
Paeonia delavayi. The majority of these compounds are
pentacyclic triterpenoids. Compounds with different IC50 values
were selected to compare the structure-activity relationships of
different residues. These compounds possess similar structures
yet distinct substituents. Following molecular dynamics, the
interaction between the compounds and the protein can be
delineated more lucidly. Upon discovering these compounds, the
existing literature did not provide information on the type of
inhibitors. We individually docked these compounds to the
catalytic and allosteric sites of PTP1B.DS2020 was used for
molecular docking to dock Ligand 1-7 to specific sites on the
PTP1B protein. After docking, we named these docking systems
Complex1-7 based on the names of the docked ligands, for example,
the ligand name in the complex-1 system is Ligand-1. The
protonation states of ionizable residues were determined at pH =

FIGURE 1
Structure of PTP1B protein (PDB ID: 1T49).
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7.4 using H++ server (Gordon et al., 2005). The partial charges and
missing force field parameters for inhibitors were obtained by the
Antechamber module of AMBER 18 software (Wang et al., 2006).
The general AMBER force field (GAFF) (Wang et al., 2004) and
ff14SB force field (Maier et al., 2015) were used for inhibitors and
PTP1B, respectively, just as the methods employed by Lima Silva

and Ferreira de Freitas (2023); Park et al. (2023). The missing atoms
of proteins in the models were added using the t-Leap module of
AMBER 18. To keep the whole system in an electric neutral state,
sodium ions were added based on a Coulomb potential grid using
t-Leap module of AMBER 18 software (Case et al., 2017). Then, each
system was solvated with the TIP3P water model (Jorgensen et al.,

FIGURE 2
Structures of the ligand compounds.

TABLE 1 The name of the ligand compound.

NO. Name

Ligand-1 3-O-galloyloleanolic acid

Ligand-2 oleanolic acid

Ligand-3 23-dihydroxyolean-12-en-28-oic acid

Ligand-4 arjunolic acid

Ligand-5 akebonic acid

Ligand-6 2α,3β-dihydroxy-30-noroleana-12,20(29)-dien- 28-oic acid

Ligand-7 paeonenoide C

TABLE 2 PTP1B inhibition of ligand compounds.

NO. PTP1B IC50(μM) Ref

Ligand-1 2.10 Xu et al. (2018)

Ligand-2 17.25 Xu et al. (2018)

Ligand-3 47.60 Xu et al. (2018)

Ligand-4 >100 Xu et al. (2018)

Ligand-5 36.5 Huang et al. (2022)

Ligand-6 – Huang et al. (2022)

Ligand-7 110.2 Huang et al. (2022)
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1983) in a truncated octahedron box with a 10.0 Å distance around
the solute.

2.2 Molecular dynamics (MD) simulations

AMBER18 software package (Case et al., 2017) was used for
molecular dynamics simulation. First, 10,000 steps of
minimization (steepest 4,000 steps, followed by 6,000 steps of
conjugation gradient) with proteins and inhibitors constrained
(500 kcal mol-1 Å-2). Then, the minimization is repeated without
any constraints. Thereafter, each system was gradually heated from
0 K–310 K over a period of 300 ps with 5.0 kcal mol-1 Å-2 restrain
on the solute and then another 1 ns equilibrium simulation was
followed at 310 K with 2.0 kcal mol-1 Å-2 restrain on the solute.
Finally, 200 ns MD simulations were performed for every system

under NPT conditions to obtain the simulated trajectories. The
temperature was maintained at 310 K by coupling to a Langevin
heatbath (Uberuaga et al., 2004) using a collision frequency of 1 ps-
1, and a constant isotropic pressure was maintained at 1 atm using
the Berendsen barostat (Berendsen et al., 1984). Short range
interactions were cut off at 10.0 Å, while the long-range
electrostatic interactions were handled using the particle mesh
Ewald (PME) method (Darden et al., 1993). The SHAKE algorithm
was used to restrict all covalent bonds involving hydrogen atoms
(Ryckaert et al., 1977). The time step was set to 2 fs.

2.3 MM-PB/SA calculations

Binding free energy of each complex was calculated by MM-PB/
SA (Kollman et al., 2000; Sun et al., 2014; Kong et al., 2018; Federico
et al., 2021) method in AMBER 18. In our calculation, the last
10,000 snapshots are extracted from each simulated trajectory to
calculate the binding free energy. The equations are as follows:

ΔGbind � Gcomplex − Greceptor + Gligand( ) (1)
ΔGbind � ΔEMM + ΔGsol − TΔS (2)
ΔEMM � ΔEint + ΔEele + ΔEvdW (3)

ΔGsol� ΔGGB + ΔGSA (4)
In Equation 1, Gcomplex, Greceptor, and Gligand are the free energies of
the complex, the receptor, and ligands, respectively. In Equation 2,
the ΔEMM, ΔGsol, and TΔS represent molecular mechanics
component in the gas phase, the desolvation free energy, and a
vibrational entropy term, respectively. And in Equation 3, ΔEMM is
the summation of internal interaction (ΔEint), Coulomb interaction
(ΔEele), and van der Waals (vdW) interaction (ΔEvdW) terms. In
Equation 4, Gsol can be separated into an electrostatic solvation
energy (ΔGGB) and nonelectrostatic solvation energy (ΔGSA). For
obtaining the detailed view of protein and ligands interaction, MM-
PB/SA method was employed to calculate the binding free energy of
each residue. We selected the stable trajectory after MD simulation
to calculate entropy.

FIGURE 3
Flexibility changes in amino acid residues of the PTP1B protein
(unbound inhibitor) (Wang et al., 2020).

TABLE 3 Binding energy of seven complex at the PTP1B allosteric site (kcal mol−1).

Complex-1 Complex-2 Complex-3 Complex-4 Complex-5 Complex-6 Complex-7

ΔEele −4.1 −6.5 −10.5 −6.3 −4.9 −9.5 −22.1

ΔEvdw −47.3 −40.2 −36.2 −19.1 −37.9 −23.3 −32.6

ΔGGB 18.8 14.6 20.9 13.7 15.9 17.1 37.0

ΔGSA −5.6 −4.7 −4.4 −2.4 −4.7 −2.8 −4.4

ΔGpol
a 14.7 8.1 10.4 7.4 11.0 6.7 14.9

ΔGnonp
b −52.9 −44.9 −40.6 −21.5 −42.6 −26.1 −37.0

ΔGMM-PB/SA
c −38.2 −36.8 −30.1 −14.1 −31.3 −18.5 −22.2

–TΔS 20.6 19.5 20.7 14.9 19.2 16.3 19.7

Gbind
d −17.6 −17.3 −9.4 0.8 −12.1 −2.2 −2.5

aGpol = Eele + GGB.
bGnonp = Evdw + GSA.
cΔGMM-PB/SA = Eele + GGB + Evdw + GSA.
dΔGbind = ΔGMM-PB/SA − TΔS.
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2.4 Structure-based inhibitor design

LUDI (Böhm, 1994) is a fragment-based de novo drug design
algorithm. In this present study, we used the pentacyclic triterpene
parent structure as a starting point in this study, with amino acids

from the α3 and α6 helical regions of PTP1B acting as receptor
action regions, and the LUDI module in DS2020 added design
fragments to the drug structure (Oner et al., 2023). In addition, we
also conduct rational drug design based on the intermolecular
interactions between inhibitors and amino acid residues.

TABLE 4 Binding energy of seven complexes at the PTP1B catalytic site (kcal mol−1).

Complex-1 Complex-2 Complex-3 Complex-4 Complex-5 Complex-6 Complex-7

ΔEele −11.6 −1.7 −6.1 −9.6 −5.7 −2.0 −8.0

ΔEvdw −31.7 −24.7 −24.5 −20.6 −25.7 −12.2 −23.7

ΔGGB 26.8 10.9 14.2 20.7 15.6 8.2 17.7

ΔGSA −4.1 −3.0 −3.1 −2.7 −3.0 −1.5 −3.3

ΔGpol
a 15.2 9.2 8.4 11.1 9.9 6.2 9.7

ΔGnonp
b −35.8 −27.7 −27.6 −23.3 −28.7 −13.7 −27.0

ΔGMM-PB/SA
c −20.7 −18.5 −19.5 −12.2 −18.7 −7.5 −17.4

–TΔS 19.4 18.2 16.3 16.6 16.8 12.5 16.7

Gbind
d −1.3 −0.3 −3.2 4.4 −1.9 5.0 −0.6

aGpol = Eele + GGB.
bGnonp = Evdw + GSA.
cΔGMM-PB/SA = Eele + GGB + Evdw + GSA.
dΔGbind = ΔGMM-PB/SA − TΔS.

TABLE 5 Binding free energies between PTP1B and seven potential molecules (kcal mol−1).

Complex-1 Complex −2 Complex −3 Complex −5

ALA189 −0.872 −0.759 −1.016 −0.398

LEU192 −2.201 −2.397 −1.516 −2.108

ASN193 −1.270 −1.354 −1.325 −0.808

LEU195 −0.327 −0.689 −0.314 −0.308

PHE196 −2.065 −2.467 −2.167 −2.112

LYS197 0.192 0.154 −1.425 0.122

LEU232 −1.411 −0.649 0.093 −1.090

MET235 −0.993 −0.007 0.012 −0.356

ALA278 −0.615 −0.148 −0.197 −0.315

LYS279 −0.233 −0.268 −1.109 −0.187

PHE280 −2.380 −3.337 −1.968 −2.580

ILE281 −0.831 −1.550 0.003 −1.289

TABLE 6 Cluster analysis in four complexes systems.

No Cluster1(%) Cluster2(%) Cluster3(%) Cluster4(%) Cluster5(%)

Complex-1 86.3 7.6 5.3 0.7 0

Complex-2 56.0 43.9 0.1 0 0

Complex-3 99.9 0.1 0 0 0

Complex-5 81.9 12.3 2.3 2.2 1.3
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2.5 ADMET properties prediction

ADMET properties refer to the absorption, distribution,
metabolism, excretion, and toxicity of molecules in the organic
body (Dong et al., 2018). Predictable properties of ADMET include
water solubility, blood-brain barrier penetration (BBB),
hepatotoxicity, human intestinal absorption (HIA), aqueous
solubility (LogSw), and plasma protein binding. In this
experiment, we applied LUDI modification and rational design
compounds to ADMET prediction on DS 2020.

2.6 TOPKAT and druggability analysis

TOPKAT is based on the 2D structure of the molecule to
calculate and verify the toxicity and environmental effects of the
compound (Ma et al., 2008). The rat oral LD50 for all ligands was
calculated and measured by the TOPKAT module in DS 2020.
Druggability Analysis is run through DrugFlow (www.
drugfow.com).

3 Results and discussion

3.1 Stability of ligands in MD simulations

The structural stability was investigated by calculating average
root-mean-square deviation (RMSD) of backbone atoms with

respect to the first frame. Details of these complexes systems are
shown in Supplementary Figure S1.

Supplementary Figure S1 shows that the fluctuation range of
RMSD of these complexes is 0.5–1.5 Å in the first 100 ns and
stabilizes at about 1 Å in the last 100 ns. In the whole simulation
process, all the complex structures are relatively stable. Therefore,
for all systems, the last 100 ns trajectories are selected for
further analyses.

To analyze the variation of flexibility in seven complexes,
average root-mean-square fluctuations (RMSF) of backbone
atoms were calculated. The RMSF of the corresponding
complexes systems was calculated. By comparing the unbound
complex with the one bound to a natural PTP1B inhibitor, it is
evident that the fluctuation of the WPD-loop (Thr177-Pro185) in
the protein without ligands is more pronounced, reaching
approximately 2.0 Å (Supplementary Figure S5), this result
indicates that the protein without ligands is indeed less stable.
According to the literature, the movement of the allosteric site
can influence the conformational dynamics of the WPD-loop
(Wang et al., 2020). Additionally, binding of an inhibitor may
hinder the movement of the allosteric site, thereby impeding the
conformational changes in the WPD-loop and leading to inhibition
of PTP1B. These findings are consistent with our results. Moreover,
in the α3 helix region, we observed a fluctuation of approximately
2.5 Å in protein without ligands, whereas this fluctuation reduced to
about 1 Å on average in ligand-bound protein. Similarly, in the
α6 helix region, we noted a fluctuation of about 1 Å without bound
ligand compared to approximately 0.5 Å with bound ligand. These

FIGURE 4
Cavity position and morphology of the four ligands in the PTP1B protein (Red: α6 Helix; Blue: α3 Helix). (A) Ligand-1 binds to the PTP1B protein. (B)
Ligand-2 binds to the PTP1B protein. (C) Ligand-3 binds to the PTP1B protein. (D) Ligand-5 binds to the PTP1B protein.
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observations indicate that ligand binding enhances stability by
reducing protein fluctuations.

Supplementary Figure S2 shows similar fluctuations between the
different systems, which indicates that the complex systems are
stable as a whole and do not lead to an increase in the structural
motion of the residues. Under the restriction imposed by the
inhibitor, the flexibility will naturally decrease if the inhibitor is
successfully combined and interacts. It has been shown in previous
studies (Wang et al., 2020) that the RMSF values of theWPD-loop of
PTP1B are different between the PTP1B-open and close
configuration. Open conformation has a RMSF value of about
2 Å. Close conformation has a RMSF value of about 0.5 Å
(Figure 3). The results show that the RMSF value of the PTP1B
protein (open conformation) in the WPD loop region of all complex
systems after binding to the allosteric inhibitor is no higher than 1 Å.
The results indicate that our docked ligand stably binds to the
allosteric site of the PTP1B protein, affecting the movement of the
helical region, which affects WPD-loop structural changes. The
fluctuation of α3 helical residues in the complex-2 system is the
smallest, and the fluctuation of α3 helical residues in the complex-1
system is the largest. This result show Ligand-2 exhibits the strongest
intermolecular interaction, while Ligand-1 exhibits the weakest

interaction. However, the RMSF curve for the complex-5 system
at the α6 helix is small, showing that the intermolecular interactions
of Ligand-2 and Ligand-3 are more potent than that of Ligand-1 and
Ligand-5. Considering other compounds with poor inhibitory
ability, substituents at C-23 and C-1 may affect the binding
ability of the compounds (Figure 2).

Supplementary Figure S3 indicate that the RMSD values of the
PTP1B complex system bound to the catalytic site. While Complex-
4 exhibits larger fluctuations in the first 100 ns, it stabilizes in the
subsequent 100 ns. The remaining compounds demonstrate general
stability, with fluctuations ranging from 0.5–1.5 Å, leading us to
conclude that overall system stabilization occurs in the latter 100 ns,
during which subsequent binding free energy calculations were
conducted. The RMSF values of the complex in Supplementary
Figure S4, where the ligand binds to a competitive site, exhibit more
pronounced overall fluctuations compared to those observed in the
allosteric system. The final confirmation of the inhibitor’s type still
necessitates validation through free energy analysis.

In addition, the other three compounds can also bind to the
allosteric region of PTP1B to limit the movement of residues.
However, whether their binding is stable and the energy effect is
strong remains to be determined.

FIGURE 5
2D diagram of the interactions of four ligands with PTP1B proteins molecules. (A) 2D diagram of the interaction of Ligand-1 with PTP1B protein. (B)
2D diagram of the interaction of Ligand-2 with PTP1B protein. (C) 2D diagram of the interaction of Ligand-3 with PTP1B protein. (D) 2D diagram of the
interaction of Ligand-5 with PTP1B protein.
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3.2 Energetic analysis of complex

3.2.1 Binding free energy analysis
Subsequently, upon system stabilization, we computed

the binding free energy of these triterpenoid compounds
at their respective sites to assess and confirm their
inhibitor type.

FIGURE 6
Binding patterns of four different ligands(Amino acid residues with interactive relationships are displayed in Stick mode, otherwise they are displayed
in NewCartoon form, and different colors are used to distinguish Ligand-1, 2, 3 and 5.). (A) Ligand-1 binding to residues in complex-1 systems. (B) Ligand-
2 binding to residues in complex-2 systems. (C) Ligand-3 binding to residues in complex-3 systems. (D) Ligand-5 binding to residues in complex-
5 systems.

FIGURE 7
Region 1-3 of PTP1B protein.

FIGURE 8
ADMET predictions for LUDI and rationally designed drugs. Blue
ellipse: 99% confidence interval of the BBB model. Green ellipse: 99%
confidence interval of the HIA model.
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Table 8 shows the binding free energies (ΔGbind) for seven
complexes were calculated by the MM-PB/SA approach. The
ΔGbind values of the seven compounds at the PTP1B allosteric site

calculated are summarized in the Table 3 and the PTP1B catalytic site
are summarized in Table 4. Table 3 shows that the order of binding
energy is complex-1 > complex-2 > complex-5 > complex-3 >

TABLE 7 ADMET properties of 7 compounds.

Name ADMET_Absorption_Levela ADMET_Solubilityb ADMET_Solubility
_level

ADMET_BBBc ADMET_BBB_Levelc

LUDI-6 0 2 −5.967 0.293 1

LUDI-7 0 1 −7.423 0.793 0

Design-5 0 2 −4.418 −0.962 3

Design-11 0 1 −6.632 0.421 1

Design-12 0 2 −5.422 −0.375 2

Design-13 0 2 −4.515 −0.794 3

Design-14 0 2 −4.893 −0.018 2

aLevel:0 ADMET_Absorption_T2_2D < 6.1261 (inside 95%) (Good absorption).
bLevel:1, −8.0 < log(SW)<-6.0, very low, but possible. Level:2, −6.0 < log(SW)<-4.1, low.
cLevel:0, Brain-Blood ratio greater than 5:1, very high. Level:1, Brain-Blood ratio between 1:1 and 5:1, high. Level:2, Brain-Blood ratio between 0.3:1 and 1:1, medium.

FIGURE 9
Molecular structure of seven potential PTP1B inhibitors.
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complex-7 > complex-6 > complex-4. ΔGbind are −17.6 kcal mol−1,
−17.3 kcal mol−1 −12.1 kcal mol−1, −9.4 kcal mol−1, −2.5 kcal mol−1,
−2.2 kcal mol−1, 0.8 kcal mol−1, respectively, which are consistent with
the trend of inhibition of PTP1B reported in the literature. However,
the absolute values of the binding free energies in Table 4 are not
consistent with the trends reported in the literature. Interestingly, in
the course of our molecular dynamics simulations, we observed the
some initial structures of ligands bound to the catalytic site, followed
by their gradual transition away from the catalytic site towards the
allosteric site over time. Based on the observed ligand movement
during the MD process and the calculated binding free energy of the
MM-PB/SA complex, it can be inferred that these compounds exhibit
characteristics consistent with allosteric inhibition.

In these complexes, the binding free energy is mainly
determined by ΔGnonp. ΔGnonp is the sum of ΔEvdw and ΔESA,
most of which comes from ΔEvdw. The value of ΔEvdw gradually
decreases with the difference and number of substituents of these
ligands. ΔGpol is the sum of ΔEele and ΔGSA, and entropy changes
(-TΔS) adversely affect complexes and inhibitors. In other words,
the larger the absolute value of Gbind is, the stronger the binding
ability between the compound and the ligand indicates. Table 3
shows that the absolute value of ΔEele of complex-7 is greater than
that of the other systems (−22.1 kcal mol−1), indicating that the
contribution of electrostatic interaction in this system is relatively
larger. However, complex-3 (−10.5 kcal mol−1) and complex-6
(−9.5 kcal mol−1) exhibit a medium degree of electrostatic
interaction, and the ΔEele of the other systems is relatively
smaller, this result indicates that the electrostatic interaction
formed between amino acid residues and ligands within the
system is relatively minor. However, relatively speaking, the
absolute value of ΔEvdw in all systems is extremely large. Possibly
because the spatial position occupied by Ligand-1 is substantial, it
can interact with more amino acids and has the highest van der
Waals interaction. Whereas compounds with low activity
demonstrate lower ΔEele and ΔEvdw or higher ΔGGB.

Complex-1, complex-2, complex-3, and complex-5 have
excellent binding free energies and IC50 values. These four
compounds will be discussed in more detail later.

3.2.2 Decomposition energy of different
key residues

In order to explore residues that contribute significantly to
receptor and ligand binding, we calculated the binding free
energy for each residue in the four complexes (Ligand-1, Ligand-
2, Ligand-3, Ligand-5) (Table 5). The energy of different key residues
is divided into van der Waals energy, electrostatic interaction, polar
solvation-free energy, and non-polar solvation-free energy
(Supplementary Tables S1–S4). In this study, four compounds
(Ligand-1, Ligand-2, Ligand-3, Ligand-5) have relatively stable
free binding energies. Residues with binding free energy <
-0.5 kcal mol−1 are considered vital residues.

By analysing the contribution for each residue in the receptor,
12 residues (Ala189, Leu192, Asn193, Leu195, Phe196, Lys197,
Leu232, Met235, Ala278, Lys279, Phe280, and Ile281) are
essential. Besides van der Waals interaction rather than
electrostatic contribute the most. In complex-1, Asn193 and
Lys279 have higher electrostatic interactions. Met235 only
showed higher binding capacity in complex-1, which may be
attributed to the fact that Ligand 1 has a long side chain and is
spatially closer to Met235. Lys197 and Lys279 have significantly
lower free energies in complex-1, 2, and 5 with identical substituents
at different positions than in complex-3. In addition, Phe196 and
Phe280 are amino acid residues worthy of attention. Their free
energy contribution in different systems is higher than that of other
amino acid residues, especially in the Complex-2 system. This may
indicate that two amino acids participate in the key residues for
anchoring the compound.

3.3 Cluster analysis

Further exploration of the reasons for the strong binding ability
and intermolecular interactions of these different inhibitors is
required. It is possible to identify stable and representative
conformations through cluster analysis in order to explore
mechanisms of action between ligands and proteins. After the
system is stabilized, the dominant conformation in each system is

TABLE 8 Free energy for binding of PTP1B protein to 7 potential inhibitor ligands.

LUDI-6 LUDI-7 Design-5 Design-11 Design-12 Design-13 Design-14

ΔEele 15.0 13.6 20.6 −13.8 −15.4 −15.5 −14.7

ΔEvdw −45.3 −44.1 −42.3 −44.2 −44.5 −42.5 −28.4

ΔGGB −4.6 2.1 −9.2 19.7 23.9 21.6 22.7

ΔGSA −5.3 −5.3 −5.2 −5.2 −5.2 −4.9 −3.7

ΔGpol
a 9.7 15.7 11.4 5.9 8.5 6.1 8.0

ΔGnonp
b −50.6 −49.4 −47.5 −49.4 −49.7 −47.4 −32.1

ΔGMM-PB/SA
c −37.2 −33.7 −36.1 −43.5 −41.3 −41.4 −24.1

–TΔS 23.2 24.3 21.8 19.9 22.2 20.4 20.4

Gbind
d −14.0 −9.44 −14.3 −23.6 −19.1 −21.0 −3.7

aGpol = Eele + GGB.
bGnonp = Evdw + GSA.
cΔGMM-PB/SA = Eele + GGB + Evdw + GSA.
dΔGbind = ΔGMM-PB/SA − TS.
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taken as the most representative conformation. Based on Table 6,
cluster-1 is the dominant conformation. The Figure 4 clearly shows
that the spatial differences between different ligands vary, while
Ligand-1 can occupy the cavity position to a large extent, and can
form more intermolecular interactions.

The detailed intermolecular interactions are shown in Figures 5,
6. A hydrophobic interaction is formed by the parent ring structure
of these compounds (Leu192, Leu195, Phe196, Leu232, Met235, and
Phe280), and some of the substituents or side chains can form
hydrogen bonds (Asn193, Asp236, and Ala278). It is also important
to note that different ligands form different interactions due to their
parent rings and substitutes, and the properties of these substitutes
may provide a basis for improving drugs. Despite the fact that
Ligand-1 has fewer hydroxyl substituents than other ligands, it is still
capable of exerting interaction with sufficient residues. Compared to
Ligand-2, 3, and 5, it has limited substituents and side chains.
However, the hydroxyl group at C-3 is a hydrophilic substitute
that can stabilize the ligand’s existence, but Ligand-4 and Ligand-7
are deficient because C-2 and C-23 possess hydroxyl groups
simultaneously. The methyl group of C-23 can exert a
hydrophobic interaction on Leu192, thereby affecting the binding
affinity. As a result, side chains can be added to C-23 to enhance the
compound’s hydrophobic interaction.

Furthermore, by comprehensively considering the binding energy
and structure, the simple structure-activity relationship reveals that
the different positions of hydroxyl groups can impact the activity of
the compounds, and the energy analysis demonstrates that there are
indeed certain patterns. Following the augmentation in the quantity of
hydroxyl groups, the polar desolvation energy of the inhibitor
molecule is elevated, which is not beneficial for the contribution of
the binding free energy. Ligand-1 possesses an O-Gal substituent, and
the benzene ring establishes a π-Donor hydrogen bond with Asn193,
thereby contributing a portion of the van der Waals interaction.
Nevertheless, during the experiment, ligand-4 contains a
preponderance of hydroxyl groups and deviate from the complex
structure in the simulation process. Furthermore, given that the
quantity of hydroxyl groups remains the same (Ligand-3, Ligand-
5, Ligand-6), the compounds featuring hydroxyl groups at the C-23 or
C-24 positions exhibit a greater ΔGGB. In the complex-3 compound
system, the hydroxyl group at C-23 forms a conventional hydrogen
bond with Asn193, thereby contributing a relatively strong binding
free energy. The hydrophobic interaction furnished by Phe280 is
relatively insignificant, whereas complexes 1, 2, and 5 suggest that
Phe280 and Ile281 have a relatively high contribution to the binding
free energy. Perhaps owing to the location of the hydroxyl groups, the
ligand undergoes movement during the simulation process. This
result implies that reducing the number of hydroxyl groups, or
modifying the position of hydroxyl groups and enhancing the
number of hydrophobic groups are all beneficial for increasing the
stability of the compounds and ligands.

3.4 Combined mode of action analysis

For analysis and discussion, we divided the binding site
into three helical regions to analyze the main interaction of
these four natural product inhibitors in binding to PTP1B
(Figure 7).

Region 1 is the α3 helix region (Glu186-Glu200). Cluster analysis
results show that Leu192, Asn193, Phe196, Arg199 had interactions in
region 1. During molecular docking, hydrogen bonds or van der
Waals interactions were observed between Arg199 and the ligand.
Arg199 is positively charged, and the ligand is negatively charged,
forming a salt bridge interaction under electrostatic interaction.
Molecular dynamics results show no corresponding salt bridge
interaction formed in other complex systems. This may be because
Ligand-1 has a long side chain. Different systems formed hydrophobic
solid interactions with Phe196, indicating that pentacyclic
triterpenoids are the core structure of anchoring inhibitors.
Likewise, Leu192 forms hydrophobic interactions with different
ligands and can interact with the parent structure of the ligand
rather than its substituents or functional groups. We speculate that
the Asn193 residue is structurally close to the inhibitor and only forms
hydrogen bonds or van der Waals interactions. Compared with
Complex-2 and Complex-3, Complex-1 exhibits this phenomenon
most obviously. Asn193 forms a hydrogen bond with the O-Gal
(galloyl group) at C-3 in Complex-1.

Due to the distance between region 2 (Gly220-Lys237) and the
ligand, there is no obvious intermolecular interaction. Some amino
acid residues still contribute to a higher binding free energy.
Leu232 and Met235, for example, are between Complex-1, 2 and
5. The main interaction of these residues is hydrophobic, and we can
consider increasing the length or substituents of the C chain
structure at the head or tail of the parent structure. In order to
form hydrogen bond interactions with Leu232 or Met235, act on the
residue helix in region 2, or add substituents to the six-membered
rings in the middle of the parent ring.

Region 3 consists of the α6 helical region (Ala264-Ile279).While the
Phe280 substituent does not belong to this helical region, it produces a
strong hydrophobic interaction in all systems. As phenylalanine itself
has a benzene ring, the ligand compound moves under the influence of
various residues, and finally, the six-membered ring and the benzene
ring form a vertical stacking interaction. Phe280 contributes a high
binding free energy through this interaction. As a result, we can
consider modifying the six-membered ring, such as changing the
single carbon-carbon bond to a double carbon-carbon bond to
increase the intermolecular interaction.

Although Complex-4, 6, and 7 showed weak PTP1B inhibitory
activity, we also explored their intermolecular interactions. The
binding sites of these three compounds were identical, but they
did not produce significant effects. Molecular dynamics results
indicate that these three ligands only interact with a few amino
acid residues. In particular, ligand-4 forms hydrophobic interactions
with Asn193, Phe196, Lys197, Arg199, Glu200, Asp236, and Ile281.
Different functional groups affect van derWaals and hydrogen bond
interactions. The presence of hydroxyl groups at both C-1 and C-23
will have a significant impact on the reaction. Ligand-6 does not
have this situation, but still has a low inhibitory activity. The
framework consists of a terpene parent structure except for the
hydrogen bond formed by the carboxyl substituent and Arg199. The
structure of Ligand-6 is relatively simple, so although the compound
forms an interaction with some key amino acids, the strength of the
interaction is relatively low. Both Ligand-7 and Ligand-4 contain
carboxyl groups at C-23 and C-1. The spatial positions of these two
carboxyl groups are opposite, which may have a repulsive effect and
prevent Ligand-7 from binding to the corresponding region. MD
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simulations verified that Ligand-4 and Ligand-7 deviated when
interacting with the α3 helix region.

It may be possible to design inhibitors based on
observations above. Increasing the interaction between Phe280 and
Phe196, or considering the electrostatic interaction between
Arg199 and Phe196, as well as considering the spatial position of
the functional group, will facilitate the binding of the inhibitor
to PTP1B.

3.5 Drug design and evaluation

3.5.1 Growth or replacement of the
molecular skeleton

LUDI algorithms can help new molecular skeletons or modify
existing fragments to improve the binding capacity of ligands and
PTP1B. We modified the design of fragments where small molecules
can bind to critical regions of PTP1B. Finally, 16 compounds were

TABLE 9 Druggability analysis and toxicity test results of designed drugs.

Name Lipinski rulea PPBb BBBc H-HTd

LUDI-6 Reject 0.938 0.078 0.001

LUDI-7 Reject 0.97 0.086 0.278

Design-5 Reject 0.93 0 0

Design-11 Reject 0.945 0 0.711

Design-12 Accepted 0.842 0.001 0.006

Design-13 Accepted 0.853 0.337 0.161

Design-14 Accepted 0.758 0.001 0.999

Name LogSe LogPf LogDg SAscoreh F(20%)i Fuj

LUDI-6 −4.598 4.962 3.782 4.721 0.765 0.019

LUDI-7 −5.44 5.469 4.43 5.218 0.99 0.018

Design-5 −4.266 4.031 3.214 5.195 0.09 0.016

Design-11 −4.573 4.853 4.186 5.438 1 0.018

Design-12 −4.582 3.653 2.875 5.485 0.99 0.01

Design-13 −3.968 3.234 2.412 5.966 0.616 0.009

Design-14 −3.324 3.789 2.941 5.082 0.055 0.008

Name CYP1A2-inhk CYP2C9-inh CYP2C19-inh CYP2D6-inh CYP3A4-inh DILIl LD50(g kg-1)m

LUDI-6 0 0 0 0 0 0 2.680

LUDI-7 0 0 0.01 0 0.017 0 4.504

Design-5 0 0 0 0 0 0 3.569

Design-11 0 0 0 0 0.85 0.002 ≥10

Design-12 0 0 0 0 0 0 ≥10

Design-13 0.001 0.032 0 0.272 0 0 0.3071

Design-14 0.054 0.049 0.196 0.998 0.389 0.868 8.699

aMW (molecular mass including hydrogen atoms) ≤500; LogP (logarithm of octanol/water partition coefficient) ≤5; Hacc (hydrogen bond acceptor) ≤10; Hdon ≤ 5 (hydrogen bond donor) is

considered Acceptable, otherwise it is rejected.
bPlasma Protein Binding; If the PPB, value is higher than 90%, the therapeutic index may be lower. (0–1).
cblood brain barrier; The higher the value, the more likely it is that it cannot penetrate the blood-brain barrier. (0–1).
dHuman Hepatotoxicity; The higher the number, the more likely hepatotoxicity is present. (0–1).
eThe logarithm of the solubility of an aqueous solution. The optimal value is -4-0.5 log mol/L.
foctanol/water partition; The optimal value is 0–3.
gLogP value at physiological pH 7.4, optimal is 1–3
hSynthetic accessibility score; SAscor ≥ 6:Difficult to synthesize, SAscore < 6:Easy to synthesize.
ibioavailability (20%); category 1: F20%+,bioavailability < 20%; category 0: F20%-, bioavailability > 20%.The probability that the output value is F20+.
jUnbound fraction of plasma: low 0.05, medium 0.05–0.2, high > 0.2.
kCytochrome P450 inhibitor, category 1:inhibitor, category 0: non-inhibitor. The output value is the probability of the inhibitor.
lDrug induced liver injury; category 1: ILI, high-risk drugs, category 0: DILI, low-risk drugs. The output value is the probability of poisoning.
mMedian Lethal Dose. LD50 > 2000 mg/kg, non-toxic; LD50 < 50 mg/kg, very poisonous (Alberga et al., 2019).
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obtained according to the fragment interaction screening of LUDI
(Supplementary Figure S5).

3.5.2 Rational design of inhibitors
In addition to the LUDI design, in order to obtain ligands with

better affinity, we also carried out rational design of inhibitors. The
rational design of inhibitors requires stable interactions with amino
acid residues in key regions. In the design process, we divided into two
steps (Singh et al., 2022): Substituents of drugs are modified, added, or
removed to improve stability (Ma et al., 2021). The structure of the
compound is optimized and treated to pass the blood-brain barrier.
Display of cluster analysis results add some groups to hydrophilic
substituents or transform some residues into hydrophobic groups to
better interact with Phe280 and Phe196. Additionally, some large
groups may be added to reduce P-glycoprotein (P-gp) efflux. By
removing or modifying carboxyl groups, compounds can be more
likely to cross the blood-brain barrier and form stronger
intermolecular interactions with key residues.

Figures 5, 6 illustrate the position and molecular interaction of
the cavity in which the ligand is located. Increasing the number of
substituents for some untouched parts is also possible, which may
increase the hydrophobic interaction. Consider adding some
hydrophilic groups to the side exposed to the water environment
to stabilize the ligand’s binding capacity. In addition, there are some
other charged groups in the helix design, and the extension of the
carboxyl group of the original compound and transformation into
an electrostatic interaction will also contribute to increasing binding
free energy. In addition, to enhance the binding ability of the ligand,
substituents or extended side chains are added to the side close to the
helix, which allows the ligand to fill the protein cavity, resulting in a
higher number and stability of interactions with the α6 helix residues
(Glu276, Gly277, Ala278, Ile281).

Furthermore, as per previous research reports, the -CF3 groups
have been shown to enhance ligand binding affinity through
orthogonal dipolar C-F···C = O interactions with the protein’s
backbone carbonyl groups. This effect has also been demonstrated
in a study by Ledy De-la-Cruz-Martinez et al. (De-la-Cruz-Martínez
et al., 2021), where compounds containing -CF3 groups significantly
boosted PTP1B inhibitory activity. Additionally, the -CF3 groups can
increase lipophilicity and improve blood-brain barrier permeability,
aligning with our anticipated outcomes (Design-11 and Design-12).
We can validate this through computation of binding free energy.

3.5.3 ADMET prediction
By modifying the ligands and substituents’ structure, we

obtained 16 LUDI-modified compounds and 14 rationally
designed compounds and predicted their ADMET properties.
Figure 8 shows that only a small number of design results fall
within the 99% confidence interval of the BBB, HIA, and Log(Sw)
model, and this molecule’s prediction is considered relatively
reliable. Table 7 shows the prediction details of ADMET for
selected compounds. LUDI designed a total of 16 compounds,
rationally designed 14 compounds, and the compounds that can
pass ADMET may have the possibility of successful design.

Finally, we obtained seven compounds (LUDI-6, LUDI-7,Design-
5, Design-11, Design-12, Design-13, and Design-14) (Figure 9) and
docked them to the PTP1B protein, then performed a 200 ns MD

simulation and calculated the binding free energy. The structures of
other compounds are shown in Supplementary Figures S11, S12.

3.5.4 Molecular dynamics simulations of
designed compounds

AnMD simulation was performed on the 7 designed compounds
and the MD conditions were identical to those used for the 7 natural
inhibitors of PTP1B.Supplementary Figures S5, S6 show the RMSD
values of the designed drug system, and the fluctuation range of these
seven designed drugs is between 0.75 and 1.75 Å, fluctuating about
1 Å. Supplementary Figures S7, S8 show that the RMSF value of the
designed drug system has decreased fluctuations in the α3 and α6 helix
regions, and it can be speculated that these compounds can be stably
bound in the α3 and α6 helix regions. After conducting molecular
dynamics simulations, the designed compounds were compared with
the original protein structure (Supplementary Figures S9, S10). The
results indicated that only the Design-12 complex exhibited higher
fluctuations than the protein without the ligand at Thr230-Leu250,
while the other complex systems displayed a more stable trend. This
may be attributed to the force-inducing effect of the -CF3 group (De-
la-Cruz-Martínez et al., 2021).

3.5.5 Energy calculation of inhibitors
Table 8 shows the free binding energies of these seven potential

inhibitor ligands. It can be seen that the ΔGbind of LUDI-7 and
Design-14 is poor. Due to their weaker binding free energies than
complex-1 and complex-2, LUDI-6 and Design-5 were also excluded
from the design (Figure 9).

MM-PB/SA calculations were performed for these compounds
by selecting the last 100 ns stable trajectory. The three compounds
with the best free binding energy are Design-11, 12, and 13, which
are −23.6 kcal mol−1, −19.1 kcal mol−1, and −21.0 kcal mol-1,
respectively. A comparison of the decomposition energies of key
residues in different complex systems is shown in Supplementary
Tables S5–S11. The contributions of the three inhibitors to the van
der Waals interaction and electrostatic interaction were significantly
greater than those of the previous compounds. Intermolecular
interactions and energies indicate that the design of these three
compounds merits further investigation. We believe that the results
of these designs will provide a potential idea and a more convenient
theoretical basis for the design of future drugs. Our findings, derived
from the integration of free energy calculations, align with those
reported by Ledy De-la-Cruz-Martinez et al., providing further
evidence that the -CF3 group can enhance the efficacy of PTP1B
inhibitors (De-la-Cruz-Martínez et al., 2021).

3.6 TOPKAT and druggability analysis

To evaluate the compounds’ toxicity, use the TOPKAT module
in DS2020 and utilize the Drugflow platform to analyze druggability.
Artificial intelligence (AI) is utilized on the Drugflow platform,
which includes machine learning algorithms and deep learning
algorithms that are more accurate, resulting in more accurate
predictions. Using Drugflow’s selected MERT (Pre-train) method,
we will analyze the druggability of these LUDI-designed and
rationally designed compounds (Table 9).
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Through toxicity testing and druggability analysis of the
compounds, we finally found that compound Design-12 almost
met all our needs, not only compared to Ligand-1 (−17.6 kcal mol−1)
with a higher IC50 (2.10 μM) has better binding ability (Design-12,
-19.1 kcal mol−1). Although the binding ability of Design-13 is less
than that of Design-11 and Design-13, it has a very high safety risk,
whether it is drug loss or liver damage. The binding free energy of
Design-11 is the best of all compounds in terms of toxicity and oral
LD50 in rats. The compound also exhibits selectivity for PTP1B,
liver toxicity and oral LD50 in rats. Lipinski Rule does not accept it
because it is relatively excellent.

Furthermore, the drugs designed in the experiment are easy to
synthesize. Consequently, our research indicates that Design-12may
be an effective treatment for type 2 diabetes. The Design-11 has poor
efficacy, but it still has the potential to be useful. In addition, Design-
13 has excellent inhibitory properties.

4 Discussion

In this study, initially, natural pentacyclic triterpene PTP1B
inhibitors sharing the identical parent molecule were retrieved from
previous literature reports (Xu et al., 2018; Huang et al., 2022), and
their interaction sites and interaction patterns were investigated
through molecular docking and molecular dynamics. Subsequently,
the binding free energy and the total interaction patterns were
analyzed in accordance with the notions and approaches of
Wang and Zheng (2018). Nevertheless, the research they carried
out has constraints. For example, they investigated the inhibitory
impacts of multiple compounds on the protein; however, whether
the same holds true for compounds of the same type remains to be
deliberated. Additionally, only straightforward toxicity verification
was performed. This study aims to explore the binding mode of a
class of compounds and conduct structural analysis by comparing
compounds with the same parent molecule but different
substituents, a method that is largely applicable to other
pentacyclic triterpenoid compounds as well. Furthermore, the
structural analysis of the system can investigate the motion-
bound mode of the allosteric site of PTP1B. For instance,
Phe196 establishes π-π stacking interactions and hydrophobic
interactions with the pentacyclic triterpene, which can be
detected in all the simulated systems. This phenomenon also
suggests that the framework of the triterpenoid compound
functions in anchoring the compound. Additionally, Phe280 can
also establish supplementary π-stacking interactions in certain
systems. This is similar to the results obtained by De-la-Cruz-
Martínez et al. (2021); Ali et al. (2023); Sánchez-Alonso et al.
(2021). Unfortunately, their study simply failed to account for
the fact that the spatial positions of substituents also exert an
influence on the activity of compounds, such as the matter
regarding the hydrophilicity or hydrophobicity of the substituents
in the directions at the C-3 and C-4 regions. Nevertheless, the
structural analysis in this research might be capable of elucidating
this aspect and conducting a more meticulous analysis of the spatial
positions and states of the compounds. After conducting structural
analysis, based on its conclusions, it is feasible to investigate whether
elongating the length of substituents can enhance the stability of the
compound or make modifications that are more liable to interact

with the protein, thereby offering new concepts and insights for the
compound to bind more readily to the protein. The results also
suggest that the compounds subsequent to structural analysis
frequently exhibit more superior binding capabilities. As
hypothesized earlier, reducing the number of hydroxyl groups
truly can enhance the contribution of binding free energy and
attain a more stable system. The Design-12 compound did not
decrease the number of hydroxyl groups but rather altered the
position of the hydroxyl groups, and the contribution of the binding
free energy was higher. The results manifested that the position of
the hydroxyl groups could indeed cause the compound to undergo
deflection motions in distinct directions.

5 Conclusion

In this study,Molecular dynamics (MD) simulation andMolecular
Mechanics Poisson Boltzmann Surface Area (MM-PB/SA) were used
to study the binding patterns of allosteric sites between compounds
and PTP1B previously reported. By comparing the configurations of
different ligands and the corresponding IC50 values, we found that the
van der Waals interaction contributes the most energy, while
electrostatic interactions contribute less energy. If the inhibitor can
interact well with the critical residues of the corresponding site, it can
show high inhibitory ability. Pentacyclic triterpenoids form mostly
hydrophobic interactions with the α3 and α6 helical regions of PTP1B,
among which Phe196 and Phe280 contribute the most hydrophobic
interactions. We design 30 novel inhibitor molecules through LUDI
and rational design methods. We calculated the binding free energy
and analyzed the drugability of the designed LUDI-6, LUDI-7, Design-
5, Design-11, Design-12, Design-13 andDesign-14. The results showed
that Design-12 was the most optimal inhibitor. Although Design-14
has good druggability analysis results, its binding free energy is
deficient, thus, it will not be considered. There is a more stable
binding energy in Design-12, which shows a reasonable range in
various druggability analysis indicators. Even though the results of
Design-11 are not acceptable, it has a higher binding free energy than
Design-12, indicating a more significant inhibitory effect. The Design-
13 also has excellent properties, but its oral LD50 in rats is inferior to
that of Design-12. Our findings will provide new understanding and
suggestions for future researchers to design new and effective inhibitors
of PTP1B.
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