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The mechanical stress environment in the temporomandibular joint (TMJ) is
constantly changing due to daily mandibular movements. Therefore, TMJ tissues,
such as condylar cartilage, the synovial membrane and discs, are influenced by
different magnitudes of mechanical stimulation. Moderate mechanical
stimulation is beneficial for maintaining homeostasis, whereas abnormal
mechanical stimulation leads to degeneration and ultimately contributes to
the development of temporomandibular joint osteoarthritis (TMJOA), which
involves changes in critical signaling molecules. Under abnormal mechanical
stimulation, compensatory molecules may prevent degenerative changes while
decompensatory molecules aggravate. In this review, we summarize the critical
signaling molecules that are stimulated by moderate or abnormal mechanical
loading in TMJ tissues, mainly in condylar cartilage. Furthermore, we classify
abnormal mechanical stimulation-induced molecules into compensatory or
decompensatory molecules. Our aim is to understand the pathophysiological
mechanism of TMJ dysfunction more deeply in the ever-changing mechanical
environment, and then provide new ideas for discovering effective diagnostic and
therapeutic targets in TMJOA.
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1 Introduction

Frequent mandibular movements due to daily biting, chewing and speaking lead to
alterations in condylar position within the temporomandibular joint (TMJ), thereby
changing the mechanical loading on the condyle (Feng et al., 2021). Moderate
mechanical loading is essential for maintaining the normal structure and function of
the TMJ (Robinson et al., 2019). Adequate loading is required to prevent atrophy of the
mandibular condylar fibrocartilage (Pirttiniemi et al., 2004). However, abnormal
mechanical loading caused by poor prosthesis, occlusal interference, trauma and
bruxism contributes to degenerative changes in TMJ tissues, eventually resulting in
temporomandibular joint osteoarthritis (TMJOA) (Teramoto et al., 2003; Liu et al., 2021a).
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Condylar cartilage is a critical component of the TMJ and is
mechanosensitive. Condylar chondrocytes are responsible for
regulating the balance between extracellular matrix (ECM)
synthesis and degradation (Li et al., 2021). Moderate mechanical
stimulation can promote ECM synthesis (Rabie et al., 2003a; Chen
et al., 2007). In contrast, abnormal mechanical stimulation enhances
catabolic effects, thereby disturbing the homeostasis of the cartilage
matrix followed by cartilage degradation (Li et al., 2014), which
involves changes in critical signaling molecules. Under abnormal
mechanical stimulation, some molecules play a compensatory role
by impeding degenerative changes, whereas other molecules play a
decompensatory role by accelerating cartilage degeneration.

Most current reviews have focused on the pathological mechanism
of TMJOA occurrence and development (Wang et al., 2015; Liu et al.,
2021a; Li et al., 2021). One recent review summarized the molecular
signaling pathways involved in TMJOA, but the authors paid more
attention to the molecules with decompensatory effects under abnormal
stimulation that promote TMJOA progression (Lu et al., 2022).
Additionally, a systematic review discussed the different effects of
different types and magnitudes of mechanical loading on the TMJ but
did not elucidate the detailed functions of critical signaling molecules
(Betti et al., 2018). To our knowledge, there are no reviews discussing
changes in signaling molecules with compensatory or decompensatory
effects in the TMJ under moderate or abnormal mechanical stimulation.

In this review, we mainly describe the signaling molecules in
condylar chondrocytes and cartilage. We first introduce elements of
mechanotransduction in chondrocytes, and critical signaling molecules
under moderate and abnormal mechanical stimulation are covered
separately. In a section on abnormal mechanical stimulation, we divide
signaling pathways into two categories according to whether they have
compensatory or decompensatory effects. In addition, we investigate
molecular signaling changes in the subchondral bone, synovial
membrane and disc. Our purpose is to provide a better
understanding of the pathophysiologic mechanism of TMJ
dysfunction under different magnitudes of mechanical stimulation.

2 Search strategy

A literature search was performedmainly inWeb of Science up to
May 2024. Keywords with different combinations of “TMJOA”,
“TMJ”, “temporomandibular joint osteoarthritis”,
“temporomandibular joint”, “mechanical”, “mechanosensitive”,
“mechanical stimulation”, “mechanical loading”, “mechanical
stress”, “chondrocyte”, “cartilage”, “synovial membrane”, “disc”
were used. Basic researches related to mechanical stimulation were
included. Clinical researches or basic researches not related to
mechanical stimulation were excluded. In addition, reference lists
of potential related original articles and reviews were screened
manually to identify any researches that could have been overlooked.

3 Elements in mechanotransduction

For Under mechanical loading, cells respond to physical stimuli and
convert into biochemical signals, which induce a series of cellular
responses followed by changes in cell phenotype as well as the
structure and composition of the ECM. This process is called

mechanotransduction and is dependent on mechanosensitive
elements, mainly integrins, the cytoskeleton, ion channels and
primary cilia (Hodgkinson et al., 2022; Wang et al., 2023). In this
section, we focus on reported elements in condylar
chondrocytes (Figure 1).

3.1 Integrins

Integrins, a group of mechanosensitive cell-surface receptors
consisting of α and β subunits, mediate extracellular-intracellular
signaling transduction and subsequently activate several intracellular
cascades, which are essential for the maintenance of homeostasis and
regulation of cellular biological functions (Humphries, 2000; Kechagia
et al., 2019). αVβ1, αVβ3, αVβ5, α1β1, α3β1, α5β1 and α10β1 are the
major integrins expressed in chondrocytes (Wang et al., 2023). High
expression levels of α5β1 and αVβ3 in the hypertrophic layer of
condylar cartilage have been reported (Yanoshita et al., 2020). Both
the αv and α5 integrin subunits are receptors for fibronectin. It was
found that a mandibular propulsion appliance enhances expression of
the fibronectin, αv and α5 integrin subunits in the proliferative
compartment of rat condylar cartilage, suggesting that the
mechanical force is transduced into the proliferative signal (Marques
et al., 2008). One study showed that under short-term (90 kPa/1 h) or
long-term (90 kPa/6 h) pressure, the α5 and β1 subunits of condylar
chondrocytes presented different variations: the α5 subunit was
downregulated with time but the β1 subunit upregulated (Zhang
et al., 2008). In addition, expression of the β2 subunit in condylar
cartilage was altered according to TMJOA-like progression in a rat
model of lateral mandibular shift (Zou et al., 2022). Therefore, different
integrin subunits may play different roles.

Focal adhesion kinase (FAK) is one of the main adaptor molecules
involved in intracellular integrin signaling. Liu et al. demonstrated that
compared with those on the contralateral side, mechanical stress
(induced by a rat model of mandibular lateral shift on the ipsilateral
side) enhances expression of integrin α5β1, FAK and integrin-linked
kinase (ILK) in condylar cartilage at the early stage (Liu et al., 2008).
Another study showed that expression of integrin α2, α5 and β1 in
primary condylar chondrocytes was enhanced in a dose-dependent
manner under different magnitudes (50–250 kPa) of hydrostatic
compressive forces (HCFs), followed by increased phosphorylation
levels of FAK, ERK1/2 (extracellular signal–regulated kinase 1/2)
and PI3K (phosphatidylinositol-3-kinase). The authors confirmed
that HCFs reduced apoptosis and enhanced the viability of condylar
chondrocytes via the integrin-FAK-ERK/PI3K pathway (Ma et al.,
2016). However, under excessive mechanical loading,
phosphorylation of FAK (pFAK) was related to signaling
dysfunction during TMJOA. Moreover, inhibiting pFAK moderately
slowed OA progression (Reed et al., 2021).

3.2 The cytoskeleton

The cytoskeleton is capable of sensing mechanical stimuli to induce
rapid remodeling and functional changes. This process involves intact
microtubules (tubulins), microfilaments (actins) and intermediate
filaments (vimentin) (Wang et al., 1993). For condylar chondrocytes,
Zhang et al. reported that the cytoskeleton exhibited a tighter
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arrangement under proper pressure of 90 kPa for 60 min. However, as
time extended to 360 min, the arrangement became loose with a
decrease in intracellular communication function (Zhang et al.,
2006). In another study, 2,000µstrain loading did not induce
significant changes in the cytoskeleton. However, under
4,000µstrain, partial actin filaments accumulated immediately
accompanied by cytoskeletal rearrangement, and the cell cycle was
inhibited (Li et al., 2010). In addition, with the contractibility of actin
filaments, proteins associated with the cytoskeleton can be activated. A
cyclical uniaxial compressive stress of 2,000 µstrain for 2 h has been
proven to activate myosin light chain II (MLC-II) and subsequently
promote condylar chondrocyte differentiation (Liu et al., 2016).
Vimentin is more sensitive than other cytoskeletal proteins because
of its faster response. In amechanical stress loading ratmodel, there was
a significant decrease in the thickness of condylar cartilage as well as in
vimentin expression at 7 days, which suggested that downregulation of
vimentin probably results in destructive morphological changes in
cartilage (Li et al., 2010).

3.3 Ion channels

Mechanical stimuli can lead to fluctuations in ion signaling in
chondrocytes though activation of ion channels (Agarwal et al.,

2021). Calcium is one of the most ubiquitous second messengers.
Intracellular Ca2+ and calcium channels play essential roles in
mechanotransduction signaling (Jiang et al., 2021). Transient
receptor potential cation channel subfamily V member 4
(TRPV4) and Piezo1/2 are typical Ca2+ ion channels. Under
moderate mechanical stress, activation of TRPV4 has been
confirmed to mediate anabolic responses (O’Conor et al., 2014).
However, under excessive mechanical stress, high
TRPV4 expression and enhanced Ca2+ influx can induce
chondrocyte apoptosis (Xu et al., 2019) and promote
degenerative changes in the TMJ disc (Cui et al., 2023).
Piezo1 and Piezo2 are also Ca2+-permeable channels in
chondrocytes that are activated under abnormal strain (Du G.
et al., 2020). On the basis of the findings of Servin-Vences et al.,
only Piezo1, and not Piezo2 or TRPV4, responds to stretch-activated
currents (Servin-Vences et al., 2017). Zhang et al. confirmed that
condylar chondrocytes respond to cyclic tensile strain (CTS) with
20% elongation of 0.1 Hz via Piezo1 followed by downregulation of
sex-determining region Y-box 9 (SOX9) and COL2A1 (Zhang et al.,
2022a). A recent study showed that in a unilateral anterior crossbite
(UAC) rat model, Piezo1 was overexpressed in condylar cartilage,
promoting progression of TMJOA through the Yes-associated
protein (YAP)-matrix metalloproteinase 13 (MMP13)/a
disintegrin and metalloproteinase with thrombospondin motif 5

FIGURE 1
Elements in mechanotransduction reported in condylar chondrocytes. Created with BioRender.com.
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(ADAMTS5) signaling pathway (Feng et al., 2023). On the one hand,
TRPV4 and Piezo1 can act independently. Du et al. reported that
moderate stretching-induced Ca2+ flux was significantly inhibited
after knockout of TRPV4 but that the cell response to excessive
stretching was not affected (Du G. et al., 2020). On the other hand,
TRPV4 and Piezo1 have been proven to communicate with each
other, and their crosstalk may be impaired in a state of inflammation
(Steinecker-Frohnwieser et al., 2023).

In addition to TRPV4 and Piezo1, other kinds of Ca2+-
permeable channels have been reported. Under moderate
pressure (90 kPa) for 60 min, the inositol triphosphate (IP3)
channel on the endoplasmic reticulum (ER) becomes activated,
resulting in a higher intracellular Ca2+ concentration in condylar
chondrocytes (Zhang et al., 2006). Inhibiting inositol trisphosphate
receptor (IP3R) channels with 2-aminoethoxydiphenyl borate
(2APB) or inhibiting ryanodine receptor (ROR) channels with
ryanodine (Rya) can block [Ca2+]i accumulation, attenuating the
condylar cartilage degeneration induced by compressive mechanical
force (Zhu et al., 2016). Wei et al. reported that TRPV5 was
upregulated in a rat model of mechanical stress-induced OA,
which enhanced Ca2+ influx and subsequently promoted
chondrocyte apoptosis via the calmodulin-dependent protein
kinase II (CaMKII)-mitogen-activated protein kinase (MAPK)
and Akt/mammalian Target of rapamycin (mTOR) pathways
(Wei et al., 2018).

In brief, different ion channels in chondrocytes may respond
differently to mechanical stimulation. However, the interactions
among them are still not fully understood and deserve further
exploration.

3.4 Primary cilia

The primary cilium is a nonmotile cytoskeletal organelle
containing microtubules that protrude from the cell surface into
the pericellular matrix (Tao et al., 2020). Primary cilia play a critical
role in mechanotransduction in chondrocytes (Hodgkinson et al.,
2022). Mechanobiological signal transduction is impaired when the
primary cilium structure is disrupted by chloral hydrate (Shao et al.,
2012). In response to mechanical stress, the primary cilium is able to
bend or change in length, and bending of primary cilia promotes
secretion of the ECM (Jensen et al., 2004). However, high levels of
mechanical loading can induce cilia disassembly, which results in
chondroprotective effects by preventing hedgehog signaling and
ADAMTS-5 expression (Thompson et al., 2014). Further
exploration is needed to determine how the length of cilia
changes in response to mechanical stimulation.

In fact, primary cilia serve as compartments containing high
densities of mechanosensory elements, such as ion channels,
connexins and intraflagellar transport (IFT) proteins (Ruhlen and
Marberry, 2014; Hodgkinson et al., 2022). Connexin 43 is a
mechanosensitive hemichannel that mediates small molecule
exchange (Knight et al., 2009). In a UAC rat model, Connexin
43 mediated exchange of prostaglandin E2 (PGE2) in condylar
cartilage, which contributed to catabolic changes (Zhang et al.,
2014). IFT is the main biological activity of primary cilia and
IFT88 is one of the core proteins essential for cilium formation
and maintenance of cartilage homeostasis (Ding et al., 2017; Zhao

et al., 2020; Coveney et al., 2022). The articular cartilage of
IFT88 knockout mice exhibited OA-like features (Chang et al.,
2012). A recent study indicated that IFT88 determines the
integrity of cilia and regulates the level of Piezo1. The authors
confirmed the synergistic interaction between IFT88 and Piezo1 in
regulating condylar chondrocyte differentiation under cyclic tensile
strain (Zhang et al., 2022a). In addition, polycystin 2 was found to be
an essential subunit for the ion channel located within the primary
cilium; this subunit mainly conducts Na+ and K+ and is enhanced by
Ca2+ (Liu X. et al., 2018). IFT88 and polycystin 2 coordinately
regulate hedgehog signaling in condylar chondrocytes after cyclic
tensile strain stimulation (Wang Z. et al., 2022).

Notably, the four abovementioned elements are inseparable and
interact with each other. For example, when the IP3R channel is
blocked under mechanical pressure, the intracellular Ca2+

concentration decreases, disrupting cytoskeletal reorganization
(Zhang et al., 2006). They can also be affected by other signaling
molecules. Indeed, there is evidence suggesting that the signaling
pathways mediated by traditional integrin and G proteins coregulate
the function of condylar chondrocytes (Zhang et al., 2008). The
detailed downstream signaling molecules involved in the initiation
and development of TMJOA after mechanotransduction are
discussed in the following sections.

4 Moderate mechanical stimulation

Moderate mechanical stimulation is necessary for maintaining
the normal functions and homeostasis of the condyle. Mice with
incisor trimming and a soft diet demonstrated impaired condylar
cartilage and subchondral bone (Chen et al., 2009). Decreased
mechanical loading upon condylar cartilage results in
degenerative changes via the YAP/light chain 3 (LC3)/Runt-
related transcription factor 2 (RUNX2) signaling pathway (Hou
et al., 2023). In this section, we focus on essential signaling molecules
involved in the maintenance of homeostasis under moderate
mechanical stimulation, which are mainly associated with
boundary lubrication, proliferation, maintenance of integrity and
endochondral ossification (Figure 2).

4.1 Promotion of boundary lubrication

The articular cartilage usually has a frictionless surface due to
the presence of a boundary lubricating layer (Seror et al., 2015).
Proteoglycan 4 (PRG4), a mucinous glycoprotein secreted by
superficial zone chondrocytes and synovial fibroblasts, is
considered to play an essential role in joint boundary
lubrication (Schumacher et al., 1994; Flannery et al., 1999;
Schmidt et al., 2004). Moreover, PRG4 exerts other biological
effects, such as improving subchondral bone remodeling and
preventing chondrocyte apoptosis as well as protein deposition
on the cartilage surface (Rhee et al., 2005; Jay andWaller, 2014; Cui
et al., 2015). Notably, PRG4 expression is affected by varying
magnitudes of mechanical loading (Neu et al., 2007; Ni et al.,
2012). An appropriate intermittent hydrostatic pressure (4 h per
day for 2 days at 100 kPa) was able to upregulate PRG4 and prevent
tumor necrosis factor α (TNFα)-mediated PRG4 inhibition in rat
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synovial fibroblasts (Xu et al., 2012), and PRG4 may play a
compensatory role under abnormal mechanical stimulation. In
a rat model of mandibular lateral shift, PRG4 was upregulated, the
thickness of the superficial layer was increased, and the matrix-
degrading activity of condylar cartilage was not obvious (Yang W.
et al., 2020).

Superficial zone protein (SZP) and lubricin are homologous
to PRG4 (Flannery et al., 1999) and have similar proliferative
properties to those of PRG4. One study showed that moderate
mechanical stimulation (7% elongation cyclic tensile strain)
enhanced expression of SZP by upregulating transforming
growth factor-beta (TGF-β) in condylar chondrocytes,
whereas excessive mechanical stimulation (21% elongation
cyclic tensile strain) inhibited synthesis of SZP by
upregulating interleukin-1 beta (IL-1β) (Kamiya et al., 2010).
In another study, the authors found that functional mandibular
forward repositioning elevated lubricin expression, which is
responsible for an excellent mechanical environment,
maintaining the function and remodeling of the rat condyle
and mandible (Chen Z. et al., 2019).

4.2 Promotion of chondrocyte proliferation

The proliferative capacity of chondrocytes decreases with age, which
is one of the major difficulties in repairing degenerative cartilage (Hou
et al., 2018). Moderate mechanical loading can facilitate cellular
proliferation. Liu et al. developed a bilateral anterior elevation (BAE)
mousemodel inwhich the intra-articular space of the TMJwas gradually
increased, with distraction and elongation loading on condylar cartilage.
Moreover, loading upregulated expression of Cyclin D1, increased cell
number and rendered condylar cartilage thicker. In vitro, 6% CTS
upregulated Cyclin D1 in chondrocytes obtained from superficial and
deep zone, also suggesting that moderate mechanical loading promotes
cell proliferation (Liu Q. et al., 2019).

High-mobility group box 2 (HMGB2) is involved in mechanical
force-induced cell proliferation. In the BAE mouse model,
HMGB2 upregulation was observed in thickened condylar
cartilage. The authors confirmed in vitro that under negative
pressure, HMGB2 was upregulated in superficial condylar
chondrocytes and stimulated proliferation via activation of the
AKT signaling pathway (Liu et al., 2021b).

Insulin-like growth factor I (IGF-I) has been confirmed to
regulate the proliferation and differentiation of rat condylar
cartilage progenitor cells (Fuentes et al., 2002). In rats treated
with a mandibular propulsive appliance (an appliance that exerts
mechanical loading on the condylar cartilage), upregulation of IGF-I
and IGF-II as well as proliferating cell nuclear antigen (PCNA) in
the condylar cartilage was observed (Hajjar et al., 2003). In vitro, 7%
elongation stretching increased expression of IGF-I, IGF-II and
PCNA, indicating that IGFs mediate the cell proliferation
induced by mechanical stimulation (Marques et al., 2008).

4.3 Maintenance of cartilage integrity

Cartilage consists of chondrocytes as well as the abundant
proteoglycans and collagen in the ECM. The collagen network
confers tensile strength, and proteoglycans aggregate to resist
compressive force (Haleem-Smith et al., 2012). A moderate
degree of mechanical loading can enhance cartilage matrix
synthesis and maintain normal structure and function. Aggrecan
in condylar chondrocytes was upregulated under a low pressure of
90 kPa for 60 min, and expression of the proinflammatory
prostaglandin F1α was inhibited (Chen et al., 2007). Expression
of Collagen II in condylar cartilage was enhanced under functional
loading (Rabie et al., 2003a). Sun et al. further explored the
underlying mechanism involved and found that both Collagen II
and Raf kinase inhibitor protein (RKIP) were upregulated in the
condylar cartilage of rats in the mandibular advancement

FIGURE 2
Critical signaling molecules under moderate mechanical stimulation. Created with BioRender.com.
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group. Then, they demonstrated in vitro that the expression levels of
aggrecan and Collagen II increased gradually with the duration of
CTS (16%, 1 Hz), accompanied by inhibition of ERK signaling. This
phenomenon was reversed after RKIP knockdown, suggesting that
moderate mechanical stimulation enhances matrix secretory activity
by upregulating RKIP and inhibiting the ERK pathway (Sun
et al., 2017).

Moderate mechanical loading can also exert anticatabolic and
anti-inflammatory effects, ideally by impeding cartilage damage.
CTS (6%) has been confirmed to reduce expression of MMP13 in
condylar chondrocytes stimulated with IL-1β or TNFα (Tabeian
et al., 2017; Tabeian et al., 2019). In addition, lowmagnitudes of CTS
ranging from 3% to 9% inhibit rHuIL-1β-induced nitric oxide (NO)
production, though higher magnitudes of CTS (12%) do not
demonstrate anti-inflammatory effects, indicating that different
magnitudes of mechanical loading may exert different effects on
condylar chondrocytes (Agarwal et al., 2001). Furthermore, an in
vivo study confirmed that replacement of abnormal UAC with
moderate BAE in mice rescued condylar cartilage degeneration
(Zhou P. et al., 2020).

4.4 Promotion of endochondral ossification

Adaptive remodeling of mandibular condylar cartilage is
strongly affected by mechanical loading and constitutes the
primary basis for orthodontic functional therapy (Basdra et al.,
1994; Shen and Darendeliler, 2005). Endochondral ossification is the
core process of adaptive remodeling. Specifically, mesenchymal stem
cells (MSCs) in cartilage are induced to differentiate into
chondrocytes under external stimuli, followed by an increase in
the population of proliferating chondrocytes. Subsequently, these
chondrocytes mature into a hypertrophic phenotype that undergoes
terminal differentiation and also synthesize an ECM abundant in
type X collagen; moreover, neovascularization is increased, which
recruits osteoblasts and initiates osteogenesis in cartilage
(Kronenberg, 2003; Shen and Darendeliler, 2005). To better
understand the mechanism behind endochondral ossification
upon moderate mechanical loading, several critical signaling
molecules deserve attention. We discuss them according to
different biological functions.

4.4.1 Increasing new chondrocyte populations
Increased numbers of chondrocytes enhance synthesis of the

cartilage matrix, providing a template for bone formation (Rabie and
Hägg, 2002). Parathyroid hormone-related protein (PTHrP) is
known to limit the speed of chondrocyte maturation and
differentiation (Amling et al., 1997). One study demonstrated
that mandibular advancement in rats induced MSC
differentiation into chondrocytes and stimulated PTHrP
expression, thereby delaying subsequent chondrocyte maturation
and allowing additional chondrocyte generation (Rabie et al.,
2003b). SOX9 is another factor capable of enhancing
differentiation of MSCs into chondrocytes (Dy et al., 2012).
Advancement of the mandible upregulates SOX9, which induces
moreMSCs to differentiate into chondrocytes, followed by increased
cartilage matrix synthesis (Rabie et al., 2003a). In addition, Ng et al.
reported that SOX9 and PTHrP exhibited similar expression

patterns under repeated mechanical loading induced by a bite-
jumping appliance (Ng et al., 2006).

4.4.2 Promotion of chondrocyte maturation and
differentiation

Chondrocyte maturation and differentiation are essential for
subsequent endochondral ossification. Expression of RUNX2, which
mediates chondrocyte terminal maturation and hypertrophic
mineralization, has been detected in the mandibular condyle
(Rabie et al., 2004; Ding et al., 2012). In a rat model of
mandibular advancement, Runx2 mRNA was highly expressed in
the condylar cartilage and subchondral bone, and expression of
Collagen X was elevated, indicating enhancement of terminal
maturation, facilitating endochondral ossification (Tang and
Rabie, 2005). Moreover, decreased mineralization correlates with
reduced expression of RUNX2 in condylar cartilage on the low
mechanical loading side (Dutra et al., 2018).

The activator protein-1 (AP-1) transcription factor also plays an
important role in promoting chondrocyte maturation and
differentiation (Thomas et al., 2000). In rats fed a hard diet, AP-
1 proteins, including Fra-1, Fra-2, JunB and JunD, exhibited greater
expression than in the soft diet group throughout all stages of
condylar cartilage differentiation (Papachristou et al., 2006). In
addition, AP-1 proteins have been reported to trigger subsequent
biochemical responses by interacting with Runx2 and forming
complexes (D’Alonzo et al., 2002). Dionysios et al. demonstrated
that pc-Jun, c-Fos, JNK2, p-JNK, p-ERK and Runx2 were
upregulated in the condylar cartilage of hard diet rats, suggesting
that mechanical loading activated the AP-1 and Runx2 transcription
factors via the c-Jun N-terminal kinase (JNK) and ERK MAPK
signaling pathways (Papachristou et al., 2005).

4.4.3 Regulation of angiogenesis
The mandibular condylar cartilage is a tissue without lymphatic

or vascular networks. Angiogenesis facilitates influx of circulating
factors that stimulate replacement of hypertrophic cartilage matrix
with bone, indicating the onset of endochondral ossification (Harper
and Klagsbrun, 1999). Vascular endothelial growth factor (VEGF) is
the primary mediator governing vascular development and
angiogenesis and is regarded as a promising candidate for
promoting chondrocyte maturation and apoptosis, ECM
remodeling, neovascularization and recruitment of osteoblast
progenitors (Gerber et al., 1999; Jiang et al., 2017). VEGF has
been found to be upregulated in the condylar cartilage of rats fed
a hard diet along with activation of the p44/42 MAPK and
p38 MAPK signaling pathways (Jiang et al., 2017). In addition,
increased production of VEGF and condylar bone was observed at
the later stages of stepwise advancement (Leung et al., 2004). The
above studies indicate that moderate mechanical stimulation
promotes the formation of condylar bone by upregulating VEGF
and activating the MAPK signaling pathway.

Angiopoietin (Ang) is also involved in angiogenesis. The
autocrine Ang-1/Tie-2 signaling pathway regulates the plasticity
of blood vessels and plays a role in the maintenance of vascular
integrity (Cascone et al., 2003). Ang-2 functions as an endogenous
inhibitor of Ang-1, blocking activation of Tie2 induced by Ang-1.
Upregulation of Ang-2 expression serves as an early indicator of
angiogenesis, as it facilitates early vascular degeneration and
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promotes angiogenesis (Oike et al., 2004). In a rabbit model with
forward mandibular positioning, Ang-1 and Ang-2 were shown to
be upregulated with chondrocyte maturation, especially in the
hypertrophic layer, suggesting that Ang-1 and Ang-2 may play a
role in stimulating angiogenesis within the hypertrophic layer of the
condylar cartilage (Jing et al., 2013).

Notably, even if moderate levels of VEGF are essential for the
coupling of angiogenesis and osteogenesis, abnormal mechanical
stress can lead to VEGF overexpression, accompanied by
subchondral bone loss and enhanced catabolism of chondrocytes,
which may contribute to the initiation and progression of TMJOA
(Jiao et al., 2011; Farias-Neto et al., 2012; Grosso et al., 2017).

5 Abnormal mechanical stimulation

Under abnormal mechanical stimulation, the repair capacity
of TMJ condylar cartilage is impaired, which means that the
balance of cartilage homeostasis is disrupted, accompanied by
enhanced catabolic activities. Eventually, this imbalance results
in cartilage degeneration and promotes the progression of
TMJOA. During the occurrence and development of TMJOA,
critical signaling molecules may play compensatory or
decompensatory roles; thus, we classify these molecules into
two main categories: molecules with compensatory or
decompensatory effects (Figure 3).

5.1 Molecules with compensatory effects

Notably, at the early stage of abnormal stimulation, several
molecules are upregulated to maintain cartilage homeostasis. In
the decompensation stage, there are still several upregulated
molecules that are involved in repair of cartilage tissue, even
though they eventually fail. Moreover, although expression of
several molecules is downregulated upon abnormal mechanical
stress, if certain interventions are applied, their expression will
increase to impede OA progression. We call these molecules
compensatory molecules with compensatory effect and discuss
them in five main directions.

5.1.1 Molecules that promote condylar
chondrocyte proliferation and differentiation

To ameliorate cartilage degeneration, chondrocytes attempt to
increase proliferation and remodeling at the beginning of
osteoarthritis (Goldring, 2012). In this section, we discuss the
molecules capable of promoting proliferation and differentiation
in chondrocytes upon treatment with excessive mechanical
stimulation.

WNT5A belongs to the noncanonical class of Wnt family
proteins and activates independent signaling pathways instead of
a β-catenin-dependent pathway. An earlier study reported that
WNT-5A can modulate chondrocyte proliferation and
differentiation while inhibiting maturation (Yang et al., 2003).

FIGURE 3
Molecules with compensatory and decompensatory effects under abnormal mechanical stimulation. Created with BioRender.com.
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Similarly, Ge et al. demonstrated that expression of WNT5A was
strongly increased in rat condylar cartilage at the early stage of
mouth-opening-induced TMJOA, which facilitated proliferation,
hypertrophy and migration via upregulation of c-MYC and
Cyclin D1 via the JNK signaling pathway, suggesting the role of
WNT5A in repairing condylar cartilage (Ge et al., 2017).

HMGB2 and β-catenin are important transcriptional regulators
that regulate chondrocyte proliferation and differentiation.
HMGB2, a DNA-binding protein widely distributed in chromatin
and dominantly expressed in the superficial zone of articular
cartilage, is reported to regulate chondrocyte survival through the
Wnt/β-catenin pathway (Taniguchi et al., 2009; Starkova et al.,
2023). Under hydrostatic pressure, the Wnt/β-catenin pathway in
chondrocytes is activated. Then, the stabilized β-catenin protein is
shuttled to the nucleus and regulates downstream gene
transcription, eventually promoting cell proliferation (Cheleschi
et al., 2017). Zhou et al. discovered that silencing
HMGB2 expression renders condylar chondrocytes insensitive to
hydrostatic pressure loading, resulting in a significant decrease in β-
catenin. They further found in a rabbit model of surgical anterior
disc displacement that expression levels of HMGB2 and β-catenin
were upregulated during the first week, which promoted the
differentiation and maturation of chondrocytes in the fibrous and
proliferative layers. These findings indicate that crosstalk between
HMGB2 and β-catenin exists (Zhou Y. et al., 2020).

The level of miR-132 in plasma from OA patients has been
found to be significantly lower than that in healthy controls (Murata
et al., 2010). Zhou et al. discovered that expression of miR-132-3p in
condylar cartilage was aberrantly downregulated in a UAC rat
model. IL-1β-induced condylar chondrocytes also exhibited low
miR-132-3p expression. Following miR-132-3p overexpression,
cellular proliferation activity and matrix synthesis improved, and
apoptosis and inflammatory responses were inhibited (Zhou
et al., 2022).

5.1.2 Molecules that promote clearance function
Autophagy and phagocytosis are two conserved endogenous

lysosomal dependent clearance processes that degrade harmful
intracellular and extracellular material and are necessary for
maintaining cellular and tissue homeostasis (Bonilla et al., 2013).

Autophagy, which is responsible for the degradation of impaired
membranes, organelles and macromolecules, has been reported to
be an intracellular protective mechanism for maintaining cartilage
homeostasis (Martínez-Borra and López-Larrea, 2012). Beclin-1 and
LC3 are two critical factors for the formation and expansion of
autophagosomes (Shpilka et al., 2011; Li et al., 2012). In an
experimentally induced disordered occlusion model in rats,
upregulation of Beclin-1 and LC3 and decreased expression of
mTOR (an inhibitor of autophagy) and mitogen-activated protein
kinase kinase 3 (MAP4K3) (a regulator of mTOR) were observed in
both the hypertrophic and proliferative layers of condylar cartilage,
suggesting enhanced autophagy under abnormal mechanical
stimulation (Zhang et al., 2013).

Notably, autophagy can be mediated by endoplasmic reticulum
stress (ERS). Endoplasmic reticulum to nucleus signaling 1 (ERN1),
activating transcription factor 6 (ATF6) and eukaryotic translation
initiation factor 2 alpha kinase 3 (EIF2AK3) are the three main ER
transmembrane proteins associated with ERS. In addition, the

mechanistic target of rapamycin complex 1 (MTORC1) signaling
pathway has been reported to be a key regulator of autophagy (Han
et al., 2022). Yang et al. demonstrated in flow fluid shear stress
(FFSS)-treated chondrocytes that MTORC1 promotes p-EIF2AK3-
mediated ERS-related apoptosis while inhibiting autophagosome
formation. In addition, p-ERN1 was confirmed to be the upstream
molecule of MTORC1 that exerted inhibitory effects onMTORC1 to
suppress ERS-related apoptosis and promote autophagy. The
authors further observed in a UAC rat model that autophagy
mediated by p-ERN1 and ERS-related apoptosis mediated by
p-EIF2AK3 were activated simultaneously at the early stage
meanwhile MTORC1 was suppressed. However, at the late stage,
expression of p-ERN1 decreased gradually, followed by release of
MTORC1, which resulted in a transition from protective autophagy
to prodeath ERS-related apoptosis, accelerating the progression of
TMJOA (Yang H. et al., 2020).

The expression level of cluster of differentiation 163 (CD163) is
regarded as a functional indicator of nonprofessional phagocytes
(Castillo and Kourí, 2004). Jiao et al. identified CD163+ phagocytic
chondrocytes in the cartilage of healthy knees and TMJs from SD
rats for the first time. In their study, TMJOA-like lesions were
induced by experimentally induced disordered occlusion, and many
CD163+ chondrocytes exhibited active phagocytic and migratory
capabilities to facilitate elimination of degraded cartilage tissue and
impede the TMJOA progression. Interestingly, it is known that the
proper degree of ECM degradation can promote the mobilization of
CD163+ chondrocytes, but this degradation leads to decreased
nutrient availability; thus, phagocyte viability cannot be
maintained (Jiao et al., 2013). Hence, the scavenger function of
CD163+ chondrocytes is very limited.

5.1.3 Molecules that promote anabolism of
condylar cartilage

At present, more studies have focused on catabolism caused by
aberrant mechanical stimulation, whereas anabolism has been
ignored. In fact, both anabolism and catabolism are activated
throughout the progression of TMJOA. Whether progression is
aggravated depends on the balance between anabolism and
catabolism. Even in degenerating cartilage, anabolism can be
activated, attempting to protect against catabolic actions for the
maintenance of cartilage integrity. Therefore, anabolism and
associated signaling molecules promoted by abnormal mechanical
loading deserve further attention (Sandell, 2007).

IGF1 is considered a crucial anabolism factor in cartilage and
has been confirmed to promote biosynthesis of type II collagen
and proteoglycans (Schneiderman et al., 1995; Mullen et al.,
2015). Moreover, IGF1 can protect chondrocytes from
apoptosis and stimulate proliferation (Higgins and Johnson,
2010; Wei et al., 2017). These physiological effects of IGF1 are
initiated through its specific binding to transmembrane
receptors, known as insulin-like growth factor 1 receptor
(IGFR1) (Schmal et al., 2014). In a rat model of molar
malocclusions, expression levels of IGF1, IGFR1 and Collagen
II were elevated to promote repair of OA-like degenerative
lesions (Yu et al., 2012). Notably, binding of IGF1 to IGFR1 is
tightly controlled by extracellular IGF-binding proteins
(IGFBPs) (Jones and Clemmons, 1995). IGF1 has a greater
affinity for IGFBP than IGFR1. In a UAC rat model, Wang
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et al. reported that highly expressed IGFBP-3 and
-5 competitively bind to IGF1, therefore attenuating
IGF1 biological activity. Thus, injecting IGF1 might enhance
IGF1R-mediated signaling, promote anabolism and impede
mechanically stimulated progressive degeneration of condylar
cartilage (Wang et al., 2019).

Neuron-glial antigen 2 (NG2)/chondroitin sulfate proteoglycan
4 (CSPG4) reportedly increases anabolism via the ERK 1/2 signaling
pathway. NG2/CSPG4 is a transmembrane glycoprotein of the
N-linked type I that binds to pericellular collagen VI and is
characterized by the presence of chondroitin sulfate
proteoglycans on its ectodomain (Burg et al., 1996). Reed et al.
induced TMJOA by unilateral partial discectomy in both control
and NG2/CSPG4 knockout mice. Expression of NG2/CSPG4 in
control mice was significantly reduced at the early stage. In addition,
upregulation of matrix degradation-related genes such as
ADAMTS5 and MMP13 as well as of proinflammatory C-C
motif chemokine ligand 2 (CCL2)/monocyte chemoattractant
protein 1 (MCP1) and downregulation of matrix synthesis-
related genes such as Col6a1, platelet-derived growth factor
receptor beta (PDGFrβ) and TGF-β were detected in NG2/
CSPG4 knockout mice. The above results prove the ability of
NG2/CSPG4 to enhance anabolic metabolism (Reed et al., 2022).
The ERK 1/2 signaling pathway has been extensively characterized
as a mediator of mechanical loading across diverse cell types,
controlling essential cellular processes, including proliferation,
differentiation and cell survival (Ghilardi et al., 2020). The
authors further demonstrated that NG2/CSPG4 knockout
condylar chondrocytes exhibited a significant reduction in total
and phosphorylated ERK 1/2 under static compression in vitro
and in a TMJOA model in vivo (Reed et al., 2022). Hence, NG2/
CSPG4 is an essential regulator of cartilage homeostasis associated
with the ERK 1/2 signaling pathway. In summary, enhancing
expression levels of NG2/CSPG4 might improve anabolic
metabolism and potentially impede cartilage degeneration.

The Hippo/YAP pathway transduces mechanical stress
stimulation to regulate chondrocyte anabolic capacity and
phenotype (Maurer and Lammerding, 2019). In general, a rigid
ECM or excessive mechanical stress induces inactivation of the
Hippo pathway, resulting in dephosphorylation of YAP (activation
of YAP) and enabling its translocation to the nucleus. Then, YAP
forms complexes with transcription factors to control expression of
downstream genes, which is strongly associated with the
pathological processes of OA (Deng et al., 2018; Totaro et al.,
2018; Ma et al., 2019). Ras-related protein Rap-2a (RAP2A) is a
kind of small GTPase (Meng et al., 2018). Recently, RAP2A was
verified to be a mechanotransduction molecule involved in TMJOA
progression. The study showed that expression of RAP2A decreased
with UAC-induced cartilage degeneration in TMJOA mice. A
typical TMJOA phenotype (thinner cartilage layer, fewer
chondrocytes and decreased expression of COL2A1 and
proteoglycans) was observed in RAP2A knockout mice.
Moreover, inactivation of the Hippo pathway and activation of
YAP were observed, indicating that the RAP2A/Hippo/YAP
pathway may play a critical role in regulating condylar cartilage
homeostasis. Overexpression of RAP2A by Ad-Rap2a-GFP and
inhibition of active YAP by verteporfin reinstated the normal
phenotype and anabolic function of chondrocytes. Therefore, the

RAP2A/Hippo/YAP pathway may play a critical role in regulating
condylar cartilage anabolism, and targeting RAP2A or YAP might
be a treatment option for TMJOA (Qi et al., 2022a).

Hypoxia-inducible factor 1α (HIF1α) is considered an anabolic
factor that mediates upregulation of SOX9, COL2A1 and aggrecan
under hypoxic conditions (Sanz-Ramos et al., 2013). Due to a lack of
blood vessels and nerves, condylar cartilage is maintained in a
hypoxic environment. Under abnormal dental occlusion force,
the hypoxic condition in condylar cartilage is aggravated, and
HIF1α is upregulated at an early stage to prevent articular
cartilage degeneration. However, with continuous abnormal
occlusion stress stimulation, expression of HIF2α, a catabolic
factor, increases gradually, which acts as a negative feedback loop
on HIF1α, accelerating condylar cartilage degeneration (Zhang
et al., 2022b).

Collagen VI is one of the major components of the pericellular
matrix (PCM), which is a thin layer of ECM that surrounds
chondrocytes tightly and can not only transduce biochemical and
biomechanical signals but also maintain the chondrocyte phenotype
and structural integrity (Hing et al., 2002; Guilak et al., 2006). Chu
et al. confirmed that collagen VI attenuated catabolism under IL-1β
stimulation (Chu et al., 2017). A recent study showed that expression
of collagen VI was increased in the condylar cartilage of rats under
overloading conditions, indicating that chondrocytes attempt to
enhance synthesis of collagen VI to maintain PCM integrity
(Franklin et al., 2022).

5.1.4 Other molecules with compensatory effects
on condylar cartilage

In addition to the abovementioned molecules, compensatory
molecules can play a role in inhibiting terminal differentiation,
apoptosis and aberrant lipid metabolism as well as promoting
matrix crosslinking.

PTHrP has been reported to prevent chondrocyte terminal
differentiation directly (Zerega et al., 1999). A recent study
showed that PTHrP expression tended to increase at the early
stage of occlusal elevation-induced TMJOA but that expression
of Collagen X, a marker of chondrocyte hypertrophy, was
downregulated. However, expression of parathyroid hormone
receptor 1 (PTH1R) (the sole receptor for PTHrP) decreased
gradually. Hence, during the progression of TMJOA, PTHrP was
unable to protect condylar cartilage effectively. The authors noted
that the mismatch in expression of PTHrP and PTH1R may be one
of the factors that initiates TMJOA (Zhuang et al., 2023).

Osteoprotegerin (OPG) has been reported to be a decoy receptor
for receptor activator of nuclear factor kappa-B ligand (RANKL)
that effectively competes with RANK, thereby attenuating the
signaling cascade responsible for osteoclast and chondroclast
activation (Edwards and Mundy, 2011; Knowles et al., 2012).
OPG also exerts a protective effect on condylar cartilage by
inhibiting chondrocyte apoptosis. In a rat model of
hyperocclusion, expression of OPG was found to increase after
4 weeks. The authors further demonstrated that in OPG-
knockout mice, more apoptotic condylar chondrocytes were
detected, and TMJOA progression was accelerated (Chen D.
et al., 2019). Moreover, Derlin-3 has been reported to suppress
ERS-mediated apoptosis. Liu et al. confirmed the protective role of
Derlin-3 in a UAC mouse model. Their data indicated that
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expression of Derlin-3 was upregulated at the early stage but
decreased at the late stage. The decrease in Derlin-3 expression
induced by UAC was associated with enhanced ERS-mediated
apoptosis in degenerative condylar cartilage, which was reversed
by removal of UAC (Liu et al., 2020).

Abnormal lipid metabolism has been proven to be involved in
the incidence and progression of OA (Aspden et al., 2001). Growth
differentiation factor 11 (GDF11) has been confirmed to inhibit the
adipogenic differentiation of bone marrow mesenchymal stem cells
and to decrease lipid accumulation in monocytes and hepatocytes
(Luo et al., 2019; Hernandez et al., 2021). In the skeletal muscle tissue
of obese mice, the expression level of GDF11 was downregulated
(Egerman et al., 2015). After FFSS stimulation of primary condylar
chondrocytes or UAC stimulation in mice, expression of GDF11 was
inhibited, resulting in aberrant adipogenesis. In addition,
supplementation with exogenous GDF11 alleviated degenerative
changes (Wang H. et al., 2022).

LOXL2, a member of the lysyl oxidase (LOX) protein family,
serves as an extracellular enzyme that promotes crosslinking of
collagen and elastin within the ECM. Consequently, LOXL2 plays a
pivotal role in enhancing tensile strength and maintaining the
structural integrity of condylar cartilage (Csiszar, 2001). Zhang
et al. discovered that expression of LOXL2 was decreased in a rat
model of TMJOA induced by compressive mechanical force. After
injection of recombinant LOXL2 (rhLOXL2), degenerative condylar
cartilage was rescued with restoration of proteoglycans and collagen
II, highlighting the role of LOXL2 in facilitating matrix crosslinking
(Zhang et al., 2021).

5.1.5 Promotion of subchondral bone formation
Due to the unique mechanical properties of condylar cartilage,

the alterations induced by continued abnormal loading affect the
distribution of stresses and strains in the subchondral layers, which
mediates short-term damage and long-term subchondral bone
remodeling processes (Kuroda et al., 2009). Moreover, generation
of microfractures and microcracks at the osteochondral interface
leads to enhanced crosstalk between cartilage and subchondral bone,
which further exacerbates cartilage degeneration and subchondral
bone loss (Liu et al., 2021a). In this section, we focus on molecules
that promote subchondral bone formation and inhibit bone loss.

PTHrP, as a protective factor, is capable of binding to PTH1R
located on the cell membrane of osteoblasts, subsequently triggering
cascade signaling pathways to effectively modulate bone metabolism
(Jolette et al., 2017). Zhang et al. reported that after subcutaneous
injections of intermittent PTHrP (iPTH) in rats with occlusal
disorders, condylar cartilage degeneration was alleviated and that
this change was accompanied by an improvement in subchondral
bone formation. These authors confirmed that iPTH increased the
osteoblastic differentiation potential of condylar subchondral bone
marrow-derived mesenchymal stem cells (SMSCs) and inhibits
phosphorylation of Smad2/3, which indicates inhibition of TGF-β
signaling (Zhang et al., 2022c). Increased expression of TGF-β has
been found in the condylar cartilage and subchondral bone of both
aging mice and rats with disordered occlusion, suggesting that
dysregulated activation of the TGF-β signaling pathway may
serve as a critical factor in the pathogenesis of TMJOA (Zheng
et al., 2018). Taken together, these findings suggest that PTHrP
alleviates cartilage deterioration and improves subchondral bone

remodeling by enhancing SMSC osteoblastic differentiation and
suppressing activation of TGF-β signaling (Zhang et al., 2022c).

MiR-26b and miR-29b are reported to promote osteogenic
differentiation (Trompeter et al., 2013). Yang et al. discovered
that expression of miR-26b was significantly downregulated in
subchondral BMSCs of UAC rats and upregulated during the
process of osteogenesis. Overexpression of miR-26b in condylar
subchondral bone promoted osteogenesis and rescued bone loss
through activation of β-catenin. Notably, the increase in miR-26b in
BMSCs markedly alleviated cartilage degeneration (Yang et al.,
2022). Similarly, decreased miR-29b expression was observed in a
UAC mouse model. In addition, intra-articular treatment with
aptamer-agomiR-29b rescued the deterioration of condylar
cartilage and subchondral bone as well as the hyperfunction of
osteoclasts (Sun et al., 2020a).

5.2 Molecules with decompensatory effects

It is difficult for molecules with compensatory effects to
maintain homeostasis with extended duration of abnormal
mechanical stimulation, and molecules with decompensatory
effects begin to occupy a dominant position during TMJOA
progression, resulting in gradual disruption of the balance.
Molecules with decompensatory effects play a promotive role
mainly in cell death, catabolism, terminal differentiation,
pathological calcification and abnormal subchondral bone
remodeling. We discuss them in five directions subsequently.

5.2.1 Promotion of cell death
Due to the avascular nature of the cartilage matrix and limited

proliferative capacity of chondrocytes, massive numbers of cells die,
contributing to cartilage degeneration (Charlier et al., 2016). Several
cell death processes such as apoptosis, necroptosis, ferroptosis,
pyroptosis and cell senescence have been found to participate in
TMJOA progression. Apoptosis is a type of programmed cell death
and has been widely reported in studies of condylar cartilage
stimulated by abnormal mechanical loading. In general, apoptosis
pathways can be divided into two categories: the extrinsic pathway,
also known as the death receptor pathway, and the intrinsic
pathway, also known as the mitochondrial pathway (Elmore,
2007). Both exogenous and endogenous NO can activate
mitochondria-dependent apoptosis (Maneiro et al., 2005). The
level of NO is elevated in condylar chondrocytes after FFSS
stimulation, which promotes permeability of the outer
mitochondrial membrane, facilitating release of apoptotic factors
such as apoptotic protease activating factor-1 (APAF-1),
cytochrome C (Cyt C) and caspase-9 into the cytoplasm and
then induces the chondrocyte apoptosis through the
mitochondrial pathway (Ren et al., 2019). In addition,
mechanical forces promote intrinsic mitochondria-dependent
apoptosis mediated by ERS. Excessive ERS results in apoptotic
events, which are mediated by the caspase-12-dependent
pathway, the JNK pathway and C/EBP homologous protein
(CHOP) (Ron and Walter, 2007; Tabas and Ron, 2011). One
study showed that expression of glucose regulated protein 78
(GRP78) (a kind of ERS marker), CHOP and caspase-12 was
upregulated in condylar chondrocytes under excessive hydrostatic
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pressure (HP) of 0.3 MPa, resulting in activation of ERS-mediated
apoptosis (Xu et al., 2017). Another study confirmed that 20% of
mechanical force promoted the apoptosis of condylar chondrocytes
via upregulation of GRP78, GRP94 and caspase-12. Treatment with
salubrinal (an ERS inhibitor) can impede apoptosis (Huang et al.,
2017). Notably, a significant increase in cytoplasmic Ca2+ levels in
condylar chondrocytes was observed under mechanical stress
loading (Li et al., 2013). Zhu et al. confirmed that [Ca2+]i plays a
critical role in mediating mechanical stress-induced ERS and
subsequent apoptosis. However, they discovered that complete
prevention of condylar chondrocyte apoptosis could not be
achieved only through inhibition of Ca2+ signaling, indicating
involvement of other apoptotic pathways in this process (Zhu
et al., 2016). Several signaling molecules are involved in
regulating apoptosis. Activation of silent information regulator 1
(SIRT1) induces p53 deacetylation, thereby inhibiting p53-
dependent apoptosis (Xu et al., 2020). A recent study revealed
that the expression level of miR-181a-5p was elevated in the
condylar cartilage of UAC-induced TMJOA mice. The authors
also demonstrated that miR-181a-5p directly targeted the 3’
untranslated region (UTR) of Sirt1 and subsequently inhibited
expression of SIRT1, promoting p53-dependent apoptosis.
Therefore, the miR-181–5p/SIRT1/p53 axis facilitates
chondrocyte apoptosis (Qi et al., 2022b).

Necroptosis, another form of programmed cell death, exhibits
morphological features similar to those of necrosis. Unlike
apoptosis, which induces cell death without disrupting the cell
membrane, in necroptosis, the cell membrane is ruptured
followed by release of intracellular contents (Linkermann and
Green, 2014). Receptor interacting protein kinase 1 (RIP1) serves
as a critical upstream regulator that mediates necroptosis (Liu Y.
et al., 2019). Once the extracellular or intracellular balance is
disrupted, activated RIP1 results in sequential activation of
RIP3 and mixed lineage kinase domain-like protein (MLKL)
(Galluzzi et al., 2018). Phosphorylated MLKL induces plasma
membrane permeabilization and initiates the inflammatory
response (Cho et al., 2009). It was reported that levels of RIP1,
RIP3, and caspase-8 in condylar chondrocytes increase under
compressive mechanical force in the 4-day group, indicating
activation of necroptosis. However, the abovementioned factors
returned to baseline levels after 7 days, which suggested that
there were some adaptive mechanisms in chondrocytes; thus, cell
death is a tightly controlled process restricted to the early stage of
mechanical stress stimulation. Interestingly, the authors found that
in contrast to caspase-8, which was expressed at increased levels
throughout the cartilage, RIP1 was expressed at greater levels in
chondrocytes at sites where mechanical force was applied, indicating
that chondrocytes under more severe mechanical stimulation
exhibit a greater propensity for necroptosis instead of apoptosis
(Zhang et al., 2017). Furthermore, mechanical stimulation might
induce a vicious necroptotic cycle. Damage-associated molecular
patterns (DAMPs) are released from ruptured cells during
necroptosis, which leads to more severe disruption of tissue
homeostasis. Syndecan 4 (SDC4) has been identified as a DAMP.
He et al. demonstrated a vicious necroptotic cycle of TNFα-SDC4-
TNFα in a UAC rat model. Specifically, TNFα activated RIP3 and
pMLKL in sequence, subsequently triggering necroptosis. In turn,
the SDC4 released served as the key DAMP to enhance expression of

TNFα, suggesting that a feedback loop further exacerbated
necroptosis in chondrocytes and synoviocytes (He F. et al., 2022).

Ferroptosis is a novel form of programmed cell death triggered
by intracellular accumulation of iron-dependent lipid peroxidation,
which can be suppressed by glutathione peroxidase 4 (GPX4) while
promoted by p53 and acyl coenzyme A synthetase long chain family,
member 4 (ACSL4) (Yang and Stockwell, 2016; Maiorino et al.,
2018; Delin et al., 2021). Cheng et al. observed decreased levels of
GPX4 as well as increased levels of p53 and ASCL4 in the condyles of
both occlusion disorder and UAC rat models. After injection of
liproxstatin-1, a ferroptosis inhibitor, the condylar cartilage
degradation was greatly rescued accompanied by upregulation of
GPX4 and downregulation of p53 and ASCL4 (Cheng et al., 2023).

Pyroptosis is a type of pro-inflammatory programmed cell death
that mediated by NOD-like receptor protein 3 (NLRP3)
pyroptosome and gasdermin D (GSDMD) before rupture of
plasma membrane (Chen et al., 2016; Huang Y. et al., 2021). A
recent study confirmed chondrocyte pyroptosis in miodoacetate
(MIA)-induced TMJOA mice (Xin et al., 2023). In another study, it
was demonstrated that mechanical compression on the human hip
joint cartilage could initiate the pyroptosis process and contribute to
cartilage degradation, which was more serious under the 25 MPa
compression than 15 MPa (Chunye et al., 2023). Therefore, we
believe that chondrocyte pyroptosis in condylar cartilage can also be
activated under excessive mechanical loading and then participate in
TMJOA progression.

Cellular senescence is an irreversible biological phenomenon
that characterized by a permanent growth arrest with a senescent-
associated secretory phenotype (SASP), which secrets a large
amount of proinflammatory factors (Bo et al., 2023). Thus,
condylar chondrocyte senescence indicates a pathological change
in TMJOA. It has been reported that cellular senescence is associated
with N6-methyladenosine (m6A) modification that catalyzed by
methyltransferase-like 3 (METTL3) (Xiulin et al., 2021). Yang
et al. demonstrated that abnormal mechanical stimulation could
induced chondrocyte senescence both in vivo (UAC-treated rats)
and in vitro (20% CTS), which was partially attributed to the
deficiency of YAP (a mechanosensitive element). They further
confirmed that YAP deficiency enhanced expression of METTL3,
thereby mediating m6A-dependent chondrocyte senescence (Yang
et al., 2023). In addition, the role of microRNA in cellular senescence
has attracted attention. miR-708-5p exhibits a positive correlation
with the longevity of mice (Benjamin et al., 2017). A recent study
showed that the expression of miR-708-5p exhibited a more
significant decrease in condylar cartilage of UAC-treated adult
rats compared to younger ones. Furthermore, the authors verified
that toll-like receptor 4 (TLR4), which senses OA-related DAMPs,
was the direct target of miR-708-5p and exogenous miR-708–5p
could rescue senescence-like cell degeneration though inhibiting
TLR4 expression (Lingfeng et al., 2024).

5.2.2 Promotion of catabolism
5.2.2.1 TGF-β

Transforming growth factor-beta (TGF-β) is a cytokine involved
in various biological processes and plays an essential role in
regulating cartilage homeostasis (Blaney Davidson et al., 2007).
TGF-β1, a member of the TGF-β superfamily, appears to play
dual roles in TMJOA. As reported, TGF-β1 can stimulate
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synthesis of proteoglycans in chondrocytes (van Beuningen et al.,
1994) and suppress terminal differentiation of chondrocytes (Serra
et al., 1997). Intra-articular injection of TGF-β1 effectively alleviated
cartilage degeneration and protected subchondral cancellous bone
in a TMJOA rabbit model induced by partial disc perforation (Ying
et al., 2013).

However, other studies seemingly provided conflicting results.
Aberrant elevation of TGF-β1 signaling was observed in a
disordered occlusion rat model (Zheng et al., 2018).
Overexpressed TGF-β1 can induce high temperature requirement
A1 serine protease (HtrA1) generation, which contributes to
excessive production of MMP13 (a marker of catabolism) (Long
et al., 2016). Treatment with TGF-β1 initially induces proteoglycan
synthesis; however, prolonged TGF-β1 exposure accelerates OA
progression (Bakker et al., 2001). In a partial discectomy-induced
TMJOA mouse model, conditional removal of transforming growth
factor receptor type II (Tgfbr2) effectively attenuated condylar
cartilage deterioration (Fang et al., 2017). Moreover, Embree
et al. discovered that hyperactivated TGF-β1 stimulated
chondrogenic differentiation and ECM synthesis in younger mice
but led to ECM degradation and TMJOA in aging mice. Even over a
prolonged duration, mandibular explant cultures subjected to low
doses of TGF-β1 (2 ng/mL) did not exhibit notable changes in the
hypertrophic zone area (Embree et al., 2010). Therefore, the effects
of TGF-β1 on condylar cartilage depend on the exposure time, age
and dosage.

5.2.2.2 Wnt/β-catenin
The Wnt signaling pathway is crucial for regulating the growth,

development and homeostasis of articular cartilage and is classified
into two main categories: the canonical Wnt signaling pathway,
which is dependent on β-catenin; and the noncanonical Wnt
signaling pathway, which is independent of β-catenin (Li et al.,
2023). Wnt/β-catenin is involved in the canonical Wnt signaling
pathway. After active Wnt ligands bind to receptors on the cell
membrane, the destruction complex is destabilized, releasing β-
catenin. Then, free β-catenin translocates into the nucleus and binds
to T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription
factors, which regulate expression of Wnt target genes (Zhou et al.,
2017; Li et al., 2023).

Wnt/β-catenin signaling regulates chondrocyte proliferation,
differentiation, hypertrophy and ECM synthesis (Stampella et al.,
2017; Cheng et al., 2022). Appropriate levels of Wnt/β-catenin are
critical for maintaining cartilage homeostasis and long-term
function. Abnormal upregulation or downregulation of β-catenin
in articular cartilage exacerbates OA (Cheng et al., 2022; Li et al.,
2023). Overexpression of β-catenin triggers metalloproteinase
production and chondrocyte hypertrophy, whereas low
expression of β-catenin leads to chondrocyte death (Lories
et al., 2013).

Nevertheless, the role of theWnt/β-catenin pathway in excessive
mechanical loading-induced TMJOA has not been determined.
After compressive mechanical stress loading, Wnt/β-catenin
signaling was inhibited in the condylar cartilage of rats.
Moreover, activation of Wnt/β-catenin signaling promoted the
proliferative capacity of condylar chondrocytes and alleviated
cartilage degeneration (Jiang et al., 2018). In contrast, another
study demonstrated that overloaded functional orthopedic force

activated the Wnt/β-catenin signaling pathway, which contributed
to condylar cartilage degeneration in rats. Moreover, sclerostin,
which inhibits the Wnt/β-catenin signaling pathway, was
downregulated (He Z. et al., 2022). These differences in
expression may be attributed to differences in the modeling
methods and durations of mechanical stimulation, but the
detailed mechanism needs to be further explored.

In addition, the impact of noncanonical Wnt signaling pathways
deserves attention. For example, Wnt16 may impede TMJOA
progression through activating the Wnt/β-catenin signaling
pathway (Hua et al., 2022). In fact, complex interactions occur
among canonical and noncanonical cascades, Wnt antagonists and
other signaling pathways and contribute to the maintenance of
cartilage homeostasis (Monteagudo and Lories, 2017).

5.2.2.3 α2A-Adrenoreceptor
Abnormal mechanical stimulation can mediate inflammatory

processes through the norepinephrine/α2A-adrenoreceptor
complex. Norepinephrine has been detected in synovial fluid
from OA patients (Lorenz et al., 2016). In addition, expression of
α2A-adrenoreceptor was elevated in condylar cartilage of UAC rats.
Norepinephrine induced degenerative changes in cartilage and
subchondral bone through the α2A-adrenoreceptor complex, and
the α2-adrenoreceptor antagonist yohimbine inhibited the
norepinephrine-induced increase in chondrocyte catabolic
activities. Moreover, the authors confirmed in vitro that
norepinephrine-α2A signals acted primarily through the ERK1/
2 and protein kinase A (PKA) pathways, which stimulate
production of MMP3, MMP13 and RANKL while inhibiting
aggrecans expression (Jiao et al., 2016).

5.2.2.4 Periostin
Periostin, a member of the fasciclin family, is an ECM protein

that does not directly participate in ECM formation but has a
dynamic function in facilitating cellular communication with the
surrounding microenvironment and inducing specific effects (Zhu
et al., 2021). Moreover, periostin has been identified as a critical
mediator of the response to mechanical loading (Gerbaix et al.,
2015). Periostin is highly expressed in human OA cartilage (Han
et al., 2020). Attur et al. demonstrated that periostin played a
catabolic role in OA cartilage by increasing MMP13 expression
via the canonical Wnt signaling pathway (Attur et al., 2015). Fan
et al. first detected expression of periostin in human TMJOA
condylar cartilage. They further confirmed that excessive pressure
loading upregulated periostin, which inhibited expression of
collagen and proteoglycans by activating the nuclear factor kappa
B (NF-κB) pathway and upregulating ADAMTS5 (Fan et al., 2020).

5.2.2.5 HIF2α
Hypoxia-inducible factor 2α (HIF2α) has been identified as a

critical regulator involved in the progression of OA and can directly
upregulate expression of genes encoding catabolic factors (Yang
et al., 2010). Overloaded cyclic tensile strain upregulated catabolic
factors such as MMP3, MMP13 and ADAMTS4 and enhanced
expression of HIF2α (Li et al., 2017). Moreover, inhibition of
HIF2α expression downregulated MMP13 and ADAMT4 in
condylar chondrocytes under cyclic compressive force
stimulation, and interfering with the NF-κB/HIF2α pathway
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alleviated condylar cartilage degeneration in an occlusal trauma-
induced TMJOA model (Li et al., 2022). In summary, abnormal
mechanical stress can induce catabolism through the NF-κB/
HIF2α pathway.

5.2.2.6 SDF-1/CXCR4
Stromal cell-derived factor (SDF)-1, a member of the CXC

subfamily of chemokines, modulates immune cell activation,
differentiation, and migration through its interaction with its sole
receptor CXC receptor 4 (CXCR4) (Liu et al., 2017; Kawaguchi et al.,
2019). Several studies have reported that activation of the SDF-1/
CXCR4 axis can promote catabolism and lead to cartilage
degeneration but that inhibition of this axis alleviates this
damage (Wang et al., 2016; Wang et al., 2020; Chen et al., 2022).
Kuang et al. discovered that SDF-1 mainly existed in the
subchondral bone marrow adjacent to the osteochondral interface
under normal conditions and that CXCR4 was present at high levels
in the hypertrophic layer of condylar cartilage. They further showed
that the SDF-1/CXCR4 axis was activated and accompanied by
upregulation of IL6 and MMP9 in a rat model induced by long-term
experimentally induced malocclusion, which resulted in condylar
cartilage destruction (Kuang et al., 2013). Recently, in a rat model of
TMJOA induced by a mandibular advancement appliance, it was
shown that subchondral bone destruction occurred earlier than
cartilage degeneration. The increase in SDF-1 expression in
osteoblasts promoted interaction of SDF-1 with CXCR4, followed
by upregulation of MMP13, leading to the breakdown of cartilage.
This process was attenuated after administration of the SDF-1
inhibitor ADM3100 (Yang J. et al., 2020).

5.2.2.7 Inflammatory mediators
Cartilage matrix degradation caused by excessive mechanical

stress can disturb the balance of proinflammatory and anti-
inflammatory mediators, resulting in a state of low-grade
inflammation, which plays a critical role in OA progression
(Houard et al., 2013; Robinson et al., 2016; Molnar et al., 2021).
Inflammatory mediators in the process of OA can reprogram
chondrocytes into an ECM-catabolic state, promoting production
of MMPs and ADAMTS and accelerating cartilage degeneration
(Liu-Bryan and Terkeltaub, 2014; Robinson et al., 2016; Arra and
Abu-Amer, 2023). Therefore, it is necessary to focus on changes in
inflammatory mediators under abnormal mechanical loading.

Bromodomain containing 4 (BRD4) is regarded as a promising
therapeutic target for numerous inflammatory disorders (Shi andVakoc,
2014). Under compressive mechanical force in rats, BRD4 inhibition
downregulated the expression of inflammatory mediators such as Tnfα,
Il-1β, and Il-6 and alleviated condylar cartilage degeneration (Huang Z.
et al., 2021). In addition, the author demonstrated that BRD4 functioned
by promoting translation of triggering receptor expressed on myeloid
cells 1 (TREM1).

The serum level of PGE2 is regarded as a marker of the
inflammatory response in OA patients and plays a catabolic role
in cartilage mainly through binding to prostaglandin E receptor 4
(EP4). Inhibition of EP4 can promote anabolism and inhibit
catabolism (Vos et al., 2014; Jin et al., 2022). In a UAC-induced
TMJOA rat model, the level of PGE2 in condylar cartilage was
elevated, and this change was accompanied by catabolism (Zhang
et al., 2014).

The receptor for advanced glycation end products (RAGE),
which belongs to the immunoglobulin superfamily, is a cell-
surface receptor expressed on a wide range of cell types. As an
inflammatory mediator, RAGE interacts with ligands and induces a
series of pro-inflammatory responses (Dong et al., 2022). The
absence of RAGE inhibits MMP13 expression and attenuates
TMJOA development, indicating the key role of RAGE in
TMJOA progression (Matias et al., 2016).

Adipokines in adipose tissue have a proinflammatory effect, and
leptin is the typical adipokine. Leptin can synergize with other
cytokines to facilitate inflammatory reactions and accelerate the
catabolic process in cartilage (Simopoulou et al., 2007; Issa and
Griffin, 2012). In the condylar cartilage of mice subjected to
excessive compressive mechanical force and a high-fat diet, leptin
exhibited excessive expression, resulting in more severe TMJOA-like
changes (Du J. et al., 2020).

5.2.3 Promotion of terminal differentiation
Under physiological conditions, chondrocytes usually exhibit

reduced proliferative potential and resist terminal differentiation.
However, in the pathological state, chondrocytes proliferate
progressively and initiate terminal differentiation, leading to a
hypertrophic phenotype (increased expression of hypertrophic
markers such as MMP13, collagen X and alkaline phosphatase
(ALP), followed by initiation of apoptosis, focal calcification and
vascularization (Dreier, 2010; Chawla et al., 2022). Eventually,
cartilage homeostasis is disrupted, resulting in a series of
degenerative changes. To better understand the mechanisms
involved in TMJOA initiation and progression, in this section, we
focus on the key signaling molecules that induce terminal
differentiation.

Indian hedgehog (Ihh) proteins are members of the hedgehog
family of proteins that play a critical role in TMJ development
and are mainly affected by Patched1 (Ptch1) and Smoothened
(Smo) (Mackie et al., 2011; Bechtold et al., 2019). Ihh binds to
Ptch1 to inhibit Smo, which subsequently activates Gli zinc
finger transcription factors (Gli). Then, Gli translocates to the
nucleus, where it induces expression of the transcription factor
Runx2 and initiates chondrocyte hypertrophy (Lum and Beachy,
2004; Taschner et al., 2008; Amano et al., 2014; Sabol et al.,
2018). Ihh, Smo, Ptch1 and Gli-1 can be effectively activated in
condylar cartilage in response to bite-raising stimuli (Long
et al., 2019).

Notably, there is a negative feedback loop between Ihh and
PTHrP. Specifically, increased Ihh signaling facilitates
chondrocyte terminal differentiation while promoting PTHrP
secretion; conversely, persistent PTHrP signaling delays
maturation of hypertrophic chondrocytes, thus resulting in a
decrease in Ihh-secreting cells (Karp et al., 2000). However,
under abnormal mechanical stimulation, more chondrocytes
become hypertrophic, but inadequate target cells express
PTHrP, suggesting disruption of the feedback loop. Thus, a
decrease in the PTHrP concentration in cartilage may serve as
an indicator of degenerative changes (Liu Q. et al., 2018). Aberrant
activation of calcium-/CaMKII in proliferative chondrocytes
enhances Ihh expression (Taschner et al., 2008). Liu et al.
demonstrated that upregulation of CaMKII-Ihh signaling, along
with subsequent disruption of the Ihh-PTHrP feedback loop,
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serves as the trigger for UAC-induced TMJOA lesions. Inhibition
of initial CaMKII activation reversed impairment of the Ihh-
PTHrP feedback loop and ameliorated biomechanically induced
cartilage degeneration (Liu Q. et al., 2018).

In addition, the calcium-sensing receptor (CaSR) plays a
critical role in promoting the terminal differentiation of
chondrocytes. A study showed that FFSS stimulation enhanced
ER Ca2+ loading and upregulated CaSR in condylar chondrocytes,
which accelerated terminal differentiation without altering the
extracellular Ca2+ concentration. The author further
demonstrated that activation of CaSR reduced expression of
PTH1R (the sole receptor for PTHrP) through a counteracting
relationship, thereby promoting terminal differentiation (Zhang
M. et al., 2019). Interestingly, in addition to inducing terminal
differentiation in chondrocytes, a recent study revealed that CaSR
plays a proliferative role in Prg4-expressing superficial zone cells
under both BAE in vivo and FFSS treatment at 16 dyn/cm2 for
2 hours in vitro by regulating the PTHrP nuclear localization
sequence instead of the PTH/PTHrP receptor signal, which
indicates that CaSR may exert different effects on different
states of chondrocytes (Zhou et al., 2023).

5.2.4 Promotion of pathological calcification
Under abnormal stress, hypertrophic chondrocytes release

matrix vesicles (MVs), which leads to pathological calcification of
the ECM, a critical event in the early stage of cartilage degeneration.
Mineral ions rapidly accumulate after calcification-competent MVs
are released into the ECM, resulting in the formation of the initial
crystalline phase within the luminal space of the vesicle.
Upregulation of matrix-degrading enzymes can promote the
process of mineral deposition by degrading the surrounding
collagen fibers to enlarge the interfibrous space (Zhang et al.,
2016; Yan et al., 2020). Calcified extracellular vesicles (EVs) are
mainly derived from autophagosomes that express the microtubule-
associated protein 1A/1B light chain 3B (LC3). Secretion of LC3-
positive EVs can be attributed to disruption of autophagic flux,
which is caused by histone deacetylase 6 (HDAC6)-mediated
destabilization of microtubules. After intra-articular injection of
tubacin (an HDAC6 inhibitor) in a UAC rat model, release of
LC3-positive EVs was blocked, and pathological calcification of
condylar cartilage and TMJOA progression were obviously
alleviated (Yan et al., 2022).

Furthermore, a recent study detected numerous exosome-like
structures in calcified cartilage under UAC stimulation. These
chondrocyte-derived exosomes contained increased levels of
calcification promoters, such as tissue-nonspecific alkaline
phosphatase (TNAP), and decreased levels of inhibitors, such as
the matrix Gla protein (MGP), thereby aggravating pathological
calcification (Liu et al., 2022).

5.2.5 Promotion of abnormal subchondral bone
remodeling

In addition to cartilage degeneration, abnormal bone
remodeling involving imbalanced bone formation and resorption
is a hallmark of OA (Wang et al., 2015). Focusing on the critical
signaling molecules that promote abnormal bone remodeling might
help to elucidate the pathological molecular mechanism of TMJOA
under excessive mechanical loading.

5.2.5.1 Hh signaling in Gli 1+ cells
In a TMJOA mouse model induced by unilateral partial

discectomy, Hh signaling was activated, resulting in excessive
expansion of Gli 1+ cells accompanied by enhanced but irregular
osteoblastic differentiation, which destroyed the microarchitecture
in the subchondral bone and subsequently promoted TMJOA
development. The authors confirmed that selective inhibition of
Hh signaling could rescue destruction of subchondral bone and
reduce inflammatory responses, indicating that Hh signaling in Gli
1+ cells is important for maintaining subchondral bone homeostasis
(Lei et al., 2022).

5.2.5.2 Wnt5a/Ror2
Wnt5a interacts with receptor tyrosine kinase-like orphan

receptor 2 (Ror2) to activate the noncanonical Wnt signaling
pathway, which negatively regulates skeletal homeostasis (Baron
et al., 2012; Maeda et al., 2012). In a UAC rat model, Wnt5a/
Ror2 signaling in BMSCs derived from TMJ subchondral bone was
activated, which subsequently upregulated chemokine C-X-C motif
ligand 12 (CXCL12) and RANKL. Ultimately, the migration and
differentiation of osteoclast precursors were promoted along with
enhanced osteoclast activity, leading to subchondral bone
destruction. Moreover, the JNK and/or Ca2+/nuclear factor of
activated T cells (NFAT) pathways was involved in this process
(Yang et al., 2015).

5.2.5.3 β2-Adrenergic signals
During the process of physiological bone remodeling, secretion

of norepinephrine by sympathetic nerves inhibits bone formation
while stimulating bone resorption, which is mediated mainly by the
β2-adrenergic receptor (Adrb2) expressed by osteogenic cells
(Elefteriou et al., 2014; Moriya et al., 2015). The β-adrenergic
pathway serves as a major transmitter pathway in the bones of
rats under mechanical loading (sseur et al., 2003). For the condylar
subchondral bone, abnormal UAC stimulation triggered increased
levels of sympathetic nerve fibers and norepinephrine, which
activated the Adrb2-PKA pathway, prompting MSCs to secrete
more RANKL, thereby exacerbating subchondral bone loss and
enhancing osteoclastic activities (Jiao et al., 2015).

5.2.5.4 Sema4D/Plexin-B1
The bone-forming ability of osteoblasts is dependent on their

migration, differentiation and ability to express osteogenic-related
factors. Elevated osteoblast motility has been demonstrated to
inhibit the bone-forming activity of osteoblasts (Negishi-Koga
et al., 2011). Semaphorin 4D (Sema4D) is a transmembrane
protein expressed by osteoclasts, and Plexin-B1 is expressed by
osteoblasts and is the specific receptor for Sema4D (Suzuki et al.,
2008). Sema4D can bind to Plexin-B1 to inhibit bone formation by
inducing osteoblast motility (Negishi-Koga et al., 2011). In a rat
model of TMJOA induced by UAC, Sema4D and Plexin-B1 were
upregulated in the subchondral bone at the early stage, and Sema4D
promoted the migration of osteoblasts expressing Plexin-B1.
Interestingly, increased mRNA expression levels of osteogenic-
related factors, such as Runx2, alkaline phosphatase, osterix and
osteocalcin, was also found. However, due to enhanced motility, the
bone-forming ability of osteoblasts was impaired, eventually
resulting in subchondral bone loss (Zhang et al., 2022d).
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5.2.5.5 RANTES/CCR/Akt2
Elevated levels of proinflammatory cytokines contribute to

osteoclast differentiation and subsequent excessive bone
resorption (Chow and Chin, 2020). RANTES, an inflammatory
chemokine, can bind to chemokine receptors (CCRs) to recruit
immune cells to sites of inflammation and promote osteoclast
formation and bone destruction (Hampel et al., 2013; Feng et al.,
2020). It was found that levels of RANTES were elevated in the
synovial fluid of TMJOA patients (Feng et al., 2020). In addition,
RANTES was upregulated significantly in condylar cartilage under
excessive loading caused by disc displacement in rats, in which it
further bound to CCRs, attracted macrophages to the osteochondral
interface and activated the Akt2 pathway, resulting in aggressive
subchondral bone loss (Feng et al., 2022).

5.2.5.6 miR-335-5p/SP1
Endochondral ossification plays a crucial role in bone formation

and development. Thus, impairment of this process may induce
degenerative changes in subchondral bone (Long and Ornitz, 2013).
Recently, Xia et al. reported increased levels of miR-335-5p and
decreased levels of endochondral ossification-related genes in
condylar cartilage samples from TMJOA patients, indicating a
correlation between miR-335-5p and endochondral ossification.
Then, in a UAC rat model, researchers demonstrated that
activated miR-335-5p caused damage to endochondral
ossification, leading to significant deterioration of trabecular
bone, which was improved by treatment with antagomiR-335.
Moreover, miR-335-5p inhibited endochondral ossification by
directly targeting specific protein 1 (SP1) and activating the TGF-
β pathway (Xia et al., 2023).

5.2.5.7 Crosstalk between condylar cartilage and
subchondral bone

In the physiological state, the osteochondral interface maintains
a dynamic balance to adapt to the changing mechanical
microenvironment (Liu et al., 2021a). However, under abnormal
mechanical loading, the osteochondral interface thickens and
stiffens along with impaired mechanical properties, which leads
to the generation of microfractures and microcracks, thereby
resulting in frequent crosstalk between cartilage and subchondral
bone (Imhof et al., 2000; Zhang et al., 2018). Therefore, the signaling
molecules expressed by chondrocytes may affect subchondral bone.
For example, Kuang et al. demonstrated that disordered molar
occlusion upregulated pro-osteoclastic factors such as SDF-1,
RANKL, Wnt5a and TGF-β1 in rat condylar cartilage (Kuang
et al., 2019). In addition, expression of the abovementioned
molecules contributing to subchondral bone loss, such as
RANTES, miR-335-5p and Erα, was upregulated in condylar
cartilage, suggesting the occurrence of bone–cartilage interplay
(Wu et al., 2019a; Feng et al., 2022; Xia et al., 2023). Similarly,
subchondral bone cells can also affect chondrocytes. An in vitro
study showed that under excessive cyclic tensile stress, osteoblasts
derived from porcine mandibular condyles enhanced catabolism
and inhibited anabolism in cocultured chondrocytes (Lin et al.,
2010). Another study indicated that impact loading on the TMJ can
directly enhance synthesis of IL-1β in subchondral bone, thereby
promoting catabolism of the overlying cartilage (Lin et al., 2009).
Adrb2 deletion in nestin+ MSCs in UAC mice not only attenuated

subchondral bone loss but also impeded condylar cartilage
degeneration and aberrant calcification (Sun et al., 2020b).
Notably, abnormal remodeling compromises the capacity of
subchondral bone to absorb and buffer stress and cannot provide
adequate support to the overlying cartilage, thereby disrupting the
biomechanical environment of chondrocytes, which also contributes
to condylar cartilage degeneration (Mansell et al., 2007; Yuan et al.,
2014; Lei et al., 2022).

6 Effects of mechanical loading on the
synovial membrane and disc

In addition to chondrocytes, the synovial membrane and disc of
the temporomandibular joint are regulated by mechanical loading.
In this section, we discuss the influence of mechanical loading on the
synovial membrane and disc under physiological or pathological
conditions.

6.1 Synovial membrane

The synovial membrane is the major component of the
temporomandibular joint and covers all intraarticular structures,
except for the articular disc and articular cartilage of the eminence,
fossa andmandibular condyle (Dijkgraaf et al., 1996). It is composed
of two layers, including a synovial lining layer and a connective
sublining layer. The major functions of synovial membrane are to
produce synovial fluid components and provide nutrients for the
condyle (Iwanaga et al., 2000; Nozawa-Inoue et al., 2003; Tanaka
et al., 2008). There are two types of cells in the synovial membrane:
macrophage-like type A cells and fibroblast-like type B cells
(synovial fibroblasts, SFs) (Nagai et al., 2006). Previous research
has largely focused on the effect of mechanical stresses on SFs.
Therefore, in the following section, the influence of mechanical
stresses on SFs in the temporomandibular joint is presented.

Under physiological conditions, the main function of SFs is to
synthesize ECM and synovial fluid components (Wilkinson et al.,
1992). Moderate stress is not harmful or even favorable. In a study
by Nazet et al., short high-frequency tensile strain had no effect on
matrix constituent production-related genes, such as Col1a1,
Col1a2, hyaluronic acid synthase 1 (Has1), cell-migration-
inducing hyaluronidase 2 (Cemip2), Fibronectin-1 (Fn1) and
Adamts5 (Nazet et al., 2021; Nazet et al., 2022). Xu et al.
reported that intermittent hydrostatic pressure loading increased
accumulation of PRG4 (a secreted mucinous glycoprotein that is
considered responsible for joint lubrication) and may be beneficial
(Xu et al., 2012). However, the lubrication function is affected by
excessive mechanical stress stimulation. The predominant protein
family in the ECM is collagens, which mainly consist of alpha-1 and
alpha-2 polypeptide chains. In SFs subjected to excessive tension,
total collagen deposition was diminished. Hyaluronic acid (HA) is
an important factor for joint lubrication. Excessive tensile strain
treatment also decreased expression of glycosaminoglycan
HA in SFs.

In addition to lubrication, SFs have been identified to be key
players in inflammation-related processes. Moderate mechanical
stress has only minor effects on inflammatory factor secretion or
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even decreases inflammatory mediator secretion in SFs. Gene
expression of proinflammatory factors such as Il-6, intercellular
adhesion molecule-1 (Icam-1), Cxcl-1, Cxcl-2, Il-1β, and Ptgs2 is not
affected by suitable tensile strain (Nazet et al., 2021). In another
study, a moderate stretching strain reduced gene expression of Il6
and Il1β (Nazet et al., 2022). PGE2 is a principal mediator of
inflammation in OA. In the study of Sambajon et al. (Sambajon
et al., 2003), mechanical strain decreased PGE2 production in SFs.
However, excessive mechanical stress might promote inflammation.
Advanced strains led to increased expression of inflammatory
factors, including Cxcl-1, Cxcl-2, Ptgs2, PGE2, IL-6 and IL-1b
(Akamine et al., 2012; Nazet et al., 2021; Nazet et al., 2022).
Harmful mechanical stimuli increased the level of elastin-derived
peptides (EDPs), which further upregulated the expression of IL-6
and MMP12 (Kobayashi et al., 2017). HP increased expression of
cadherin-11, which plays a critical role in evoking SF inflammatory
factors that may contribute to synovial inflammation, cartilage
degeneration and rheumatoid arthritis (Wu et al., 2013).
Stretching stress increased the level of cyclooxygenase-2 (COX-2,
involved in production of PGE2) and inducible nitric oxide synthase
(iNOS, which synthesizes NO) via the NF-κB signaling pathway
(Yamaza et al., 2003; Morisugi et al., 2010). MMPs can degrade the
ECM and are expressed in the synovial fluid of osteoarthritic TMJs.
Expression of MMP-1, -2, -3 and -9 is upregulated by excessive
compression (Muroi et al., 2007; Akamine et al., 2012). IL-8 is an
important cytokine for angiogenesis and a characteristic feature of
the inflamed synovium. Excessive stress stimulates expression of IL-
8 (Muroi et al., 2007; Akamine et al., 2012) and other angiogenic
factors, including VEGF-D and FGF-2 (Wu et al., 2013).

In addition, SFs can mediate the bone remodeling process by
secreting related proteins. Protein expression of RANKL in synovial
cells treated with compressive force is increased, which further
facilitates differentiation of osteoclasts (Ichimiya et al., 2007). In
another study, tensile stress upregulated expression of OPG in
synovial fibroblasts and decreased the RANKL/OPG ratio (Nazet
et al., 2022).

6.2 TMJ disc

The TMJ disc is an avascular and noninnervated tissue
composed of fibrocartilage with viscoelastic consistency and
possesses transitional characteristics between those of fibrous
tissue and cartilage. The disc is an essential element in the
normal TMJ that has the following functions: i) provides a
smooth interface between the condyle and the mandibular fossa;
ii) provides load-bearing and support forces (e.g., compression,
tension and shear forces); and iii) lubricates the surrounding
surfaces for different ranges of motion (Vapniarsky et al., 2018;
Trindade et al., 2021).

The normal disc ECM consists of collagen fibers (mainly type I
collagen and type II collagenmostly found in the intermediate zone),
glycosaminoglycan (GAG) and proteoglycans and elastic fibers. A
summary of the influence of mechanical stresses on the ECM is
as follows.

The magnitude of mechanical forces affects the responses of
collagen fibers. The typical wavelike structure of the collagen fibrils
on the disc was maintained in response to modest tension and

compression. However, excessive mechanical activity can also cause
damage to local collagen fibrils (Kang et al., 2006). In a UAC model,
type I collagen and type II collagen are reduced (Zhang HY. et al.,
2019). Severe compressive force reduces the number of collagen
fibers in articular discs (Magara et al., 2012). Importantly, the length
of exposure to mechanical force influences the response. Changes in
the collagen network from a wavelike structure to distortion are
reversible in short-term stimulation indentation, but severe,
irreversible breakdown and deformation of the collagen-
proteoglycan network occur in specimens that have been
compressed for a long time (Kang et al., 2006).

Proteoglycans can be classified into 2 major families: modular
proteoglycans (also called hyalectans) and small leucine-rich
proteoglycans (SLRPs) (Iozzo and Murdoch, 1996). A previous
study revealed that expression of versican (a modular proteoglycan),
as well as biglycan, chondroadherin and decorin (a small leucine-rich
proteoglycan), increased in response to stimulation bymechanical force
(Nakao et al., 2015). Versican plays a central role in the initiation and
increase in inflammatory processes (Zhang et al., 2012), wound healing
and angiogenesis (Toriya et al., 2006; Choocheep et al., 2010; Michaelis
et al., 2018). Chondroadherin is thought to contribute to
communication between TMJ cells and matrices and to modulation
of cellular activity and matrix assembly (Nakao et al., 2015). Decorin is
predominant in the peripheral region under tensile force (Kuwabara
et al., 2002), whereas biglycan is more prominent in the posterior band
of the TMJ disc and is likely subjected to compressive force during
biting (Kuwabara et al., 2002). The elevated proteoglycan expression of
decorin and biglycan is interpreted as an increase in the magnitude of
compressive forces in the TMJ (Mao et al., 1998). However, in another
study, aggrecan, decorin and fibromodulin were downregulated in the
UAC model group (Zhang HY. et al., 2019). These seemingly
paradoxical results might be due to differences in the magnitude of
the mechanical force applied.

Expression of GAG is modulated by mechanical forces. The
content of GAG increased significantly in the bite plane group
(Nakao et al., 2015). Specifically, stress stimulates expression of C6S
compared with that in controls. As C6S is the major component of
hyaline cartilage, compressive forces in the articular disk may
stimulate the development of more cartilaginous-like properties
with respect to GAG content (Carvalho et al., 1995).

Desmin is a type of intermediate filament that is a component of
the cytoskeleton. Compressive force provoked a significant increase in
desmin, suggesting that mature articular cells are capable of producing
desmin in response to mechanical stress (Magara et al., 2012).

In addition to specific components, sustained mechanical
loading may significantly alter the nutrient distribution inside the
TMJ disc by impeding solute transport (Kuo et al., 2011; Wright
et al., 2013), which subsequently causes restriction of nutrient supply
and waste removal and may result in homeostasis disruption and
initiate cell death (Wu et al., 2019b).

It is commonly accepted that TMJ disc cells consist mainly of
fibroblasts and chondrocyte-like cells. Several scholars have
concluded that there are three kinds of cells, namely, fibroblast-
like cells (elongated and the greatest percentage of cells),
fibrochondrocytes (rounded cells without a pericellular halo), and
chondrocyte-like cells (rounded cells with a pericellular halo)
(Leonardi et al., 2002). Dynamic tensile strain can downregulate
the catabolic activity of fibrocartilage cells in an inflammatory
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TABLE 1 Mechanical loading models in this review and their effects.

Subjects Species Age/Passage
number

Mechanical loading
methods

Time Effects Ref.

Chondrocytes Rat 3 Hydrostatic compressive forces at
50–250 kPa

2 h Reduce apoptosis and
enhance viability

Ma et al. (2016)

Chondrocytes Rat 4–10 Hydrostatic pressure at 50–200 kPa 1 h Promote catabolism and
anabolism

Zhou et al.
(2020b)

Chondrocytes Rat — Hydrostatic pressure at 0.3 MPa 24 h Promote apoptosis Xu et al. (2017)

Chondrocytes Rat 2 Cyclic compressive forces at 1,000–4,000
μstrain, 0.5 Hz

2 h Promote catabolism Li et al. (2022)

Chondrocytes Rat 2 Negative pressure at 10 kPa 4 h Promote chondrocyte
proliferation

Liu et al. (2021b)

Chondrocytes Rabbit 3–4 Continuous pressure at 90 kPa 1 h Promote anabolism and
inhibit inflammation

Chen et al.
(2007)

Chondrocytes Mouse ≤6 Uniaxial compression at 2.5 N 2 h Promote catabolism Reed et al. (2022)

Synovial fibroblasts Rat 3–7 Intermittent hydrostatic pressure at
100 kPa

4 h/d for 2 d Promote boundary
lubrication (upregulation of
PRG4)

Xu et al. (2012)

Synovial cells Human 5–7 Cyclic compressive forces at 20–40 kPa,
0.5 Hz

1 h Promote catabolism Akamine et al.
(2012)

Synovial cells Human 6 Cyclic compressive forces at 20 kPa,
0.5 Hz

1 h/d for 5 d Promote catabolism Muroi et al.
(2007)

Synovial cells Rat — Compressive force at 2.0 g/cm2 12 h Promote osteoclast
formation

Ichimiya et al.
(2007)

Synovial fibroblasts Rat — Hydrostatic pressures at 30–120 kPa 12 h Promote inflammation Wu et al. (2013)

Disc cells Rat 2–3 Continuous compressive force at
0.5–1.5 g/cm2

24 h Promote catabolism and
inflammation

Cui et al. (2023)

SW1353 Human — Static pressure at 150 kPa or 200 kPa 3 h Promote catabolism Fan et al. (2020)

Chondrocytes Rat — CTS at 20% elongation, 0.1 Hz 6–12 h Promote apoptosis Xu et al. (2019)

Chondrocytes Rat 3 CTS at 20% elongation, 0.1 Hz 2–12 h Inhibit anabolism Zhang et al.
(2022a)

Chondrocytes Pig — CTS at 7% elongation, 0.5 Hz 12–48 h Promote boundary
lubrication (upregulation
of SZP)

(Kamiya et al.,
2010)

— CTS at 21% elongation, 0.5 Hz Inhibit synthesis of SZP

Chondrocytes Mouse 1 CTS at 6% elongation, 0.5 Hz 1–6 h Promote proliferation Liu et al. (2019a)

Cartilage Rat 6 w Mandibular propulsive appliance 2 w Promote anabolism (Sun et al., 2017)

Chondrocytes 2 CTS at 16% elongation, 1 Hz 3–12 h

Chondrocytes Pig — IL-1β + CTS at 6% elongation, 0.5 Hz 8 h Inhibit inflammation Tabeian et al.
(2019)

Chondrocytes Rabbit — IL-1β + CTS at 3%–9% elongation,
0.05 Hz

24 h Inhibit inflammation Agarwal et al.
(2001)

Chondrocytes Rat 3 CTS at 20% elongation, 0.5 Hz 24 h Promote apoptosis Huang et al.
(2017)

Chondrocytes Rat — CTS at 1,000–3,000 μstrain, 0.5 Hz 2 h Promote catabolism Li et al. (2017)

Synovial fibroblasts Mouse 6–7 CTS at 15% elongation, 0.5 Hz 16 h and a break
of 8 h in-between

Promote inflammation Nazet et al.
(2022)

ATDC5 Mouse — FFSS at 24 dyne/cm2 1–2 h Promote autophagy Yang et al.
(2020b)

1–4 h Promote apoptosis

(Continued on following page)
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TABLE 1 (Continued) Mechanical loading models in this review and their effects.

Subjects Species Age/Passage
number

Mechanical loading
methods

Time Effects Ref.

Chondrocytes Rat — FFSS at 12 or 24 dyne/cm2 1 h/w for 3 w Promote abnormal
adipogenesis

Wang et al.
(2022b)

ATDC5 Mouse — FFSS at 12 or 24 dyne/cm2 1 h Promote terminal
differentiation and inhibit
anabolism

Liu et al. (2018b)

Chondrocytes Rat — FFSS at 16 dyne/cm2 1 h Promote terminal
differentiation and inhibit
anabolism

Zhang et al.
(2019a)

Superficial
chondrocytes

Rat — FFSS at 16 dyne/cm2 2 h Promote proliferation Zhou et al.
(2023)

Chondrocytes Rat — FFSS at 16 dyne/cm2 1–4 h Promote apoptosis Ren et al. (2019)

Chondrocytes Rat — FFSS at 8 or 16 dyne/cm2 1 h Promote pathological
calcification

Liu et al. (2022)

Cartilage Rabbit Adult Anterior disc displacement 2 w Promote degeneration Zhou et al.
(2020b)

Cartilage and
subchondral bone

Mouse 3 w Incisor trimming with soft diet 2–6 w Promote degeneration Chen et al.
(2009)

Cartilage Rat 2 w Hard diet 6–48 h Promote growth Papachristou
et al. (2006)

Cartilage Mouse 8 w Botulinum toxin A injection into
masseters

4 w Promote degeneration (Hou et al., 2023)

Hyperactivity biting

Cartilage and
subchondral bone

Mouse 6 w Botulinum neurotoxin into masseters 4 w Promote degeneration (Dutra et al.,
2018)

Botulinum neurotoxin into masseters +
forced mouth open

4 w + 1 h/d
for 5 d

Rescue degeneration

Cartilage Rat 9 w Steady mouth-opening at 2 N 2 h/d for 5 d Promote degeneration Ge et al. (2017)

Cartilage Rat 5 w Mandibular lateral shift 2–4 w Promote boundary
lubrication (upregulation of
PRG4)

Yang et al.
(2020a)

Cartilage Rat 5 w Mandibular propulsive appliance 7–21 d Promote boundary
lubrication (upregulation of
lubricin)

Chen et al.
(2019a)

Cartilage Rat 5 w Mandibular propulsive appliance 3–60 d Promote growth Ng et al. (2006)

Cartilage Rabbit 8 w Mandibular propulsive appliance 3 d-12 w Promote endochondral
ossification

Jing et al. (2013)

Cartilage Rat 3 w Mandibular propulsive appliance 5–15 d Promote chondrocyte
proliferation

Hajjar et al.
(2003)

Cartilage Rat 5 w Mandibular propulsive appliance 1–17 d Promote anabolism Rabie et al.
(2003a)

Cartilage and
subchondral bone

Rat 5 w Overloaded functional orthopedic force 2–8 W Promote degeneration He et al. (2022b)

Cartilage Mouse 6 w BAE 7–11 w Promote proliferation Liu et al. (2019a)

Cartilage Mouse 6 w UAC 7–15 w Promote degeneration Zhou et al.
(2020a)

UAC + BAE 7–15 w + 4w Rescue degeneration

Cartilage Rat 3 w UAC 8 w Promote degeneration Zhou et al.
(2022)

Cartilage Rat 6 w UAC 2–20 w Promote degeneration Yang et al.
(2020b)

(Continued on following page)
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environment by inhibiting expression of a variety of MMPs
(including MMP-3, -7, -8, -9, -13, −16, −17, and −19) (Deschner
et al., 2006). However, overload of mechanical force can induce
upregulation of inflammatory cytokines and multiple subtypes of
MMPs in TMJ disc cells, which is associated with TRPV4 activation
and Ca2+ influx (Cui et al., 2023). Furthermore, aquaporin-1 (AQP-
1) has been reported to mediate the effects of stress on TMJ disc cells
(Loreto et al., 2012).

7 Discussions and future directions

7.1 The mechanotransduction signaling
process involves three-tiered cascade

Condylar chondrocytes are mechanosensitive. Dependent on
integrins, the cytoskeleton, ion channels and primary cilia, condylar
chondrocytes are capable of converting mechanical stimuli into
biochemical signals, thereby triggering subsequent biological

responses. This process of mechanotransduction signaling involves
mechanosensors, mechanotransducers, and mechanoimpactors
(Wang et al., 2023). Mechanosensors are the elements that directly
sense and transduce the mechanical signals. In fact, the four
mechanosensitive elements that we have discussed at the third
section, including integrins, the cytoskeleton, ion channels and
primary cilia, belong to mechanosensors. Mechanotransducers refer
to molecules that activated by upstream signaling pathways and
modulate specific downstream molecules, which plays a bridging
role in connecting mechanosensors and mechanoimpactors. Most of
the critical signalingmolecules that we discussed in this review belong to
the mechanotransducers. Mechanoimpactors represent the final
effector of mechanotransduction signaling, resulting in biological
changes of chondrocytes and ECM. In this review, we classified the
critical signaling molecules according to various mechanoimpactors.
Notably, the abovementioned critical signaling molecules can also be
activated by other factors not limited to mechanical stimulation. At
present, molecules that only respond to mechanical stimulation have
not been found, which deserve further exploration.

TABLE 1 (Continued) Mechanical loading models in this review and their effects.

Subjects Species Age/Passage
number

Mechanical loading
methods

Time Effects Ref.

Cartilage Mouse 6 w UAC 6–8 w Promote degeneration Qi et al. (2022a)

Cartilage Mouse 6 w UAC 1–11 w Promote degeneration Liu et al. (2020)

Subchondral bone Rat 8 w UAC 4–8 w Promote degeneration Yang et al. (2022)

Subchondral bone Mouse 6 w UAC 3 w Promote degeneration Sun et al. (2020a)

Subchondral bone Rat 6 w UAC 4 w Promote degeneration Yang et al. (2015)

Disc Rat 6 w UAC 4–20 w Promote degeneration Zhang et al.
(2019b)

Disc Rat 7 w UAC 3 d Promote degeneration and
inflammation

Cui et al. (2023)

Cartilage Rat 8 w Molars movement 4–12 w Promote degeneration Zhang et al.
(2013)

Cartilage Rat 8 w Molars movement 24 w Promote degeneration and
regeneration

Kuang et al.
(2013)

Cartilage Rat 8 w A ligation silk knot (0.25 mm diameter)
on the first molar of maxillary

2–8 w Promote degeneration Zhang et al.
(2022b)

Cartilage Mouse 8 w A wire (0.012 diameter, 2.5 mm long) on
molars of maxillary

2–8 w Promote degeneration Matias et al.
(2016)

Cartilage Rat 8 w Occlusal elevation at 2 mm 2–8 w Promote degeneration Zhuang et al.
(2023)

Disc Rat 7 w Occlusal elevation at 2 mm 1–4 w Promote adaptive responses Nakao et al.
(2015)

Cartilage Rat 9 w Occlusal elevation at 1.5 mm for the first
maxillary molar and 1 mm for the third
molar

3–28 d Promote degeneration Long et al. (2019)

Cartilage Rat 7 w Compressive mechanical force at 80 g 4–7 d Promote degeneration and
apoptosis

Zhu et al. (2016)

Cartilage Rat 8 w Compressive mechanical force at 40 g 2 w Promote degeneration Li et al. (2013)

Cartilage Mouse 8 w Compressive mechanical force 1 w Promote degeneration Du et al. (2020b)

Disc Rat 8 w Compressive mechanical force at 50 g 5 d Promote degeneration Magara et al.
(2012)
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7.2 More accurate modeling methods are in
urgent need

Different magnitudes of mechanical stimulation produce various
effects on TMJ tissue, which are regulated by critical signaling
molecules. Moderate mechanical stimulation is essential for
maintaining the homeostasis whereas abnormal mechanical
stimulation disturbs the balance. Evaluating the variation in critical
signaling molecules is beneficial for determining whether mechanical
loading on the TMJ is moderate, which holds promise for realizing early
diagnosis and prevention of TMJ degenerative disease. However, the
actual mechanical stress environment in the TMJ is very complicated
and cannot be fully simulated by existing mechanical loading models
(Table 1). In the future, modelingmethods that closely approximate the
real stress environment are urgently needed to determine the variation
in critical signaling molecules more accurately.

7.3 Changes of mechanical stimulation may
influence the final output of critical signaling

We notice that several signaling molecules activated by
moderate mechanical loading, such as PRG4, HMGB2 and
PTHrP, can also exert compensatory effects under abnormal
mechanical stimulation, indicating that they play the same
homeostasis-promoting role under different mechanical stress
conditions (Yang W. et al., 2020; Zhou Y. et al., 2020; Zhang
et al., 2022c). Then, whether all the signaling molecules can
maintain the final effect unchanged if the mechanical stress
condition is altered? In fact, some signaling molecules play
different roles when stimulated by different mechanical loadings.
For example, TRPV4 is able to promote anabolism under moderate
mechanical stress but induce apoptosis when the stress is excessive
(O’Conor et al., 2014; Xu et al., 2019). Moderate expression of VEGF
is beneficial for the endochondral ossification, but overexpression of
VEGF induced by abnormal mechanical stimulation can result in
catabolism and subchondral bone loss (Jiao et al., 2011; Jiang et al.,
2017). In conclusion, we speculate that there will always be some
mechanosensitive signaling pathways changed when the mechanical
stress condition is changed, thereby interfering with the downstream
pathways of critical singaling moleclues, which could influence the
final output. Due to the complicated molecular network, the detailed
mechanisms remain to be elucidated.

7.4 Critical signaling molecules have
potential therapeutic implications

Molecules with compensatory effects attempt to impede TMJOA
progression. They not only facilitate proliferation, differentiation,
clearance, anabolism and matrix crosslinking in condylar cartilage
but also promote subchondral bone formation; additionally, they
play inhibitory roles in terminal differentiation, apoptosis and
aberrant lipid metabolism. Molecules with decompensatory
effects accelerate TMJ degeneration. They function in promoting
cell death, catabolism, terminal differentiation, pathological
calcification and abnormal subchondral bone remodeling. Based
on the above studies, we discover that if molecules with

compensatory effects occupy a dominant position under
abnormal mechanical stimulation, the condyle homeostasis can
be effectively maintained, thereby delaying even reversing the
degeneration. In contrast, if molecules with decompensatory
effects are more predominant, the homeostasis can be disrupted,
accelerating the degeneration process. Therefore, the treatment for
TMJOA based on signaling molecules could be approximately
categorized into two directions: enhancing compensatory
molecules-mediated signaling or inhibiting decompensatory
molecules-mediated signaling. For example, intra-articular
injection of adenovirus (Ad-Rap2a-GFP) overexpressed
compensatory RAP2A molecules and then alleviated TMJOA
lesions of UAC-treated mice (Qi et al., 2022a). Besides, specific
inhibition of decompensatory BRD4 molecules by JQ1 attenuated
the degenerative changes in rat condyle that induced by compressive
mechanical force (Huang Z. et al., 2021). However, TMJOA is a
highly heterogeneous disease involved in a complicated network of
signaling molecules, thus focusing on a single molecular target may
not achieve desirable therapeutic effect, suggesting that combination
of multiple targeted molecules is a future direction for TMJOA
treatment. In addition, the TMJ is covered by a synovial membrane
and is composed of the mandibular condyle, glenoid fossa and disc.
All these components, not limited to the condyle, can be affected by
mechanical loading. Whether the signaling crosstalk among them
will affect the treatment outcome need to be fully considered.
Moreover, based on the fact that moderate mechanical
stimulation is beneficial for maintaining the TMJ homeostasis,
only paying attention to therapeutic targets is not sufficient. At
the same time, it is necessary to improve the adverse stress
environment in the TMJ cavity through occlusal splints, occlusal
adjustment and orthodontic or orthognathic treatment.
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Glossary

TMJ temporomandibular joint

TMJOA temporomandibular joint osteoarthritis

ECM extracellular matrix

FAK focal adhesion kinase

ILK integrin-linked kinase

IP3 inositol triphosphate

2APB aminoethoxydiphenyl borate

ROR ryanodine receptorchannels

Rya ryanodine

CaMKII calmodulin-dependent protein kinase II

MAPK mitogen-activated protein kinase

ER endoplasmic reticulum

HCF hydrostatic compressive force

ERK extracellular signal–regulated kinase

PI3K phosphatidylinositol-3-kinase

MLC-II myosin light chain II

TRPV4 transient receptor potential cation channel subfamily V member 4

CTS cyclic tensile strain

UAC unilateral anterior crossbite

mTOR mammalian Target of rapamycin

IFT intraflagellar transport

PGE2 prostaglandin E2

PRG4 proteoglycan 4

TNFα tumor necrosis factor α

SZP superficial zone protein

IL interleukin

HMGB2 high-mobility group box 2

IGF insulin-like growth factor

IGFR1 insulin-like growth factor 1 receptor

IGFBP insulin-like growth factor-binding protein

RKIP Raf kinase inhibitor protein

MMP matrix metalloproteinase

NO nitric oxide

PTHrP parathyroid hormone-related protein

PTH1R parathyroid hormone receptor 1

SOX9 sex-determining region Y-box 9

YAP Yes-associated protein

ADAMTS5 a disintegrin and metalloproteinase with thrombospondin motif 5

RUNX2 runt-related transcription factor 2

AP-1 activator protein-1

JNK c-Jun N-terminal kinase

BAE bilateral anterior elevation

PCNA proliferating cell nuclear antigen

MSC mesenchymal stem cell

VEGF vascular endothelial growth factor

Ang angiopoietin

LC3 light chain 3

MAP4K3 mitogen-activated protein kinase kinase 3

CD163 cluster of differentiation 163

NG2 neuron-glial antigen 2

CSPG4 chondroitin sulfate proteoglycan 4

CCL2 C-C motif chemokine ligand 2

MCP1 monocyte chemoattractant protein 1

PDGFrβ platelet-derived growth factor receptor beta

RAP2A Ras-related protein Rap-2a

HIF hypoxia-inducible factor

PCM pericellular matrix

OPG osteoprotegerin

RANKL receptor activator of nuclear factor kappa-B ligand

GDF growth differentiation factor

LOX lysyl oxidase

CaSR calcium-sensing receptor

APAF-1 apoptotic protease activating factor-1

Cyt C cytochrome C

CHOP C/EBP homologous protein

ERS endoplasmic reticulum stress

ERN1 endoplasmic reticulum to nucleus signaling 1

ATF6 activating transcription factor 6

EIF2AK3 eukaryotic translation initiation factor 2 alpha kinase 3

MTORC1 mechanistic target of rapamycin complex 1

FFSS flow fluid shear stress

GRP glucose regulated protein

HP hydrostatic pressure

SIRT1 silent information regulator 1

UTR untranslated region

RIP1 receptor interacting protein kinase 1

MLKL mixed lineage kinase domain-like protein

SDC4 syndecan 4

DAMP damage-associated molecular pattern

GPX4 glutathione peroxidase 4

ACSL4 acyl coenzyme A synthetase long chain family, member 4

NLRP3 NOD-like receptor protein 3

GSDMD gasdermin D
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MIA miodoacetate

SASP senescent-associated secretory phenotype

m6A N6-methyladenosine

METTL3 methyltransferase-like 3

TLR4 toll-like receptor 4

TGF transforming growth factor

HtrA1 high temperature requirement A1 serine protease

TCF/LEF T-cell factor/lymphoid enhancer factor

PKA protein kinase A

NF-κB nuclear factor kappa B

SDF stromal cell-derived factor

CXCR4 CXC receptor 4

BRD4 bromodomain containing 4

TREM1 triggering receptor expressed on myeloid cells 1

EP4 prostaglandin E receptor 4

RAGE receptor for advanced glycation end products

Ihh Indian hedgehog

ALP alkaline phosphatase

Ptch1 Patched 1

Smo Smoothened

MV matrix vesicle

EV extracellular vesicle

HDAC6 histone deacetylase 6

TNAP tissue-nonspecific alkaline phosphatase

MGP matrix Gla protein

Ror2 receptor tyrosine kinase-like orphan receptor 2

CXCL12 chemokine C-X-C motif ligand 12

NFAT nuclear factor of activated T cells

Adrb2 β2-adrenergic receptor

Sema4D Semaphorin 4D

CCR chemokine receptor

SP1 specific protein 1

SF synovial fibroblast

Has1 hyaluronic acid synthase 1

Cemip2 cell-migration-inducing hyaluronidase 2

Fn1 Fibronectin 1

HA hyaluronic acid

Icam-1 intercellular adhesion molecule-1

Ptgs2 prostaglandin-endoperoxide synthase 2

EDP elastin derived peptide

COX-2 cyclooxygenase-2

iNOS inducible nitric oxide synthase

GAG glycosaminoglycan

SLRP small leucine-rich proteoglycans

AQP-1 aquaporin-1
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