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Lung cancer, recognized globally as a leading cause of malignancy-associated
morbidity and mortality, is marked by its high prevalence and lethality, garnering
extensive attention within the medical community. Mitophagy is a critical cellular
process that plays a crucial role in regulating metabolism and ensuring quality
control within cells. Its relevance to lung cancer has garnered significant attention
among researchers and scientists. Mitophagy’s involvement in lung cancer
encompasses its initiation, progression, metastatic dissemination and
treatment. The regulatory landscape of mitophagy is complex, involving
numerous signaling proteins and pathways that may exhibit aberrant
alterations or mutations within the tumor environment. In the field of
treatment, the regulation of mitophagy is considered key to determining
cancer chemotherapy, radiation therapy, other treatment options, and drug
resistance. Contemporary investigations are directed towards harnessing
mitophagy modulators, both inhibitors and activators, in therapeutic strategies,
with an emphasis on achieving specificity to minimize collateral damage to
healthy cellular populations. Furthermore, molecular constituents and
pathways affiliated with mitophagy, serving as potential biomarkers, offer
promising avenues for enhancing diagnostic accuracy, prognostic assessment,
and prediction of therapeutic responses in lung cancer. Future endeavors will also
involve investigating the impact ofmitophagy on the composition and function of
immune cells within the tumor microenvironment, aiming to enhance our
understanding of how mitophagy modulates the immune response to lung
cancer. This review aims to comprehensively overview recent advancements
about the role of mitophagy in the tumor genesis, progenesis andmetastasis, and
the impact of mitophagy on the treatment of lung cancer. We also discussed the
future research direction of mitophagy in the field of lung cancer.
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1 Introduction

Lung cancer represents the foremost cause of oncology-related mortality globally, with
approximately 2.1 million new cases and 1.8 million deaths each year (Garg et al., 2020). The
clinical importance of lung cancer is highlighted not only by its high rates of incidence and
mortality, but also by the difficulties in detecting it at an early stage. Lung cancer is mostly
diagnosed in advanced stages, after significant disease progression, which greatly limits the
effectiveness of current treatments. The complexities of lung cancer are further complicated
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by its diverse pathological classifications, with non-small cell lung
cancer (NSCLC) being the most common type. (Yan et al., 2024).
The treatment and prognosis of lung cancer are significantly
influenced by various factors, including the patient’s genetic
predisposition, molecular characteristics of the tumor, and
metabolic status of the cancer cells.

In recent years, the elucidation of cellular metabolic pathways’
roles in the progression of lung cancer has garnered increasing
attention. In this context, mitophagy, a quintessential process for
cellular metabolic regulation and quality assurance, has been
recognized as a critical mechanism (Zhou et al., 2023). This
specialized autophagic process is indispensable for the removal of
impaired or non-functional mitochondria, thereby safeguarding
cellular energetic equilibrium and metabolic stability (Filippelli
et al., 2022). Under physiological conditions, mitophagy serves as
a protective mechanism, forestalling oxidative stress and cellular
demise consequent to mitochondrial malfunctions (Wang et al.,
2024). Mitophagy is instrumental in sustaining the cellular milieu’s
stability and the equilibrium of cellular energetics through the
selective eradication of impaired or non-functional mitochondria.
Within the ambit of oncogenesis, mitophagy has a dual function. On
one side, it contributes to carcinogenesis by promoting cellular
migration, maintaining cancer stemness, and fostering resistance
to pharmacological interventions. Conversely, the induction of
mitophagy through specific pharmacological agents has been
shown to disrupt normal cellular metabolic processes, trigger
cellular stress responses, and induce genetic alterations by
exacerbating mitochondrial dysfunction, ultimately leading to an
antitumor effect (Qiu et al., 2021). As mitophagy is increasingly
recognized as a crucial mechanism in the development and
progression of lung cancer, its dysregulation within the context
of lung cancer can have significant consequences. These include
influencing tumor cell proliferation, viability, resistance to drugs,
and metastatic capabilities. Understanding the complex role of
mitophagy in lung cancer is essential for developing targeted
therapeutic strategies and improving patient outcomes.

This review provides a comprehensive summary of the
involvement of mitophagy in the initiation, progression, and
therapeutic approaches of lung cancer, along with the underlying
mechanisms elucidated by recent studies. Additionally, the
challenges and future research directions of mitophagy in lung
cancer are also discussed.

2 Overview of mitophagy

Mitophagy, a critical cellular process, involves the selective
degradation of mitochondria through autophagy, and plays a
crucial role in maintaining mitochondrial quality control and
cellular homeostasis (Pickles et al., 2018; Filippelli et al., 2022;
Yang et al., 2024).

Mitophagy is initiated by a complex signaling pathway in
response to various cellular stresses, such as mitochondrial
damage, oxidative stress, or energy depletion (Arora et al., 2022).
The primary modalities that govern mitophagy encompass
ubiquitin-dependent, receptor dependent, and other pathways
(Ma et al., 2023; Tang et al., 2024). The process begins with the
recognition and tagging of damaged or dysfunctional mitochondria

by specific proteins, such as Parkin, proteins like PTEN-induced
kinase 1 (PINK1), Bcl-2/adenovirus E1B 19-kDa-interacting protein
3 (BNIP3), and Nix (Wu et al., 2023; Yang et al., 2024). These
proteins work together to target the damaged mitochondria for
degradation. Once tagged, the damaged mitochondria are engulfed
by a double-membraned structure called the autophagosome (Lu
et al., 2023). This structure then fuses with a lysosome, forming an
autolysosome (Lu et al., 2023). The lysosome contains enzymatic
machinery that degrades the contents of the autophagosome,
including the damaged mitochondria. Mitophagy eliminates
dysfunctional mitochondria, which could otherwise lead to the
accumulation of toxic molecules and the induction of cellular
apoptosis (Chourasia et al., 2015). It also allows for the recycling
of damaged mitochondria components, such as proteins and lipids,
thus promoting mitochondrial renewal and maintaining cellular
energy metabolism (Morán et al., 2014).

3 Role of mitophagy in the
development and progression of
lung cancer

At the molecular level, the regulatory landscape of mitophagy in
lung cancer is governed by a complex network of key molecules and
signaling pathways. (Berthier et al., 2011; Liu M. et al., 2021; Arora
et al., 2022). Within the milieu of lung cancer, disruptions or
dysfunctions in these signaling pathways can significantly alter
the accuracy and efficiency of mitophagy. These regulatory
perturbations can profoundly impact tumor cell behavior and the
course of disease progression, highlighting the complex interaction
between cellular homeostasis mechanisms and oncogenic processes
(Figure 1; Table 1).

3.1 The tumorigenesis of lung cancer
and mitophagy

In early-stage lung cancer, there are significant alterations in the
cell environment, including augmented oxidative stress and
disturbances in energy metabolism (LeBleu et al., 2014).
Mitophagy plays a critical role in maintaining mitochondrial
balance by removing damaged mitochondria (Chen et al., 2024).
As a result, activating mitophagy helps eliminate damaged
mitochondria, reducing the release of reactive oxygen species
(ROS). This process is crucial for maintaining energy balance
and reducing oxidative stress, which could potentially prevent the
oncogenic transformation of cells (Song et al., 2023). Impaired
mitophagy leads to decreased elimination of damaged
mitochondria, resulting in elevated ROS production and the
buildup of mitochondrial DNA in the cytoplasm (Ng Kee Kwong
et al., 2017). Mitophagy may play a tumor-suppressive role by
reducing excessive ROS production and inhibiting inflammasome
activation (Morselli et al., 2011; Ng Kee Kwong et al., 2017). Parkin,
an essential E3 ubiquitin ligase, is activated by phosphorylated
ubiquitin and plays a crucial role in orchestrating the
polyubiquitination of a wide array of substrates (Morselli et al.,
2011; McWilliams and Muqit, 2017). Proteins like PTEN-induced
kinase 1 (PINK1) and Parkin function as key regulators in detecting
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FIGURE 1
The representative mechanism of mitophagy in lung cancer.

TABLE 1 Role of mitophagy in lung cancer.

Potential targets Tissues/Cells Signaling Function References

Parkin Human lung adenocarcinomas/
A549 cell line

- Different parkin isoforms are expressed in
human lung adenocarcinomas. Some of them
are also present in A549 cell line

D’Amico et al.
(2015)

Pink1 Squamous carcinoma of lung - Diffuse cytoplasmic expression of Pink1 in
SQCC contrasts with the granular cytoplasmic
pattern in normal lung tissues

Berthier et al.
(2011)

Sphk1 A549, H1299 cell line miR-495–3p/
Sphk1

Induces lethal mitophagy to suppressNSCLC
tumorigenesis

Arora et al. (2022)

TP53 NSCLC Tumor tissues - TP53-p.Glu358Val as a driver mutation that
activates mitophagy to support cancer cell
growth

Wang et al. (2022)

CAV1, DSG2, DSP, MYH11, NME1, PAICS,
PLOD2 (Seven Mitophagy and aging-related
genes)

Lung adenocarcinoma - Mitophagy and aging-related genes linked
with the prognosis of lung adenocarcinoma
patients

Meng et al. (2023)

FIS1 Lung cancer stem cells - Enhancement of mitophagy in lung CSCs,
induced by FIS1 through mitochondrial
fission, correlates with diminished overall
survival

Liu et al. (2021a)

TLR9 Lung cancer stem cells Notch1/AMPK Lung cancer stem-like cells show high levels of
mitophagy, resulting in lysosomal mtDNA
accumulation that activates TLR9 and
Notch1-AMPK signaling. The TLR9-Notch1-
AMPK pathway promotes CSC expansion and
can be therapeutically targeted

Liu et al. (2023b)

SQCC, lung squamous cell carcinoma; NSCLC, non-small cell lung cancer; CAV1, caveolin 1; DSG2, desmoglein 2; DSP, desmoplakin; MYH11, myosin heavy chain 11; NME1, NME/

NM23 nucleoside diphosphate kinase 1; PAICS, phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthetase; PLOD2, procollagen-lysine

two-oxoglutarate; FIS1, fission 1.
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mitochondrial stress and initiating autophagic responses (Berthier
et al., 2011). Disruption in the Pink1/Parkin mitophagy pathway,
also observed in lung cancer, plays a role in the pathogenesis of
chronic obstructive pulmonary disease (COPD) (Mizumura et al.,
2014; D’Amico et al., 2015). The diminution of Parkin in COPD-
afflicted lungs correlates with increased ROS and senescence in
bronchial epithelial cells (Ito et al., 2015). Notably, diffuse
cytoplasmic expression of Pink1 in lung squamous cell carcinoma
(SQCC) contrasts with the granular cytoplasmic pattern in normal
lung tissues, implicating aberrant Pink1 expression in lung
carcinogenesis (Berthier et al., 2011). Human lung
adenocarcinomas exhibit variable Parkin isoforms, potentially
modulating apoptosis, mitophagy, and mitochondrial fusion
(D’Amico et al., 2015). Sphingolipid metabolites, specifically
ceramide and sphingosine-1-phosphate (S1P), play a crucial role
in cellular proliferation and apoptosis. Sphk1, a key enzyme
converting sphingosine into S1P, promotes cell proliferation and
survival (Ogretmen, 2018). MiR-495–3p, by targeting Sphk1, shifts
the sphingolipid balance towards ceramide, inducing lethal
mitophagy to inhibit NSCLC tumorigenesis (Arora et al., 2022).
These studies indicate that mitophagy has a dual role in the early
stages of lung cancer development, serving as both a protective
mechanism and a facilitator of cancer initiation (Gozuacik and
Kimchi, 2004).

3.2 Mitophagy in lung cancer progression
and metastasis

As lung cancer advances, the intricacies of mitophagy’s role
become increasingly complex. Mitochondria, pivotal for
intracellular energy metabolism, assume a critical role, especially
in tumor cells, given their elevated energy requisites (Liu J. et al.,
2023). This process meticulously governs cellular metabolic states
and energy generation, profoundly influencing the proliferation and
division of lung cancer cells (Zhu et al., 2022). Enhanced mitophagy
furnishes additional energy requisite for the expedited proliferation
and growth of cancer cells (Qiu et al., 2021). Simultaneously, it
occupies a central role in cellular death mechanisms, encompassing
apoptosis and necrosis (Li et al., 2023). Under certain conditions,
lung cancer cells may invoke mitophagy to evade apoptosis,
engendering heightened drug resistance and survival (Liu D.
et al., 2021; Liu Z. et al., 2023). Moreover, the metastatic process
in cancer is intricately linked with mitophagy (He et al., 2023).
Successful metastasis necessitates not only ample energy for cancer
cells but also alterations in cell-to-cell interactions and migratory
capabilities. Mitophagy modulates these aspects by influencing
various intracellular signaling pathways and molecules, thereby
affecting cellular adhesion, motility, and invasive potential (Liu
D. et al., 2021; Wu et al., 2022; Liu Z. et al., 2023; Li et al., 2023).

The TP53 gene, prevalently mutated in cancer and recognized as
a tumor suppressor, is mutated in half of NSCLC cases (Mogi and
Kuwano, 2011; Nguele Meke et al., 2024). A next-generation
sequencing (NGS) study on tumor tissues from 314 Chinese
NSCLC patients delineated the mutational landscape in NSCLC,
identifying TP53-p.Glu358Val as a driver mutation that activates
mitophagy to support cancer cell growth (Wang et al., 2022).
Pharmacological inhibition of autophagy/mitophagy selectively

curtails the proliferation of TP53-null or TP53-p.Glu358Val-
expressing lung cancer cells (Wang et al., 2022). Mitophagy and
aging (MiAg)-related genes are pivotal in tumors and prognostication
for various cancer types. Seven MiAg-related genes—caveolin
1(CAV1), desmoglein 2 (DSG2), desmoplakin (DSP), myosin
heavy chain 11 (MYH11), NME/NM23 nucleoside diphosphate
kinase 1 (NME1), phosphoribosylaminoimidazole carboxylase
and phosphoribosylaminoimidazolesuccinocarboxamide synthetase
(PAICS), procollagen-lysine 2-oxoglutarate 5-dioxygenase
2(PLOD2)—have been significantly linked with the prognosis of
lung adenocarcinoma (LUAD) patients (Meng et al., 2023).
Cancer stem cells (CSCs), first identified in the hematopoietic
system and subsequently in various solid tumors, exhibit self-
renewal and differentiation capacities, significantly influencing
tumorigenesis, metastasis, and recurrence (Bao et al., 2013; Liu D.
et al., 2021). Mitochondria, serving as the energy reservoir for cells,
and mitophagy, are vital for CSC survival (Lee et al., 2018).
Enhancement of mitophagy in lung CSCs, induced by fission-1
(FIS1) through mitochondrial fission, correlates with diminished
overall survival (Liu D. et al., 2021). Hypermitophagy
characterizes human lung CSCs, fostering metabolic adaptation
via the Notch1-AMPK axis to propel CSC expansion (Liu Z.
et al., 2023).

4 The relationship between mitophagy
and lung cancer treatment

4.1 The growing significance ofmitophagy in
lung cancer therapeutics

The nuanced role of mitophagy in lung cancer therapeutics has
emerged as a focal point in modern oncological discourse. Its critical
influence on the biological dynamics of lung cancer cells,
significantly impacting the efficacy of diverse therapeutic
approaches, is increasingly acknowledged (Table 2).

Melittin, known for its robust surface activity on lipid
membranes, interacts with membranes and induces membrane
fragmentation (Li et al., 2023). Recently, melittin has
demonstrated promising therapeutic effects in various tumors,
including glioblastoma (Ertilav and Nazıroğlu, 2023), breast
cancer (Daniluk et al., 2023), and melanoma (Jeong et al., 2023).
It targets mitochondria and impedes mitophagy flux in
adenocarcinoma alveolar cancer (A549) cell lines (Li et al., 2023).
Erastin, a classical inducer of ferroptosis, exhibits promising
pharmacological effects in cancer therapeutics (Mou et al., 2019).
Celastrol, derived from the traditional Chinese medicinal herb
Tripterygium wilfordii, known as Thunder God Vine, has
demonstrated potent antitumor activities across various cancer
cell lines and in vivo models (Tang et al., 2015). The synergistic
application of erastin with celastrol precipitates cell death at subtoxic
concentrations, amplifying reactive oxygen species (ROS)
production, perturbing mitochondrial membrane potential, and
facilitating mitochondrial fission. Moreover, the concurrent
administration of erastin and celastrol instigates autophagy-
related 5 (ATG5)/ATG7-dependent autophagy, PINK1/Parkin-
mediated mitophagy, and the induction of heat shock proteins
(HSPs) in a heat shock factor 1 (HSF1)-dependent manner (Liu
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TABLE 2 The relationship between mitophagy and lung cancer treatment.

Cells Signaling Relationship between mitophagy
and lung cancer treatment

References

HCC827, A540, and H1299 PINK1/Parkin Erastin and celastrol instigates ATG5/ATG7-
dependent autophagy, PINK1/Parkin-mediated
mitophagy, and the induction of HSPs in an HSF1-
dependent manner. The suppression of HSF1 further
intensifies cell death in NSCLC cell lines HCC827,
A540, and H1299, and impedes tumor proliferation
in vivo

Liu et al. (2021b)

A549 and H1299 cells - PHB2 reduced parkin-mediated mitophagy, which
suppressed proliferation and migration of A549 and
H1299 cells

Zhang et al. (2020a)

A549 cell line - DFP, an iron chelator that can induce mitophagy,
greatly increased the death of A46T Parkin-
expressing lung cancer cells

Zhang et al. (2020b)

A549 cell line DHE, known for its antimigraine properties, triggers
lung cancer cell demise through apoptosis and
mitophagy induction

Chang et al. (2016)

A549 cell line Ursolic and oleanolic acids, widespread in plants and
fruits, exhibit anticancer properties and induce
mitophagy in A549 human lung cancer cells

Castrejón-Jiménez et al. (2019)

A549 cell line Depletion of PINK1 in A549 cells via shRNA reduces
cell proliferation, augments cell death, diminishes
ATP production, inhibits mitophagy, and increases
ROS alongside caspase-9-dependent apoptosis

Dai et al. (2019)

A549 cell line Mitophagy was found to be induced by resveratrol
and mitophagy was mediated by LC3B/
p62 interaction and could be inhibited by LC3B
knockout and p62 knockdown following increased
apoptosis in A549 cells

Zheng et al. (2021)

A549 cell line APE1 promotes the cisplatin resistance of lung
cancer cells by inducing Parkin-mediated mitophagy

Li et al. (2019)

A549 cell line CAV1 silencing augments cisplatin sensitivity via
inhibition of Parkin-related mitophagy and
activation of the ROCK1 pathway

Liu et al. (2020)

H69, H69AR (a cell line induced by H69 with
doxorubicin), H446, and HBE cell line

METTL3/DAP2/Pink1/
Parkin

The m6A methyltransferase METTL3 regulates
Pink1-Parkin pathway-mediated mitophagy and
mitochondrial damage in SCLC cells by targeting
DCP2, thereby promoting chemotherapy resistance
in patients with SCLC.

Sun et al. (2023)

HEK293FT cell line - BEX2 expression is elevated after anticancer drug
treatment, and its overexpression inhibits
chemotherapy-induced apoptosis. In addition,
inhibition of BEX2-regulated mitophagy sensitizes
tumor cells to apoptosis

Mu et al. (2023)

H1975 and PC9 cell line The circular RNA IGF1R (cIGF1R), encoded by
IGF1R, serves as a molecular switch that limits the
mitophagy of drug-tolerant persister tumor cells in
NSCLC

Wang et al. (2023)

A549, SPC-A1, NCI-H460 and NCI-H520 cell line Temozolomide-perillyl alcohol conjugate (TMZ-
POH) disrupts mitophagy flux by eliciting lysosomal
dysfunction within NSCLC cells, thereby augmenting
their sensitivity to radiation therapy

Chang et al. (2018)

A549 cell line CIRBP/PINK1/Parkin DHA reduces radiation-induced mitophagy and
radioresistance of lung cancer A549 cells via CIRBP/
PINK1/Parkin pathway

Wu et al. (2022)

ATG5/ATG7, autophagy-related 5/autophagy-related 7; HSPs, heat shock proteins; NSCLC, non-small cell lung cancer; DFP, deferiprone; APE1, apurinic/apyrimidinic endonuclease 1; CAV1,

caveolin 1; ROCK1, rho-associated coiled-coil kinases 1; METTL3, methyltransferase-like 3; DAP2, dipeptidyl aminopeptidase; DCP2, decappingmRNA, 2; SCLC, small-cell lung cancer; BEX2,

brain expressed X-linked 2; TMZ-POH, temozolomide-perillyl alcohol conjugate; DHA, dihydroartemisinin; CIRBP, cold inducible RNA, binding protein.
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M. et al., 2021). The suppression of HSF1 further intensifies cell
death in NSCLC cell lines HCC827, A540, and H1299, and impedes
tumor proliferation in vivo (Liu M. et al., 2021). Prohibitin 2
(PHB2), situated in the inner mitochondrial membrane (IMM),
functions as a mitophagy receptor (Wei et al., 2017). Elevated
PHB2 levels in human NSCLC specimens, relative to adjacent
non-tumor tissues, have been observed. The inhibition of
PHB2 expression attenuates mitophagy in A549 and human lung
adenocarcinoma (H1299) cells, as evidenced by reduced LC3 II/I
and parkin markers and increased p62 protein levels. The
downregulation of PHB2 diminishes parkin-mediated mitophagy,
curbing the proliferation and migration of A549 and H1299 cells
(Zhang H. et al., 2020). Typically, Parkin is dispersed throughout the
nucleus and cytosol, relocating to damaged mitochondria under
stress to facilitate the ubiquitination of mitochondrial proteins and
instigate mitophagy (Harper et al., 2018). Mutations in the tumor
suppressor gene PARK2 disrupt PINK1/Parkin-mediated
mitophagy in lung cancer cells and deferiprone (DFP), an iron
chelator that can induce mitophagy, greatly increased the death of
A46T Parkin-expressing lung cancer cells (Zhang Z. L. et al., 2020).
Dihydroergotamine tartrate (DHE), known for its antimigraine
properties, triggers lung cancer cell demise through apoptosis and
mitophagy induction (Chang et al., 2016). Ursolic and oleanolic
acids, widespread in plants and fruits, exhibit anticancer properties
and induce mitophagy in A549 human lung cancer cells (Castrejón-
Jiménez et al., 2019). The depletion of PINK1 in A549 cells via
shRNA reduces cell proliferation, augments cell death, diminishes
ATP production, inhibits mitophagy, and increases ROS alongside
caspase-9-dependent apoptosis (Dai et al., 2019). Cells deficient in
PINK1 exhibit heightened sensitivity to the glycolytic inhibitor 3-
bromopyruvate (3-BP), further disrupting ATP synthesis (Dai et al.,
2019). Resveratrol (Res), a polyphenol phytoalexin, is recognized for
its antitumorigenic and chemopreventive properties (Jang et al.,
1997). Res induces non-canonical autophagy and apoptosis in
A549 lung cancer cells, whereas LC3B/p62-mediated mitophagy
shields tumor cells from apoptosis, elucidating the pivotal role of
mitophagy in determining cell fate (Zheng et al., 2021).

4.2 Mitophagy and chemotherapy

Chemotherapy remains a fundamental strategy in lung cancer
management, yet it frequently confronts the obstacle of tumor cell
resistance to pharmacological interventions (Gridelli et al., 2005; Bao
et al., 2013). In this milieu, mitophagy assumes a complex role,
influencing the efficacy of chemotherapeutic regimens (Gridelli
et al., 2005; Li et al., 2019; Liu et al., 2020). Cisplatin, a
quintessential chemotherapeutic agent, is widely administered
across a spectrum of solid tumors, encompassing testicular, head
and neck, ovarian, esophageal, cervical, and non-small cell lung cancer
(NSCLC) (Kelland, 2007). The pervasiveness of cisplatin resistance,
however, compromises the therapeutic success in advanced NSCLC
treatments (Gridelli et al., 2005). Apurinic/apyrimidinic endonuclease
1 (APE1), a pivotal multi-functional DNA repair enzyme, is integral
for DNA damage repair, redox regulation, and transcription factor
activity modulation (Li and Wilson, 2014). The mitochondrial
translocation of APE1 enhances the mitochondrial membrane
potential, diminishes cytochrome c levels, and triggers Parkin-

mediated mitophagy, contributing to cisplatin resistance in lung
cancer cells (Li et al., 2019). Conversely, Caveolin-1 (Cav-1)
expression is significantly reduced in A549 lung cancer cells
following cisplatin exposure, where Cav-1 silencing augments
cisplatin sensitivity via inhibition of Parkin-related mitophagy and
activation of the Rho-associated coiled-coil kinases 1 (ROCK1)
pathway (Liu et al., 2020). Parkin-independent mitophagy also
dictates the chemotherapeutic response in various cancers, notably
breast and lung adenocarcinomas (Villa et al., 2017). While small cell
lung cancer (SCLC) patients initially respond to platinum-based
chemotherapy, durable responses are rare, frequently leading to
chemoresistance and disease recurrence (Bao et al., 2013).
Methyltransferase-like 3 (METTL3), a prominent m6A
methyltransferase, influences a myriad of biological processes,
including proliferation and migration (Zaccara et al., 2019). It
modulates the Pink1-Parkin pathway-mediated mitophagy and
mitochondrial damage in SCLC cells by targeting decapping
mRNA 2 (DCP2), thereby facilitating chemoresistance in SCLC
patients (Sun et al., 2023). Additionally, the BEX2 gene, part of the
brain-expressed X-linked gene family, through crotonylation,
interacts with NDP52 to augment mitophagy, influencing
chemotherapeutic-induced apoptosis in NSCLC cells (Naderi, 2019;
Mu et al., 2023). The circular RNA IGF1R (cIGF1R), encoded by
IGF1R, serves as amolecular switch that limits themitophagy of drug-
tolerant persister tumor cells in NSCLC (Wang et al., 2023).
Modulating mitophagy offers a promising avenue to enhance lung
cancer cell sensitivity to chemotherapeutic agents, potentially
circumventing the perennial challenge of drug resistance.

4.3 Radiotherapy and mitophagy

Mitophagy is garnering growing attention in lung cancer
radiotherapy. Radiation therapy provokes DNA damage and
oxidative stress within cellular structures, and mitophagy plays a
pivotal role in mitigating these adverse effects (Chang et al., 2018;
Wu et al., 2022). The Temozolomide-perillyl alcohol conjugate (TMZ-
POH), an innovative derivative synthesized through the amalgamation
of Temozolomide (TMZ) and perillyl alcohol (POH), has demonstrated
pronounced anticancer efficacy across a spectrum ofmalignancies (Cho
et al., 2012). TMZ-POH disrupts mitophagy flux by eliciting lysosomal
dysfunction within Non-Small Cell Lung Cancer (NSCLC) cells,
thereby augmenting their sensitivity to radiation therapy (Chang
et al., 2018). Dihydroartemisinin (DHA), recognized for its
anticancer properties and minimal toxicity, is increasingly being
explored in both preclinical and clinical settings as an anticancer
agent or a therapeutic adjuvant (Li et al., 2021; Wu et al., 2022).
DHA attenuates radiation-induced mitophagy and radioresistance in
lung cancer A549 cells through the inhibition of the Cold-Inducible
RNA Binding Protein (CIRBP), offering new avenues for enhancing the
effectiveness of radiotherapy in lung cancer treatment (Wu et al., 2022).

5 Challenges and future research
directions in mitophagy for lung cancer

Mitophagy, an area of pivotal significance in lung cancer
research, has witnessed notable advancements yet faces myriad
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challenges and uncharted territories. These challenges encompass
the complexity of mitophagy mechanisms, its incorporation into
lung cancer diagnostics, therapeutic strategies, and prognostic
assessments.

5.1 Challenges in mitophagy for lung cancer

Mitophagy holds promise for lung cancer therapy due to its role
in cellular homeostasis and apoptosis. However, several challenges
must be addressed to harness its potential:

1. The intricate regulatory mechanisms of mitophagy in lung
cancer are not fully understood, complicating the development
of targeted interventions.

2. Mitophagy can either suppress or promote tumor growth
depending on the context, making it challenging to predict
its therapeutic impact.

3. Establishing a direct link between mitophagy activity and lung
cancer patient outcomes is difficult due to the disease’s
heterogeneity and the challenges in measuring mitophagy in
clinical settings.

4. Creating drugs that selectively modulate mitophagy in lung
cancer cells without affecting healthy cells is a
significant challenge.

5. Understanding and overcoming the role of mitophagy in drug
resistance is crucial for improving treatment efficacy.

6. The interaction between mitophagy and immune cell function
within the tumor microenvironment is complex. The challenge
lies in leveraging this interaction to enhance the effectiveness of
immunotherapies.

7. Bridging the gap between preclinical findings and clinical
application involves overcoming significant translational
research barriers, including safety, efficacy, and
regulatory hurdles.

8. The diverse genetic and environmental backgrounds of lung
cancer patients complicate the development of personalized
mitophagy-based therapies.

5.2 Future research directions in mitophagy
for lung cancer

Although current studies enhance our understanding of the role
of mitochondrial homeostasis in lung cancer, there are still some key
questions about the process and function of mitophagy in
lung cancer.

1. Further research is needed to dissect the molecular pathways
that regulate mitophagy in lung cancer cells. Understanding
these mechanisms could reveal novel therapeutic targets.

2. Studies should explore howmitophagy influences the composition
and function of the immune cells within the tumor
microenvironment. This could provide insights into how
mitophagy modulates the immune response against lung cancer.

3. The development and testing of mitophagy modulators, either
as standalone treatments or in combination with existing
therapies, could enhance the efficacy of lung cancer treatments.

4. Research should focus on how mitophagy contributes to the
development of drug resistance in lung cancer, potentially
leading to strategies to overcome this barrier.

5. Identifying biomarkers related to mitophagy could improve
early detection and prognosis of lung cancer, potentially
leading to more personalized treatment approaches.

6. Investigating the relationship between mitophagy and
metastasis could uncover new strategies to prevent or treat
the spread of lung cancer.

6 Conclusion

Mitophagy has ascended to prominence within the domain of
lung cancer research, serving as a pivotal mechanism for
maintaining cellular energy equilibrium and metabolic integrity.
It accomplishes this by targeting and removing damaged or
dysfunctional mitochondria, thereby exerting a profound
influence on the growth, survival, and chemoresistance of lung
cancer cells. The role of mitophagy is integral to the initiation,
advancement, and dissemination of lung cancer, with its regulatory
network comprising an array of signaling molecules and pathways.
These components are subject to potential dysregulation or
mutations within the context of lung cancer, further complicating
the disease’s pathology. Further exploration of these issues may
facilitate the development of novel strategies for lung cancer
prevention and treatment.
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