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Breast cancer, due to resistance to standard therapies such as endocrine therapy,
anti-HER2 therapy and chemotherapy, continues to pose a major health
challenge. A growing body of research emphasizes the heterogeneity and
plasticity of metabolism in breast cancer. Because differences in subtypes
exhibit a bias toward metabolic pathways, targeting mitochondrial inhibitors
shows great potential as stand-alone or adjuvant cancer therapies. Multiple
therapeutic candidates are currently in various stages of preclinical studies
and clinical openings. However, specific inhibitors have been shown to face
multiple challenges (e.g., single metabolic therapies, mitochondrial structure and
enzymes, etc.), and combining with standard therapies or targeting multiple
metabolic pathways may be necessary. In this paper, we review the critical
role of mitochondrial metabolic functions, including oxidative phosphorylation
(OXPHOS), the tricarboxylic acid cycle, and fatty acid and amino acidmetabolism,
in metabolic reprogramming of breast cancer cells. In addition, we outline the
impact of mitochondrial dysfunction onmetabolic pathways in different subtypes
of breast cancer and mitochondrial inhibitors targeting different metabolic
pathways, aiming to provide additional ideas for the development of
mitochondrial inhibitors and to improve the efficacy of existing therapies for
breast cancer.
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1 Introduction

Breast cancer (BC) is one of the most common malignancies worldwide, and triple-
negative breast cancer (TNBC) is considered to be one of the most aggressive subtypes
(Cocco et al., 2020; Obidiro et al., 2023). According to global data for 2020, there are nearly
2.26 million new cases of breast cancer and approximately 680,000 deaths (Cocco et al.,
2020). However, the standard of care (SOC) for BC, including endocrine therapy for
estrogen receptor-alpha (ERα) positive, anti-HER2 monoclonal antibody therapy for
human epidermal growth factor receptor-2 (HER2) positive, and chemotherapy for
TNBC subtypes, often face limitations in clinical practice due to drug tolerance (Waks
and Winer, 2019; Barzaman et al., 2020). Studies have shown that altered metabolism is a
major contributor to drug resistance. In addition, recent studies have indicated that
mitochondrial inhibitors have great potential for use in cancer treatment, either alone
or in combination with other cancer therapies (Pollak, 2012; Wheaton et al., 2014). All of
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these advances provide new perspectives and directions for the
treatment of TNBC as well as drug-resistant breast cancer.

Mitochondria are known as the “energy factories” of the cell,
capable of incorporating OXPHOS, TCA cycle, fatty acid

metabolism and amino acid metabolism (Singh et al., 2017;
Monzel et al., 2023). Enzymatic dysfunctions and disruptions in
the electron transport chain (ECT) may lead to alterations of
metabolism and redox balance, which in turn may lead to

FIGURE 1
Metabolic mechanisms of mitochondrial inhibitors and SOC of breast cancer. Mitochondria-related pathways of glucose, lipid, and amino acid
metabolism and OXPHOS (red arrows: glucose metabolism; orange arrows: lipid metabolism; blue arrows: amino acid metabolism; grey arrows:
OXPHOS), related enzymes in metabolism (yellow cycles: metabolism-related enzymes), and the regulation of related enzymes by intrinsic and extrinsic
factors (pink cycles: intrinsic and extrinsic factors; purple T symbols: inhibiting enzymes; purple arrows: promoting enzymes) are shown.
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abnormal cell death and alterations in the redox balance alterations,
which in turn trigger aberrant cell death and the development of
resistance to tumor therapy (DiMauro and Schon, 2003; Chaiyarit
and Thongboonkerd, 2020; Missiroli et al., 2020; Zhu et al., 2023). In
this context, a large number of studies have revealed a key feature of
tumor metabolism - even in the presence of sufficient oxygen and
normal mitochondrial function, tumor cells exhibit a dependence on
enhanced glucose uptake and aerobic glycolysis. Tumor cells exhibit
a dependence on glucose uptake and aerobic glycolysis even in the
presence of sufficient oxygen and normal mitochondrial function, a
phenomenon known as the‘Warburg effect’, reflecting an aberrant
metabolic adaptation of tumor cells (Koppenol et al., 2011;
Lu, 2019).

Therefore, targeting mitochondrial inhibitors, either alone or in
combination with standard therapy, is a rational and attractive
strategy (Lin et al., 2024). Currently, a variety of inhibitors
targeting mitochondrial oxidative phosphorylation are in
development, including classical inhibitors such as Metformin
and ME-344 (Quintela-Fandino et al., 2020; Sahu et al., 2022),
and newly discovered compounds such as IACS010759 (Tsuji
et al., 2020; Lu et al., 2021), which are undergoing translational
clinical studies.

2 Role of mitochondria in breast cancer

Mitochondria are key organelles involved in energy production
and cellular metabolism, especially in cancer cell metabolism, such
as glucose metabolism, lipid metabolism and amino acid

metabolism (Liu et al., 2023; Liu et al., 2024) (Figure 1). In BC,
these normal metabolic functions within the mitochondria are
significantly altered due to internal and external factors, resulting
in the so-called “metabolic reprogramming” (Wang et al., 2020).
This metabolic reprogramming is a new metabolic strategy adopted
by tumor cells in response to changing microenvironmental and
various stress conditions, aiming at supporting their proliferation,
survival and invasiveness, thereby promoting tumor progression.

Intrinsic factors involve transcription factors such as MYC, ER,
p53, BCAH, and HIF-1a, whereas extrinsic factors include reactive
oxygen stress and high-fat diets, among others (Lewoniewska et al.,
2021; Mao and Jiang, 2023). These factors exert selective pressures
on tumor cells, leading to the fact that only those cells that have been
transformed through adaptive metabolism can survive and
reproduce (Cruz-Leite et al., 2023). In a study by Qianlu Yang
et al., the tumour heterogeneity of type A and type B breast cancers
was revealed by using metabolomics and transcriptomics
techniques. This finding further confirms that different subtypes
of breast cancer have different metabolic properties, which has
important implications for therapeutic strategies (Mao and Jin,
2019; Yang et al., 2024) (Table 1).

3 Targeting lipid metabolism

Lipid metabolism consists of a complex series of molecular
processes involving lipid uptake, denovo synthesis, and
catabolism, with fatty acid oxidation (FAO) in the mitochondria
being particularly critical (Fu et al., 2020). Within the mitochondria,

TABLE 1 Mitochondrial inhibitors: Targeting metabolism in disease management.

Metabolism Intervention Target Disease type References

Lipid metabolism Etomoxir CPT1 Breast cancer Hou et al. (2020)

Trimetazidine Beta-oxidation Heart failure van de Bovenkamp et al. (2023)

Amino acid
metabolism

CB839 GLS1 Breast cancer, multiple myeloma, rectal cancer Demas et al. (2019), Zhao et al. (2020), Hong
et al. (2022)

Canagliflozin GDH breast cancer Papadopoli et al. (2021)

Glucose metabolism Enasidenib IDH AML Chen et al. (2023)

HH-2301 IDH1 Advanced cholangiocarcinoma, chondrosarcoma
and glioma

Wang et al. (2022)

Dichloroacetate PDK NSCLC, metastatic breast cancer Zhang et al. (2018)

CPI-613 PDH Pancreatic cancer, biliary tract cancer Sun (1981), Mohan et al. (2023)

ME-344 Complex I Breast cancer Quintela-Fandino et al. (2020)

Metformin Complex I Breast cancer, thyroid cancer Thakur et al. (2018), Sahu et al. (2022)

FRV-1 Complex I Breast cancer Monroy-Cárdenas et al. (2023)

IACS-010759 Complex I AML Tsuji et al. (2020), Lu et al. (2021)

DX3-213B Complex I Pancreatic cancer Xue et al. (2022)

Mito-LND Complex II Lung cancer, glioblastoma Cheng et al. (2019), Guo et al. (2023)

Oligomycin A Complex V (ATP
synthase)

Breast cancer Gale et al. (2020)
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fatty acids are converted to acetyl coenzyme A (Ac-CoA) via FAO,
and Ac-CoA subsequently enters the TCA cycle and the oxidative
phosphorylation process to produce ATP and key oxidative
reducing coenzymes, such as NADH and FADH2, which provide
the necessary energy to maintain normal cellular function (Badr
et al., 2020). In breast cancer cells, then, specific reprogramming of
lipid metabolism occurs to meet the demands of their rapid growth.

Internal factors Oncogenic factor p53 regulates metabolism
through its non-classical pathway and inhibits tumorigenesis.
Wild-type p53 (wt p53) promotes FAO and inhibits tumor
proliferation by up-regulating the expression of carnitine
palmitoyltransferase 1C (CPT1C), malonyl coenzyme A
decarboxylase (MCD), and lipoprotein 1 (LPIN1) (Zhuang et al.,
2019; Fadó et al., 2023; Mao and Jiang, 2023; Wang et al., 2023;
Zheng et al., 2023). Mutant p53 reduces phosphorylation of acetyl
coenzyme A carboxylase (ACC) by inhibiting AMP-activated
protein kinase (AMPK), leading to increased malonyl coenzyme
A levels and CPT1 receives inhibition, resulting in decreased FAO
levels as well as enhancement of the lipid synthesis pathway (Zhou
et al., 2014; Herzig and Shaw, 2018).

In addition, p53 interacts with intrinsic factors, such as SREBP,
and extrinsic factors, such as hypoxia and high-fat environments, to
regulate mitochondrial lipid metabolism. In breast cancer, mutant
p53 increases cholesterol synthesis and ubiquinone production by
activating SREBP2 to promote the mevalonate pathway (Dai et al.,
2022; Laka et al., 2022). Ubiquinone is not only involved in electron
transfer within mitochondria, but also acts as an antioxidant to
adapt tumor cells to changes in external factors such as increased
reactive oxygen species (ROS), and these functions promote
tumorigenesis metastasis (Laka et al., 2022). In hypoxia or
nutritional deficiencies, cancer cells can promote the conversion
of cholesterol into cholesterol via acetyl coenzyme A synthetase
(ACSS) one and 2 promote the transformation of acetate to Ac-CoA,
which maintains TCA cycling and energy production and supports
cancer cell survival (Schug et al., 2015; Gao et al., 2016). In patients
with TNBC on a high-fat diet, tumor cells promote ATP production
by enhancing mitochondrial FAO (Dai et al., 2022).

Different subtypes of breast cancer show significant differences
in lipid metabolism (Dai et al., 2022). For example, in HER2+ BC,
higher expression levels of CPT1A and fatty acid synthase (FASN)
show a strong dependence on lipid metabolism. Research has
demonstrated that FAO constitutes a significant metabolic
pathway in TNBC, and is correlated with the activation of Src
signaling (Ahn et al., 2024). Moreover, it has been found that fatty
acid oxidation is required for metastasis in TNBC (Madan et al.,
2021). In addition, metabolic reprogramming leads to an increase in
FAO in ER+ breast cancers, which improves resistance to resistance
to endocrine therapy (Yan et al., 2023).

Therefore, personalized therapeutic strategies by knocking down
the CPT1 gene or using FAO inhibitors for specific subtypes can
effectively enhance therapeutic efficacy and increase sensitivity of
tumor cells to treatment (Li et al., 2021). Malonyl CoA has an
inhibitory effect on CPT1, which, in turn, inhibits FAO (Zhelev
et al., 2022). Based on this, it is not surprising that the use of malonyl
coenzyme A decarboxylase MCD inhibitors to increase malonyl
CoA content has emerged as a potential metabolic pathway strategy
for exploring heart failure therapies (Wang et al., 2019). In addition,
Etomoxir, the most commonly used CPT1 inhibitor, had a

significant inhibitory effect on MYC-induced mammary
carcinoma mice (Hou et al., 2020).

4 Targeting amino acid metabolism

Tumor cells also adapt to internal and external selective
pressures and material-energy demands by reprogramming
amino acid metabolism to accommodate these selective pressures
and demands. Among them, proline metabolism and glutamate
metabolism play important roles in metabolic reprogramming in
cancer (Liu et al., 2012; Zhou et al., 2019; Guo and Wu, 2020).

Proline oxidase/proline dehydrogenase (POX/PRODH), an
enzyme associated with the inner mitochondrial membrane, plays
an essential role in breast cancer cell growth and metastasis by
converting proline to pyrroline-5-carboxylate (P5C) and generating
FADH2, which provides electrons for the ECT and promotes ATP
production (Zhou et al., 2019). In BC, the intrinsic factor
p53 directly regulates PRODH/POX transcription, whereas MYC
indirectly affects PRODH/POX by stimulating the expression of
miR-23b (Lewoniewska et al., 2021). Enhanced expression of
PRODH has been observed in metastatic tumors relative to
primary tumors among patients with BC (Tanner et al., 2018). In
orthotopic 4T1 mouse model, lung metastasis of tumors was
reduced by targeting PRODH and did not damage normal tissue
cells (Tanner et al., 2018).

Glutamate and ornithine are the main sources of proline, which
can also be synthesized from proline in mitochondria, thus linking
proline metabolism to the TCA cycle and the urea cycle (Burke et al.,
2020). The p53 promotes the conversion of glutamine to glutamate
by upregulating glutaminase 2 (GLS2). Glutamate is the precursor of
α-ketoglutarate (α-KG), a key component of the TCA cycle, thereby
fuelling the TCA cycle and maintaining cellular redox homeostasis
(Lukey et al., 2019). In drug-resistant breast cancer MYC is
overexpressed, glutamine transporter proteins SLC1A5 and GLS
are upregulated, and glutamate metabolism is markedly enhanced to
promote proliferation of drug-resistant tumor cells. Inhibition of
MYC, SLC1A5 and GLS effectively attenuated the proliferation of
drug-resistant cell (Cunha et al., 2023).

Different degrees of amino acid reprogramming were
demonstrated in different types of BC. Specifically, the HER2+

subtype is one of the most glutamine metabolism-dependent
subtypes, and the elevated levels of glutamine transporter protein
(SLC1A5) and GLS transcripts in HER2+ breast cancers increased
their dependence on glutamine metabolism, thus identifying new
therapeutic targets for HER2+ breast cancers (Lv et al., 2022). In
addition, the overexpression of GLS in TNBC, which is highly
resistant to Glutamine catabolism-targeted therapy was sensitive,
with specific metabolic levels expressed as a low glutamine/
glutamate ratio (Wang et al., 2020). Whereas in ER+ BC,
compared to other subtypes of breast cancer, a low glutamate
level was expressed (Cha et al., 2018).

In treatment, according to the metabolic profiles of different
subtypes, inhibitors targeting amino acid metabolism can be used
for precision therapy to modulate tumor cell proliferation,
metastasis, and drug resistance (Hong et al., 2022). Studies have
shown that targeting glutamine metabolism enhances the sensitivity
of TNBC to platinum-based chemotherapy. In addition, the
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glutaminase inhibitor CB839 effectively inhibited tumor growth of
TNBC cells (Demas et al., 2019).

5 Targeting glucose metabolism

Glucose is the most common source of energy for mammalian
cells and it can be converted to pyruvate by glycolysis. Under
hypoxic conditions, pyruvate undergoes reduction to lactate
mediated by lactate dehydrogenase (LDH). Conversely, in an
oxygen-rich environment, pyruvate is transported into the
mitochondria where it is decarboxylated by the pyruvate
dehydrogenase (PDH) complex, leading to the production of Ac-
CoA. The oxidation of Ac-CoA occurs via the TCA cycle, involving a
series of key enzymes, and ultimately produces CO2, H2O, and
bioenergetic products GTP, NADH, and FADH2 (Krebs, 1970;
Freire et al., 2014). In summary, the TCA cycle represents the
final polymerization pathway for the oxidation of lipids,
carbohydrates, and amino acids (Akram, 2014).

Within tumor mitochondria, the TCA cycle often shows
abnormalities in key enzymes of metabolism, which in turn
contributes to the reprogramming of sugar metabolism in
tumor cells (Nie et al., 2020). In addition, abnormalities in the
TCA cycle further lead to abnormalities in mitochondrial oxidative
phosphorylation of ATP-producing mitochondria (mtOXPHOS),
and finally, have an impact on the proliferation, growth and
metastasis of tumor cells (Ghilardi et al., 2022; Passaniti
et al., 2022).

In tumor cells, glucose is biased toward the glycolytic pathway
due to the phosphorylation of PDH by pyruvate dehydrogenase
kinases (PDKs). Inhibition of PDKs activity not only blocks this
metabolic pathway, but also activates mitochondrial oxidative
metabolism and induces apoptosis. Studies have shown that
breast cancer cells enhance survival by enhancing glycolysis, but
activation of PDH restores glucose oxidation, increases tumor cell
sensitivity to anaerobiosis, and reduces metastatic potential
(Kamarajugadda et al., 2012).

Mutations of isocitrate dehydrogenase (IDH) one and 2 impair
the decarboxylation of α-KG to isocitrate and enhance the
production of 2-hydroxyglutarate (2HG) (Jane et al., 2023). This
enzymatic disruption leads to elevated DNA methylation levels, a
phenomenon frequently observed in diseases such as acute myeloid
leukemia (AML) (Wilde et al., 2019; Pei et al., 2023).

Succinate dehydrogenase (SDH) and fumarate hydratase (FH)
are key enzymes in the TCA cycle with concomitant oncogenic
activity (Riemann et al., 2019; Muralidharan et al., 2022). In BC,
SDH inhibits tumor cell growth and metastasis by suppressing EMT
(Røsland et al., 2019). Meanwhile, FH has also been found to be
absent or downregulated in its expression in breast cancer
(Gonçalves et al., 2018; Riemann et al., 2019).

In addition, malic enzyme (ME2), which is involved in the
replenishment response of the TCA cycle, correlates with the levels
of HIF-1α in breast cancer and affects cell proliferation and
metastasis (You et al., 2021). A liposomal nano-formulation
delivering the Fenton’s catalyst, copper oleate, and the HIF-1
inhibitor, acridinium flavonoids (ACF), has been reported to be
useful for breast cancer treatment, which further emphasizes the role
of HIF-1α in the regulation of BC (Guo et al., 2021).

Abnormalities in these TCA cycle-related enzymes affect the
entry of NADH, FADH2 into mtOXPHOS. The mtOXPHOS
involves five complexes located on the inner mitochondrial
membrane, which together make up the, ETC (Fernandez-
Vizarra and Zeviani, 2021). During rapid proliferation, cancer
cells exposed to hypoxic conditions often exhibit a metabolic
transition from OXPHOS to glycolysis (Pal et al., 2022). A
decrease in OXPHOS has been commonly described in BC cells.
In MDA-MB-231 cells, TNF-α was found to reduce the activity of
complex I (Shinde et al., 2021). In addition, in TNBC cells,
mitochondrial respiratory capacity was significantly reduced due
to downregulation of the expression of complexes I and V (Guha
et al., 2018). However, it has been shown that inhibition of OXPHOS
can target tumor stem cells, inhibit cellular dependence on
OXPHOS, and reduce tumor cell survival and proliferation (Liu
et al., 2023). Overall, targeting OXPHOS appears to be a promising
approach to limiting metastasis in breast cancer.

For glucose metabolism, different cancers have different
glycolytic-OXPHOS propensities. ER+ breast cancer has been
shown to exhibit an intermediate metabolic phenotype in the
glycolytic-OXPHOS spectrum. However, ER+ BC is more
dependent on OXPHOS than TNBC (Xu et al., 2020). In HER2+

BC, mitochondrial HER2 tyrosine kinase activity is activated, which
not only stimulates oxidative phosphorylation, but also accelerates
glycolysis (Schlam and Swain, 2021). In terms of proline, metastatic
breast cancer metabolizes proline more vigorously than primary
breast cancer, and TNBC metastasizes fastest compared to other
subtypes of breast cancer (Tanner et al., 2018; Jiang et al., 2024).

These findings emphasize the importance of reprogramming of
glucose metabolism in cancer development and provide a theoretical
basis for anticancer strategies with mitochondrial inhibitors.
IDH1 and IDH2 mutations may also occur in
cholangiocarcinomas, melanomas, prostate cancers, lung cancers,
breast cancers, and colorectal cancers (McBrayer et al., 2018;
Scotlandi et al., 2020). It has been found that IDH inhibitors.
Enasidenib and ivosidenib have been approved for the treatment
of BC (Chen et al., 2023). In addition, Dichloroacetate, a PDK
inhibitor, contributes to the increase of PDH activity, and has been
reported to have significant antimicrobial activity against NSCLC
and metastatic breast cancer. ME-344 inhibits mitochondrial
oxidative phosphorylation complex I and has been used as a
single agent in a phase I trial for the treatment of patients with
refractory solid tumors (Quintela-Fandino et al., 2020). In proline
metabolism, rapamycin promotes mitochondrial autophagy in
POX-dependent cancer cells by enhancing POX activity (Huynh
et al., 2020), and HDAC inhibitors (TSA/SAHA) significantly
increase POX expression and autophagy in TNBC cells by
activating AMPK (McBrayer et al., 2018).

6 Discussion

With the deeper knowledge of one of the tumor hallmarks,
namely, metabolic reprogramming, the field of targeting multiple
metabolic pathways within the mitochondria has revived and many
drugs have entered clinical practice or preclinical studies. Among
them, mitochondrial inhibitors have a wide range of applications in
the study and treatment of many diseases, especially in the study of
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mitochondrial disorders, metabolic syndromes, neurodegenerative
disorders, and cancer. However, due to the necessity of
mitochondria in normal cellular function, mitochondrial
inhibitors can often have many adverse effects on normal cells.
For example, IACS-010759, an inhibitor of complex I, showed side
effects such as elevated lactate levels and neurotoxicity in a phase I
clinical study (Yap et al., 2023). Therefore, monitoring the toxicity of
antitumor drugs such as mitochondrial inhibitors to avoid damage
to normal cells is a major concern.

In addition, the special structure of mitochondria itself is also a
difficult point for the development of mitochondrial inhibitors.
Compared with the permeability of the outer mitochondrial
membrane, the inner mitochondrial membrane sets up a barrier
for the flow of small molecule (Musicco et al., 2023). Therefore, the
development of compounds targeting intracellular mitochondrial
membrane transporter proteins may be an effective option.

In addition to this, key enzymes in mitochondrial metabolism
often have multiple isoforms with high similarity, such as GLS one
and 2, pyruvate kinase (PKM) 1 and 2, and hexokinase (HK) 1 and 2
(Sainero-Alcolado et al., 2022; Ma et al., 2023). Besides,
mitochondrial enzymes exhibit plasticity in cancer progression.
In a single-cell assessment of gene expression of tumor metabolic
enzymes, mitochondrial enzymes were found to exhibit the highest
variability in the same tumor (Xiao et al., 2019). Coupled with the
fact that the intracellular and extracellular microenvironment can
vary depending on tumor type or subtype, cancer cells exhibit
metabolic heterogeneity in the face of changes in internal and
external factors (Fendt et al., 2020). The development of
mitochondrial inhibitor presents significant challenges. Strategies
for metabolic monotherapy include targeting multiple metabolic
pathways simultaneously or using drugs for specific metabolic
pathways in combination with standard therapies. This approach
provides a reasonable option for cancer treatment. Critically,
effective metabolic therapies require the integration of a multi-
omics approach and the use of advanced technologies including
metabolic profiling, tracking, and tumor single-cell sequencing in
order to accurately stratify patients and implement customized
treatments (Gandhi and Das, 2019).
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