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Introduction: Snakebites are acute systemic toxic diseases caused by snake
venom entering the body through wounds. Failure to use antivenom immediately
and difficulty in obtaining antivenoms are frequently responsible for worsening
disease. Traditional Chinese medicine is commonly used to supplement and
replace antivenom in treating snakebites. The Jidesheng snake pill (JDS) is a
widely used traditional Chinese medicine that has achieved good clinical
therapeutic effects; however, its mechanism remains unclear. Therefore,
metabolomics techniques were employed to explore the pathophysiological
mechanisms of JDS treatment of Agkistrodon halys (Ah) snake venom-
poisoned mice.

Methods: The Ah group mouse model was established by intramuscular
injection of Ah venom into the hind legs of the mice. The Ah venom + JDS
group model was established using JDS after the affected area was treated with
Ah venom. Hematoxylin and eosin (HE) staining was used to evaluate the
severity of gastrocnemius injury. Quantitative polymerase chain reaction
(qPCR) was utilized to detect the mRNA expression of vascular cell adhesion
molecule-1 (VCAM-1), muscle-specific creatine kinase (CKM), thrombin
antithrombin complex (TAT), and tumor necrosis factor-alpha (TNF-α). Gas
chromatography-mass spectrometry (GC-MS) was performed with multivariate
statistical analysis to provide new insights into the global metabolic profile of Ah
venom-poisoned mice.

Results: HE staining revealed increased red cell necrosis, local hemorrhage,
and neutrophil infiltration in the Ah venom group than in the control group.
Several compounds were identified, including lipids, amino acids, peptides,
and organooxygen. Eighty differential metabolites were screened between
the control group and the Ah venom group, and 24 were screened between
the Ah venom and JDS groups. The mechanism of Ah venom poisoning in
mice may involve aminoacyl-tRNA biosynthesis, various amino acid
metabolism disorders, tricarboxylic acid circulation disorders, and
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abnormal fatty acid metabolism. JDS may reduce symptoms by affecting long-
chain fatty acid and amino acid metabolism and promoting nicotinamide-
nicotinamide metabolism.

Conclusion: Our results suggest that metabolomics has huge prospects for
elucidating the pathophysiology of Agkistrodon haly venom poisoning and
therapeutic mechanisms of JDS.
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1 Introduction

Snakebites affect 1.8–2.7 million people worldwide annually,
resulting in an estimated 80,000–130,000 deaths (Longbottom et al.,
2018). Chongqing is located in the southwestern part of China, with
lush vegetation suitable for the growth and reproduction of snakes,
including Agkistrodon halys (Ah), Protobothrops mucrosquamatus,
Agkistrodon acutus, and Trimeresurus. The primary clinical
symptoms of snakebites are progressive painful swelling and
bleeding, which can be life-threatening in severe cases (Suhita
et al., 2022). Hematotoxicity and cytotoxicity are the main
manifestations of snakebites. Snakebites can have long-term
physical after-effects, such as amputation, paralysis, disability,
and mental health consequences (Ralph et al., 2022).

Antivenoms are currently the most effective treatment for
snakebites; however, they have some limitations. First, antivenoms
are expensive and difficult to obtain due to the complex production
process required for their production and preservation (Chippaux,
2010). Second, antivenom has a poor effect on damaged organs
(Trevett et al., 1995). Finally, some patients have severe allergic
reactions to antivenom (Mahmoudi et al., 2021). In China,
traditional Chinese medicine is used as a supplement and substitute
for antivenoms (Huang and Hsieh, 2020; Ye et al., 2023). Jidesheng
snake pill (JDS) is the most widely used and mainly contains Paris
polyphylla Sm (qì yè yí zhīhuā), Toad Skin (chán chú pí), Centipede (wú
gōng), and Euphorbia humifusa Willd (dì jíng cǎo). In the record of
Chinese Pharmacopoeia 2020 edition, Polyphyllin was identified as the
main component of JDS by HPLC, and its content was greater than
0.2 mg per tablet (0.4 g).

Its value is mentioned in ancient Chinese medicine books, such
as Shennong Materia Medica, Materia Medica, and Compendium of
Materia Medica. According to the modern medical theory, Paris
polyphylla Sm. Affect heart muscle cells (Zeng et al., 2022). Toad
skin is primarily used to treat tumors (Namba et al., 1989).
Centipede and Euphorbia humifusa Willd have antibacterial
effects (Ali et al., 2019; Lan et al., 2023), but the mechanism of
action of JDS and its main components in snake bites has not been
thoroughly elucidated.

Metabolomics is the quantitative analysis of low relative molecular
mass metabolites of an organism or cell during a specific physiological
period (Wu et al., 2023). Metabolomics technology can accurately
reflect disease states through metabolites, allowing us to understand
the development of the disease and provide possibilities for further
treatment (DeBerardinis and Keshari, 2022). Simultaneously, changes
in body function caused by therapeutic measures are reflected at the
metabolomic level, which facilitates our interpretation of treatment
results (Cutshaw et al., 2023). Recently, metabolomics techniques have

been increasingly used to investigate the pathogenesis of diseases (Guo
and Zhang, 2023). Metabolomics techniques have been applied to the
early diagnosis and severity assessment of malignant tumors,
cardiovascular and cerebrovascular diseases, poisoning, and other
diseases (Sun et al., 2019; Arenas et al., 2023; Liu et al., 2024), as
well as the development of new drug therapeutic targets (Qiu et al.,
2023). Metabolomic analysis is a newmethod to study the mechanisms
of action of traditional Chinese medicine and its derivatives (Wang
et al., 2021). We tried to understand the changes in the body after
snakebites using metabolomics techniques to provide the possibility for
treating subsequent diseases.

In this study, we propose a metabolomics approach based on
gas chromatography-mass spectrometry (GC-MS) to analyze
metabolic changes in mice with Ah snake venom poisoning
and evaluate the therapeutic targets and mechanisms of JDS
for snake bites. We sought to provide a new perspective on
snakebites and explore possible metabolic changes associated
with snakebite disease.

2 Material and methods

2.1 Animals and drugs

Seventy-one 8–12-week male C57BL/6 wild-type (WT) mice (20 ±
2 g) were purchased from the Laboratory Animal Center of Chongqing
Medical University and raised in an SPF animal room. The protocol was
approved by the Institutional Animal Care and Use Committee of
Chongqing Medical University (IACUC-CQMU-2023-0445). The
room temperature was maintained at 24°C ± 2°C with humidity of
40%–45%. A 12-h light/dark cycle was set, and the mice were allowed
free access to a standard diet and water. All subjects were given adaptive
feeding for 2 weeks before the experiment.

JDS is manufactured by Essence Pharmaceutical Co., Ltd,
jiangsu, China (Batch number 21220707; SFDA approval
number Z32020048).

2.2 Compounds in JDS by UHPLC-MS/MS

The compounds in JDS were analyzed using the Vanquish™
ultrahigh-performance liquid chromatography (UHPLC) system
(Thermo Fisher Scientific, Bremen, Germany). The chromatographic
column used was the ACQUITY UPLC HSS-T3 (2.1 mm × 100 mm,
1.8 µm), with a column temperature of 35°C, flow rate of 0.3 mL/min,
and total time of 20 min. The mobile phase comprised 0.1% aqueous
formic acid solution (solvent A) and 0.1% Acetonitrile formate (solvent
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B). The gradient elution conditions are shown in Supplementary Table
S1. Q-Exactive HFX mass spectrometer was combined with UHPLC
system, and mass spectra were collected in positive and negative ion
modes of ESI. (Supplementary Figure S1; Supplementary Figure S2;
Supplementary Table S2).

2.3 Median lethal dose (LD50) calculation of
ah venom

The median LD50 of Ah venom (HunanWolongtang Ascending
Biotechnology Co., Ltd.) in mice fluctuated from 1 to 10 mg/kg in
different studies. In this experiment, 36mice were randomly selected
and divided into six groups to determine the LD50 of Ah venom
samples. Six groups of mice were injected with 0.1 mL snake venom
solution of 1, 2, 4, 6, 8, and 10 mg/kg. Mouse death was recorded in
each group within 7 days (Supplementary Table S3). The LD50 was
calculated using probability unit regression in SPSS 23.0 (Sun et al.,
2019). Simultaneously, a dose (2 mg/kg) with a survival rate of more
than 90% and a local response was selected as the test dose
(Supplementary Table S4).

2.4 Establishment and grouping of
snakebite model

Twenty-one mice were divided into the control (n = 3), Ah
venom (n = 9), and Ah venom + JDS (n = 9) groups. Snake venom
solution (1 mg/mL) was prepared with phosphate buffered saline
(PBS)solution and lyophilized powder of snake venom. The mice
were anesthetized with an intraperitoneal injection of 1%
phenobarbital sodium (40 mg/kg), and the skin was prepared on
the right hind leg. In the Ah venom and Ah venom + JDS groups,
0.04 mL snake venom solution was injected into the gastrocnemius
muscle to establish the disease model of snake bite. The mice in the
Ah venom + JDS group were given an external application of JDS
0.4 g + PBS (3 mL) to the right hind leg twice daily.

According to the time of specimen collection after modeling, the
Ah venom group was divided into 4 h Ah venom (n = 3), 24 h Ah
venom (n = 3), and 7 days Ah venom (n = 3) groups. The Ah venom
+ JDS group was divided into 4 h Ah venom + JDS (n = 3), 24 h Ah
venom + JDS (n = 3), and 7 days Ah venom + JDS (n = 3) groups.
None of the mice died before specimen collection.

2.5 Sample collection and processing

Specimens were collected at 4 h, 24 h, and 7 days after
establishing the snakebite mouse model. Mice were fully
anesthetized with an intraperitoneal injection of 1% sodium
phenobarbital (40 mg/kg). The beards were trimmed, the eyeballs
were removed with curved forceps, and blood was collected using a
sterile Eppendorf (EP) tube rinsed with 0.1 mL heparin. The EP tube
was mixed up and down to obtain a full anticoagulant. The right
hind leg was fully exposed. The gastrocnemius muscle was removed,
rinsed with sterile PBS), and fixed in 4% paraformaldehyde for
morphological examination. The remainder was rinsed with sterile
PBS and transferred to a dry EP tube for examination.

2.6 Blood routine test

Blood samples were analyzed within 0.5 h using an automatic
animal blood analyzer XT-2000i (SYSMEX Co., LTD., Japan). White
blood cells, platelets, and red blood cells from the two mice groups
were compared.

2.7 Hematoxylin and eosin (HE) staining

Fresh tissue from the mouse lungs was fixed for 24 h with 10%
paraformaldehyde and sectioned after routine dehydration and
paraffin embedding. Pathological changes in the lungs were
observed under a light microscope after HE staining.

2.8 ELISA kits

The muscle tissue was washed with precooled PBS to remove
residual blood and cut into pieces after weighing. The scission tissue
was mixed with a corresponding volume of PBS and recorded.
Protease inhibitors were added to a glass homogenizer after adding
PBS and ground thoroughly on ice. The final homogenate was
centrifuged at 5,000 × g for 5 min, and the supernatant was used
for detection. CKM, TAT, and VCAM-1 levels were measured
using ELISA kits.

2.9 RNA isolation and quantitative
PCR (qPCR)

Total RNA was extracted from the muscle tissue using TRIzol
reagent and DNase I digestion, according to the manufacturer’s
instructions (Lei and Sun, 2018). cDNA was generated from the
total RNA extracted from the tissues using a reverse transcription
reaction kit (TAKARA, Japan). The cDNA was used as a template
for subsequent qPCR assays. The primers used in this study are
listed in Supplementary Table S5.

2.10 Metabolites extraction

The muscle tissue (20 mg) was mixed with 500 µL of cold
methanol-water (50% v/v) in a ball mill for 10 min. The samples
were prepared as previously described (Guo and Zhang, 2023).
The metabolites were extracted using a sequence of the following
solvents: 300 µL tridecanoic acid (2.5 mg/mL) in ethyl acetate:
ethyl alcohol (1:1); 200 µL methanol; 200 µL methanol: H2O (3:1);
200 µL dichloromethane: methanol (1:1). The liquid was mixed
with the samples and the supernatant was collected by
centrifugation at 1,000 g for 5 min. Briefly, 20 µL of liquid
was mixed from each sample to obtain a quality control (QC)
sample. All samples were dried using an MTN-2800D
concentrator. The metabolites in the samples were silylated
and methoxylated, as shown below. Briefly, 167 µL of
methanol and 34 µL of pyridine were added as the methyl
donor and catalyst, respectively. Subsequently, 200 µL of
sodium hydroxide (1 M) was added. The reaction was
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initiated by adding 20 µL methyl chlorate and 30-s rotation.
Methyl chlorate (20 µL) was then added, and the mixture was
rotated for another 30 s. Briefly, 400 µL chloroform and 400 µL
sodium bicarbonate (50 mM) were added and rotated for 10 s, the
lower chloroform phase was separated, and anhydrous sodium
sulfate was added to remove excess water. Finally, the derived
metabolites were isolated from the reaction mixture. The sample
mixture (100 µL) was transferred to a vial before the GC-
MS analysis.

2.11 GC/MS analysis

The metabolites were analyzed using an Agilent 6890 N/
5,973 N series GC-MS system. Compounds were identified
according to two criteria: >85% spectral match with our
library and within 1 min of the corresponding
chromatographic retention time. The relative abundance of
metabolites was extracted using in-house MassOmics software,
and the peak height of the highest reference ion mass was
calculated. The temperature was maintained at 85°C for 3 min
and then raised to 280°C at a rate of 10°C/min. The samples were
rapidly injected in the split mode at 260°C. Mass spectra were
obtained in full scan mode using repeated scans from 60 to
600 m/z. The injection volume used was 1 µL. The compounds
were statistically analyzed, deconvolved, and identified using an

automated mass spectrometry deconvolution and identification
system (AMDIS) based on a self-developed methyl chloroformate
derivatization mass spectrometry library. Quick peak-view
technology was used to promote fragment ion analysis using a
peak-matching algorithm. The data were peak-detected, and
noise was reduced, leaving only true analytical peaks for
further processing.

2.12 Data processing and analysis

The fragment ion analysis process was enhanced by
implementing quick peak view technology using a peak-
matching algorithm. Following peak detection, the data were
reduced to noise to ensure that only the genuine analytical
peaks were subjected to further processing. The Rt-m/z data
pairs were used as identifiers, and this process was repeated for
each analysis. In a table, the data were sorted to align the correct
peak intensity data for each Rt-m/z pair. MarkView software was
used to extract, pre-process, and normalize all ion features. The
pre-processed data matrix was imported into MetaboAnalyst
(https://www.metaboanalyst.ca/) for multivariate statistical and
pathway analyses.

2.13 Statistical analysis

Statistical analyses were performed using MetaboAnalyst
(https://www.metaboanalyst.ca/). All quantitative experiments
were performed in triplicate. Metabolites significantly differed
when | logFC | > 0.5 and p < 0.05. GraphPad Prism 8.0 was used
for plotting. Data are expressed as mean ± standard deviation (SD).
Student’s t-test was used for pairwise comparisons. A p-value <0.
05 was statistically significant.

3 Results

3.1 Histological analysis of muscle tissue

The mice showed muscle cell necrosis, local hemorrhage, and
neutrophil infiltration as the main manifestations after modeling
compared, with the control group. Local pathological changes began
to appear at 4 h after modeling, which was most obvious at 24 h and
significantly improved after 7 days. The Ah venom + JDS group
showed a dynamic change trend similar to that of the Ah venom
group but with lighter pathological changes at each time point than
the venom group (Figure 1).

3.2 Detection of red blood cells, white blood
cells, and platelets in mice

Compared with the control group, the leukocyte counts of mice
showed a downward trend in the Ah venom and Ah venom + JDS
groups; the change was most obvious at 24 h, and the trend was
improved at 7 days. At different time points, the decreased degree of
leukocyte count was lower in the Ah venom + JDS group than in the

FIGURE 1
Histological image of muscle tissue samples. The mice showed
muscle cell necrosis (▲), local hemorrhage (+), and neutrophil
infiltration (→) as the main manifestations after modeling. The local
pathological changes began to appear at 4 h after modeling,
which was most obvious at 24 h and significantly improved
after 7 days.
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Ah venom group. The 4 h Ah venom + JDS, 24 h Ah venom + JDS,
4 h Ah venom, and 24 h Ah venom groups showed significant
differences (p < 0.01).

Compared with the control group, the erythrocyte counts of
the Ah venom and Ah venom + JDS groups showed a downward
trend, and the change was most obvious at 24 h and improved at
7 days. After forming the disease model, erythrocytes showed a
progressive downward trend without improvement observed
during the observation period. The Ah venom + JDS and Ah
venom groups did not differ significantly at different time
points (p > 0.05).

Compared with the control group, the platelet counts of
mice in the Ah venom and Ah venom + JDS groups exhibited a
decreasing trend, and the change was most obvious at 4 h and
gradually improved at 24 h and 7 days. The decrease in platelet
count was lower in the Ah venom + JDS group than that in the
Ah venom group at different time points. The Ah venom + JDS
and 4 h Ah venom groups differed significantly (p <
0.05, Figure 2A).

3.3 Detection of enzymes in mouse muscle
homogenates using ELISA

VCAM-1 is rapidly activated by vascular endothelial cells in the
inflammatory state and functions as a cell adhesion molecule,
mediating the arrival of leukocytes, monocytes, and neutrophils
at the site of inflammation (Wei et al., 2023). Compared with the
control group, VCAM-1 expression in the muscle homogenate of
the Ah venom and Ah venom + JDS groups revealed an increasing
trend, and the change was gradually obvious with time at 4 h, 24 h,
and 7 days. VCAM-1 expression in the muscle homogenate of the
Ah venom + JDS group was lower than that of the Ah venom group
in the disease group at different time points, without statistical
significance (p > 0.05).

CKM is an enzyme expressed in various tissues, and its serum
concentration is used as a biomarker of muscle injury (Fernández-
Torres et al., 2021). Compared with the control group, CKM
expression in the muscle homogenate of the Ah venom and Ah
venom + JDS groups showed an increasing trend, and the change

FIGURE 2
Blood routine examination, ELISA, qPCR for mice tissues. (A) The levels of WBC, RBC and PLT in mouse. (B) The Levels of vcam-1, ckm, and TAT in
mouse muscle tissue homogenate. (C) The expression of TNF-a mRNA in mouse muscle tissue homogenate. WBC, white blood cell; PLT, blood platelet;
RBC, Red blood cell. VCAM-1, vascular cell adhesion molecule-1; TAT, thrombin antithrombin complex; CKM, muscle-specific creatine kinase; TNF-a,
Tumour necrosis factor alpha. (*p < 0.05, **p < 0.01, and ns mean p > 0.05).
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was most obvious at 4 h, while it had a gradually decreasing trend at
24 h and 7 days. CKM expression was lower in the rat muscle
homogenate of the Ah venom + JDS group than in the Ah venom
group at different time points. The difference between the Ah venom
+ JDS and 4 h Ah venom groups was statistically
significant (p < 0.05).

TAT has been linked to muscle ischemia/reperfusion injury and
is a biomarker of an organism’s hypercoagulable state (Zhou et al.,
2024). Compared with the control group, TAT expression in the
muscle homogenate of the Ah venom and venom + JDS groups
exhibited a downward trend, and the change was most obvious in
the Ah venom group at 24 h and recovered at 7 days. The Ah venom
+ JDS group change was most obvious at 4 and 24 h, and 7 days
showed a gradual increase. CKM expression was lower in the rat
muscle homogenate of the Ah venom + JDS group than that in the
Ah venom group at different time points. The difference between the

24 h Ah venom + JDS and 24 h Ah venom groups was significant
(p < 0.05, Figure 2B).

3.4 Detection of TNF-α mRNA in mouse
muscle homogenates using qPCR

Compared with the control, Ah venom, and Ah venom +
JDS groups, TNF-α mRNA expression in mouse muscle
homogenates showed an upward trend. The increased rate of
TNF-α mRNA was lower in the muscle homogenate of the Ah
venom + JDS group than that in the Ah venom group at
different time points. At 4 h, TNF-α expression was
significantly increased in the Ah venom group compared
with the Ah venom + JDS group, and the difference was
statistically significant (p < 0.05, Figure 2C).

FIGURE 3
Heatmap of identified metabolites. (A) Box plots and kernel density plots before and after normalization. (B) The visual heat map. (C) Principal
Component Analysis (PCA).
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3.5 Metabolomic analysis of mouse muscle

3.5.1 Data analysis before processing
Before the statistical analysis, the missing value was used to

retain variables with non-missing values greater than 80%, and
the remaining “0” value was assigned the average value. Some
unmatched metabolites were identified by comparing
physicochemical properties and/or database similarity of
reference substances, and metabolites with a >85%
matching degree were used. Sample weight normalization
and logarithmic transformation of the data were
performed (Figure 3A).

3.5.2 Analysis of metabolites in mouse
muscle tissue

Principal component analysis (PCA) is a statistical analysis
tool that visualizes the differences between metabolite levels
under the influence of different factors (Debik et al., 2022).
The heatmap reveals the standard concentration of each
metabolite in each sample on a false-color scale. The
samples and metabolites were organized according to the
corresponding hierarchical clustering tree (Pietrafesa et al.,
2023). In this study, a heatmap (Figure 3B) and PCA
(Figure 3C) displayed a good clustering effect. The
differences in the metabolites between the two sequences
were screened using limma analysis. When time was used as
the independent variable, 80 metabolites were differentially
expressed in the 4 h, 24 h, and 7 days groups than in the control
group (either | logFC | > 0.5, p < 0.05, Supplementary Table S6;
Figure 4A). Among them, 24 metabolites were upregulated,
whereas 56 were downregulated. The top five upregulated
distributions were succinic acid, citraconic acid, glyoxylic

acid, malonic acid, and tricosanoic acid. The top five
downregulated metabolites were L-threonine, tryptophan,
phenylalanine, serine, and isoleucine. When the before and
after treatments were the independent variables,
29 metabolites were differentially expressed in the Ah venom
+ JDS group than in the Ah venom groups at different time points
(either | logFC | > 0.5, p < 0.05). (Supplementary Table S7;
Figure 4B). Among them, adipic acid and tridecanoic acid were
upregulated, whereas the other 27 metabolites were
downregulated. The top five downgrades of the 29 metabolites
were heneicosanoic acid, lignoceric acid, behenic acid, D4-alanine,
and trichloroethane.

3.6 Metabolic pathway analysis

Topology and enrichment analyses were performed using
metaboanalyst 5.0 (https://www.metaboanalyst.ca/) to screen for
metabolic pathways. 1) Compared with the control group,
39 metabolic pathways were enriched in the Ah venom groups.
Among these, 17 different metabolic pathways were screened (p < 0.
05, Figure 5A). 2) Compared with Ah venom groups, 12 metabolic
pathways were enriched in the Ah venom + JDS groups. Among
these, six metabolic pathways were screened (p < 0.05, Figure 5B).

4 Discussion

Venomous snake bites are an acute health problem worldwide.
In 2009 and 2017, the General Assembly of the World Health
Organization (WHO) adopted relevant documents on treating
snakebites, requiring more attention and increasing research

FIGURE 4
The differences in themetabolites between the two sequenceswere screened using limma analysis. (A) limma analysis of Ah vemon group vs control
group. (B) limma analysis of Ah vemon + JDS group vs Ah vemon group.
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investment (Minghui et al., 2019). Although antivenin is the most
effective treatment for venomous snake bites, it cannot effectively
treat pathophysiological changes in the target organs after
poisoning. Currently, traditional Chinese medicine (TCM),
represented by JDS, remains the key medicine for treating
venomous snake bites in China. This study examined the
effectiveness of JDS as a therapeutic drug for local
envenomation in mice. This study utilized metabolomics to
compare pathophysiological processes in mice before and after
treatment to determine the progression of AH venomous snake
bites from local to systemic. The metabolomic mechanisms of Ah
snakebites and JDS in treating snake bites were explored to provide
new ideas for treating snake bites.

In this study, the median LD50 was calculated as 4.98 mg/kg, and a
dose of 2 mg/kg (survival rate >92%) that could produce toxic reactions
and ensure the survival of model mice was selected. Compared with the
control group,HE staining disclosed that themainmanifestations of the
Ah venom group mice were local inflammatory infiltration,
myofibrocyte destruction, and bleeding, and the pathological changes
at 24 h were more obvious than those at 4 h and 7 days. Existing studies
have found pathological changes in the gastrocnemius muscle 24, 48,
and 72 h after snakebites, which is consistent with our study and
indicates that the muscle begins to repair after 48 h (Campos et al.,
2018). By comparing the Ah venom and Ah venom + JDS groups, we
found that the pathological changes in the Ah venom + JDS group were
lighter than those in the Ah venom group at various time points. These
results indicate that JDS could change themuscle injury caused by snake
venom based on histopathology. As a product of skeletal muscle
destruction, CKM can reflect the degree of muscle necrosis caused
by snakebites (Alsolaiss et al., 2022). CKM levels in muscle
homogenates increased significantly after the establishment of the

mouse poisoning model. CKM expression was lower in the muscle
homogenate of the Ah venom + JDS group than that in the Ah venom
group at different time points. In this study, muscle damage occurred
after modeling the snake venom poisoning model in mice, and JDS has
a certain effect in inhibiting muscle damage in injured mouse models.

In the local inflammatory response, white blood cells in mice
exhibited a downward trend after modeling. Studies have now
reported the increase and decrease in white blood cells in a mouse
model of local snake venom poisoning, which is considered to be
linked to the type of snake venom. However, the increase or decrease is
considered to be caused by local inflammation and stress response
(Sebastin Santhosh et al., 2013). We found that the white blood cell
count was significantly higher in the Ah venom + JDS group than in
the Ah venom group at 24 and 48 h (p < 0.01). TNF-α mRNA
expression presented an increasing trend in the Ah venom groupmice,
and its increasing process had an increasing trend 4 h after modeling,
falling 24 h after modeling, and increasing 7 days after modeling.
Combined with existing studies, TNF-αmRNAas a pro-inflammatory
factor was significantly increased in the 4 h mouse model due to
oxidative stress and acute inflammation (Gabrili et al., 2023), and the
increase again at 7 days may be correlated with the activation and
proliferation of satellite cells in the regeneration stage of skeletal
muscle (Sanchez-Castro et al., 2021). Our study found that TNF-α
mRNA expression was lower in the Ah venom + JDS group at 4 and
24 h than in the Ah venom group, without difference at 7 days.
Previous studies have found that human microvascular endothelial
cells (HMEC) stimulated by complement bypass activation products
mediated by cobra venom factors can upregulate the expression of
adhesion molecules (ICAM-1, VCAM-1, and E-selectin) (Acunha
et al., 2021; Mota et al., 2021), consistent with our findings. In this
study, the Ah venom + JDS and Ah venom groups exhibited

FIGURE 5
Metabolism pathway analysis. (A) Ah vemon groups vs control group. (B) Ah vemon + JDS groups vs Ah vemon groups.
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downward trends. JDS can alleviate the inflammatory effect and
improve the local inflammation-related indicators of
snakebite model mice.

Other studies have demonstrated that procoagulant toxins in
snake venom promote consumptive coagulation disorders, leading
to the consumption of clotting substrates, and that snake venom can
also directly promote intravascular hemolysis and cause
thrombocytopenia (Isbister, 2010; Maduwage and Isbister, 2014).
In this study, platelet and TAT levels in mice decreased to varying
degrees after modeling, and the decrease was smaller in the Ah
venom + JDS group than in the Ah venom group at all three-time
points. Platelet changes differed significantly between the 4 h Ah
venom + JD and 4 h Ah venom groups (p < 0.05). TAT levels were
significantly different between the 24 h Ah venom + JDS group and
24 h Ah venom group (p < 0.05). The results showed that platelets,
prothrombin complex, and other clotting substrates were consumed
after establishing a mouse model of local envenomation, and JDS
improved the clotting function of the snakebite model mice.

Metabolomics technology explores the dynamic process of
toxicity onset, development, and metabolism of toxicants in vivo
via comprehensive qualitative and quantitative analyses of
compounds in dynamic and static states (Baidoo et al., 2012a).
Simultaneously, when treatment measures are changed, early,
timely, and subtle changes at the metabolome level have become
important markers and developed into an effective means of real-
time monitoring, evaluation, and guidance for individualized
treatment (Baidoo et al., 2012b). As the target organ was directly
injured by snake venom in our study, the gastrocnemius muscle can
react earlier to the effect of snake venom on the body, and the same
trend was observed in the above studies. In our study, the
gastrocnemius muscle of the affected side of mice was used as
the research object, and the concentration of the metabolites was
determined using GC-MS. Eighty differential metabolites were
screened before and after modeling; 61 peaked in the early stage
of disease (4 h), while 53 returned to near-normal levels 7 days later
(|logFC| < 1). The upregulated metabolites were mainly glucose and
fatty acid metabolites, such as succinic acid, cyclotonic acid,
glyoxylic acid, malonic acid, and tridecanoic acid, while the
downregulated metabolites were mainly amino acids and their
metabolites, such as L-threonine, tryptophan, phenylalanine,
serine, and isoleucine. Among the 17 metabolic pathways, five
were the most common: 1) aminoacyl-tRNA biosynthesis;
2) alanine, aspartate, and glutamate metabolism; 3) glyoxylate
and dicarboxylate metabolism; 4) valine, leucine, and isoleucine
biosynthesis; 5) the citrate cycle (TCA) (p < 0.05, FDR <0.01). Our
study found that various amino acid and metabolite levels were
significantly reduced, and various amino acid metabolic pathways
were blocked. However, snake venom contains many proteolytic
enzymes, mainly serine hydrolases, leading to rapid amino acid
consumption after poisoning (Mickiewicz et al., 2013), which can
affect protein synthesis by blocking acyl-tRNA biosynthesis (Sissler,
2021). The upregulated product of citric acid is also the citric acid
metabolite after heating, suggesting that the main intermediate
metabolites, such as succinic acid and cyclotonic acid in the
tricarboxylic acid cycle are upregulated, and citric acid and malic
acid are reduced. These results indicated that the mitochondrial
energy supply in the gastrocnemius muscle of mice with the TCA
cycle was disturbed after the snake venom poisoning model was

constructed. Simultaneously, metabolic intermediate accumulation,
such as succinic acid, reduces ATP production and acts as a pro-
inflammatory mediator to induce local inflammation (Udvardy
et al., 2020). Among other major upregulation products,
tridecanoic acid is a long-chain fatty acid present in cell
membranes (Stifel et al., 2022), and its increased detection should
be considered because of cell structure destruction caused by snake
venom phospholipase and degradation of triglycerides in cell
membranes (Ní et al., 2012). Long-chain fatty acids can also
promote the occurrence and development of local inflammation
and aggravate inflammatory response (Yanagisawa et al., 2008).

In this study, the metabolite changes in the Ah venom and Ah
venom + JDS groups were compared at 4 h, 24 h, and 7 days after
modeling, and 23 metabolites were differentially expressed, among
which 2 (adipic acid and tridecanoic acid) were upregulated, and
21 were downregulated. The top five compounds identified were
heneicosanoic acid, lignoceric acid, behenic acid, d4-alanine, and
d4-alanine. Twelve metabolic pathways were involved; among
these, six metabolic pathways were screened (p < 0.05). The levels
of multi-ultra-long-chain fatty acids (C ≥ 20) were significantly
increased in these changes, whereas the changes were reduced in
the treatment group. For example, lignoceric acid, an important
component of phosphatidylcholine (Uhrig et al., 1997), is involved
in constructing cell membranes in snake venom under the action of
phospholipase A2. The reduction in lignoceric acid after treatment can
be attributed to the reduction in phosphatidylcholine degradation.
Concurrently, ultra-long-chain fatty acid metabolism requires the
participation of peroxidase, and the dysfunction of peroxidase
bodies leads to further accumulation of ultra-long-chain fatty acids
(Matsumori et al., 2013). Nicotinamide is a metabolite of vitamin
B3 that has anti-inflammatory effects (Patil et al., 2023). Nicotinamide
adenine dinucleotide phosphate (NADH) can be produced via the
nicotinamide metabolic pathway, and oxidative phosphorylation of
NADH can produce a large amount of ATP to maintain life activities
(Luo et al., 2023).

5 Conclusion

The mechanism of Ah venom poisoning in mice may involve
aminoacyl-tRNA biosynthesis, various amino acid metabolism
disorders, tricarboxylic acid circulation disorders, and abnormal
fatty acid metabolism. JDS can reduce symptoms by affecting the
metabolism of long-chain fatty acids and amino acids, promoting
nicotinamide-nicotinamide metabolism.
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