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The endoplasmic reticulum (ER) is a crucial organelle that orchestrates key
cellular functions like protein folding and lipid biosynthesis. However, it is
highly sensitive to disturbances that lead to ER stress. In response, the
unfolded protein response (UPR) activates to restore ER homeostasis, primarily
through three sensors: IRE1, ATF6, and PERK. ERAD and autophagy are crucial in
mitigating ER stress, yet their dysregulation can lead to the accumulation of
misfolded proteins. Cisplatin, a commonly used chemotherapy drug, induces ER
stress in tumor cells, activating complex signaling pathways. Resistance to
cisplatin stems from reduced drug accumulation, activation of DNA repair,
and anti-apoptotic mechanisms. Notably, cisplatin-induced ER stress can
dualistically affect tumor cells, promoting either survival or apoptosis,
depending on the context. ERAD is crucial for degrading misfolded proteins,
whereas autophagy can protect cells from apoptosis or enhance ER stress-
induced apoptosis. The complex interaction between ER stress, cisplatin
resistance, ERAD, and autophagy opens new avenues for cancer treatment.
Understanding these processes could lead to innovative strategies that
overcome chemoresistance, potentially improving outcomes of cisplatin-
based cancer treatments. This comprehensive review provides a multifaceted
perspective on the complex mechanisms of ER stress, cisplatin resistance, and
their implications in cancer therapy.
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1 Introduction

The endoplasmic reticulum (ER) is a key organelle in cells, crucial for synthesizing,
folding, and modifying secretory and transmembrane proteins (Oakes and Papa, 2015;
Wang and Kaufman, 2016). Cells face various pressures that threaten their survival,
including hypoxia and starvation. Facing these challenges, cells undergo ER stress,
activating the unfolded protein response (UPR) (Urra et al., 2016; Cubillos-Ruiz et al.,
2017). The UPR is an adaptive mechanism allowing cells to mitigate stress by restoring ER
function and implementing quality control measures (Lebeaupin et al., 2018). Specifically, it
involves recruiting ER proteins for proteasomal degradation through the endoplasmic
reticulum-associated degradation (ERAD) mechanism (Chee et al., 2022; Xu et al., 2022).
Additionally, macroautophagy, a lysosomal-mediated protein degradation pathway, plays a
key role in recovering and clearing misfolded proteins, aggregated proteins, and damaged
organelles, acting as a crucial protective mechanism during ER stress (Song et al., 2018).
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Furthermore, the ER autophagy pathway, with distinct regulatory
mechanisms and responses, also governs this complex ER quality
control process (Chino and Mizushima, 2020). External factors and
internal events can disrupt this highly regulated process, leading to
ER stress characterized by the accumulation of misfolded proteins.

During tumor development, genetic, transcriptional, and
metabolic abnormalities occur due to inactivated tumor
suppressor genes and oncogenic mutations. These abnormalities
lead to an unfavorable microenvironment, inducing ER stress in
tumor cells (Chen and Cubillos-Ruiz, 2021). It is crucial to recognize
that tumor cells are heterogeneous, leading to varied responses and
tolerance to ER stress. Therefore, sustained ER stress can affect
tumor functionality and survival diversely, underlining its
importance in understanding tumor biology (Lin et al., 2019).
Cisplatin, a common chemotherapy drug, works by causing DNA
damage and activating DNA damage response pathways, leading to
cell apoptosis (Galluzzi et al., 2012; Ghosh, 2019; Li et al., 2023).
Similarly, in tumors, cisplatin can induce ER stress in cells under
treatment pressure (Linder and Shoshan, 2005; Gentilin et al., 2019;
Zhu et al., 2023). However, cisplatin treatment often results in
chemoresistance, making the treatment ineffective (Chen et al.,
2020; Kryczka et al., 2021). Researchers are investigating the
relationship between cisplatin-induced ER stress and
chemotherapy resistance to understand contributing factors
(Chen et al., 2020; Bahar et al., 2021).

This review aims to provide a comprehensive overview of the
fundamental mechanisms of ER stress and its quality control.
Elucidating the molecular mechanisms and signaling pathways
involved offers insights into tumor cells’ adaptive responses and
their impact on treatment outcomes. Understanding the interplay
between ER stress and cisplatin resistance is crucial to advance
tumor biology knowledge and develop personalized treatment
strategies. Identifying novel therapeutic targets and designing
more effective approaches can help overcome cisplatin resistance
and enhance cancer treatment efficacy. In conclusion, this review
explores the role of ER stress and its quality control mechanisms in
cisplatin resistance in tumor cells. Exploring the molecular basis of
cisplatin resistance and its link with ER stress aims to contribute to
developing strategies to overcome chemoresistance and improve
cisplatin-based cancer treatment outcomes.

2 ER stress and UPR activation: from
molecular pathways to
cellular outcomes

The ER, a critical organelle in eukaryotic cells, orchestrates key
biological processes like Ca2+ homeostasis, protein folding and
trafficking, and lipid biosynthesis (Zhang et al., 2014). Protein
folding is particularly sensitive to environmental fluctuations.
Nutrient deprivation, pathogenic stimuli, and hypoxia can cause
misfolded proteins to accumulate in the ER, leading to cellular
toxicity known as ER stress (Senft and Ronai, 2015; Hotamisligil and
Davis, 2016). This stress response activates the UPR, which alleviates
ER stress by removing misfolded proteins and restoring ER
homeostasis (Zhang et al., 2014). Notably, ER stress plays a
crucial role in many diseases, including metabolic disorders,
neurological diseases, and cancer. This comprehensive review

endeavors to provide an extensive overview of the current
pathways and intricate molecular mechanisms that underlie ER
stress and UPR activation.

Unfolded proteins in the ER lumen activate the UPR, driven by
three sensors: Inositol-Requiring Enzyme 1 (IRE1), Activating
Transcription Factor 6 (ATF6), and Protein kinase RNA-like ER
Kinase (PERK). The highly expressed ER chaperone, Glucose-
Regulated Protein 78 (GRP78, also HSPA5/Bip), binds to
proteins’ hydrophobic domains, preventing misfolding during
translocation to the ER (Oakes and Papa, 2015; Bhardwaj et al.,
2020). Upon ER stress, when unfolded proteins reach a threshold
and free GRP78 decreases, enough GRP78 dissociates from sensors,
activating the downstream UPR pathway (Ibrahim et al., 2019). The
activated UPR response restores ER homeostasis by regulating
transcription and translation, enhances protein folding and
turnover, and activates degradation pathways (Walter and Ron,
2011; Lemberg and Strisovsky, 2021). If these adaptive mechanisms
fail to correct protein folding defects, cells undergo apoptosis,
highlighting the ambivalent nature of ER stress (Hetz et al., 2020).

IRE1 consists of a serine/threonine protein kinase domain and
an endoribonuclease domain, and is widely expressed in various
tissues (Chen and Brandizzi, 2013). During ER stress, IRE1 releases
GRP78 into the ER lumen, where it binds to unfolded proteins.
Upon GRP78 dissociation, IRE1 undergoes dimerization and
autophosphorylation, activating its endoribonuclease activity
(Bhardwaj et al., 2020). The spliced form of X box-binding
protein 1 (XBP1-S), produced after RNase cleavage, functions as
a transcription factor that translocates to the nucleus (Qiu et al.,
2023). This initiates the expression of genes coordinating protein
transcription and translation, lipid synthesis, ERAD, and proteins
maintaining ER homeostasis during stress. Additionally, IRE1-
dependent decay (RIDD) reduces translation of secretion-related
proteins during ER stress by degrading ER-located mRNA, relieving
ER stress (Maurel et al., 2014). Conversely, activated IRE1 can form
complexes with tumor necrosis factor-alpha receptor-associated
factor 2 (TRAF2) and apoptosis signaling regulating kinase
(ASK1) (Liu et al., 2020). TRAF2 activates Caspase12, which then
activates Caspase9 and Caspase3, initiating apoptosis (Ge et al.,
2015; Bhardwaj et al., 2020). Similarly, ASK1 activates pro-
inflammatory and pro-apoptotic transcription factors like NF-κB,
c-JUN, and AP-1 (El Jamal et al., 2016).

After activation, ATF6 relocates to the Golgi apparatus,
undergoing proteolysis to release its domain. Subsequently, like
XBP1-S, the released ATF6 fragment functions as a transcription
factor, translocating to the nucleus and upregulating ER stress-
related genes (Bhardwaj et al., 2020; Ricciardi and Gnudi, 2020).
PERK, another critical ER stress sensor like IRE1, is activated as a
dimer through phosphorylation. Activated PERK primarily
functions by phosphorylating eIF2α (Balsa et al., 2019).
Phosphorylated eIF2α suppresses protein synthesis by inhibiting
eIF2β, reducing translation and protein burden in the ER.
Interestingly, phosphorylated eIF2α preferentially translates
selective mRNA with an internal ribosomal entry site (IRES), like
ATF4 (Hiraishi et al., 2014; Oakes and Papa, 2015; Bhardwaj et al.,
2020). ATF4 upregulates pathways relieving ER stress and binds to
promoters of autophagy-related genes likeMAP1LC3B, ATG12, and
BECN1, promoting their expression (Jiang et al., 2014; Wang et al.,
2014; Tang et al., 2015). Additionally, ATF4 activates C/EBP
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homologous protein (CHOP) transcription, mediating cell death
during ER stress (Rozpedek et al., 2016; Zielke et al., 2021).
Therefore, activated PERK may shift cell fate towards adaptation
or apoptosis, depending on ER stress severity and cell
tolerability (Figure 1).

3 The machinery of endoplasmic
reticulum-associated degradation
(ERAD): substrate recognition,
translocation, and ubiquitin-mediated
degradation

The ERAD pathway is crucial for removing misfolded proteins
from the ER (Römisch, 2005). It is a highly conserved surveillance
system in eukaryotes, characterized by its coordinated organization.
It involves substrate recognition, inverted translocation across the
phospholipid bilayer, and transfer to the cytoplasm for degradation
by the 26S proteasome after polyubiquitylation (Qi et al., 2017).

In the ERAD system, substrate recognition involves proteins
with mutations, translation errors, or incorrect assembly
(Nakatsukasa and Brodsky, 2008; Słomińska-Wojewódzka and
Sandvig, 2015). Additionally, the abundance of specific ER
proteins may be regulated in response to metabolic signals in the
cell. Most proteins synthesized in the ER are modified by
N-glycosylation of the mannose core oligosaccharide, crucial for
ER quality control (Piirainen and Frey, 2022). This process’s
products are deglycosylated by glucosidase I and II, allowing new
glycoproteins to bind to calnexin (CNX) or calreticulin (CRT),
facilitating oxidation, folding, and maturation. This also prevents
deglycosylated glycoproteins from binding to CNX/CRT (Ruddock

andMolinari, 2006; Clerc et al., 2009). Improperly folded proteins in
the ER return to the CNX/CRT cycle for refolding through UGGT
glycosylation (Doolittle et al., 2009). However, mutated or misfolded
glycoproteins need to escape this cycle to enter ERAD. This process
requires mannosidases to remove end mannose residues of the core
oligosaccharide, facilitating interactions with mannosylated lectins
before ERAD entry (Słomińska-Wojewódzka and Sandvig, 2015;
Zhang et al., 2020). ER soluble proteins OS-9 and XTP3B/Erlectin
recognize oligosaccharide-substrate proteins after deglycosylation or
demannosylation via an MRH (Mannose 6-phosphate Receptor
Homology) domain. Besides oligosaccharide-dependent ERAD,
XTP3B and OS-9 are involved in non-glycosylated protein
ERAD, relying on signals from mismatches in error-folding
regions or glycosylation of mutated sites in non-glycosylated
proteins (Kim et al., 2018). The XTP3B and OS-9 BiP complex
might enable recognition of specific error-folding segments in non-
glycosylated proteins, supporting non-glycosylated protein ERAD
(Tang et al., 2014; van der Goot et al., 2018).

In ERAD, substrate recognition precedes the protein substrate’s
transfer across the ER membrane into the cytosol for degradation by
the ubiquitin-proteasome system (Zattas and Hochstrasser, 2015).
Given most substrates are highly hydrophobic proteins, tight
coordination between dislocation and degradation is essential to
prevent cytosolic substrate aggregation (Cybulsky, 2013; Berner
et al., 2018; Kang and Jeon, 2021). The dislocation complex,
containing a ubiquitin ligase, integrates into the ER membrane,
interacting with recognition factors like XTP3B or OS-9 by binding
to SEL1L (Christianson et al., 2008). Once a substrate portion
penetrates the ER membrane, cytosolic ATPase VCP/
p97 facilitates its ATP-dependent unfolding and remodeling in
most ERAD retrotranslocation processes (Sasset et al., 2015).

FIGURE 1
Changes in ER stress pathway-related proteins in stressed cells. Under stress, the endoplasmic reticulum triggers ER stress in cells. GRP78 activates
key proteins (IRE1, PERK, ATF6), which in turn induce inflammation, apoptosis, and autophagy through intracellular and nuclear pathways.
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VCP/p97 engages in various biological processes by recruiting
cellular factors. Besides extracting substrates and altering
conformations, VCP/p97’s role in proteasome-mediated
degradation is linked to its UBX-binding domain (Ménager et al.,
2014). This domain interacts with ubiquitin-binding proteins
(Ufd1 and Npl4) and deubiquitinating enzymes (Yod1, VCIP135,
Usp19, and Ataxin-3) to regulate protein degradation (Nowis et al.,
2006; Erzurumlu et al., 2023).

The translocation complexes in ERAD for substrate recognition
and degradation differ from those in protein import into the ER via
the SEC61 translocon (Grotzke et al., 2017; Fregno and Molinari,
2019). The SEC61 translocon recognizes signal peptides for protein
import and mediates transport of unfolded substrates through
narrow transmembrane pores. In contrast, ERAD substrates have
complex characteristics like folding and glycosylation modifications

that SEC61 cannot accommodate (Hosomi et al., 2010). Evidence
suggests the ERFAD and ERp90 complex can reduce disulfide bonds
in SEL1L-associated glycoprotein substrates during translocation,
possibly alleviating pore pressure (Riemer et al., 2011).

The ubiquitination and subsequent degradation process involves
enzyme-catalyzed, hierarchical reactions. Once activated by the
E1 enzyme, E2 and E3 enzymes work together to attach
ubiquitin to substrates for proteasome recognition (Fujita et al.,
2007). Handling ERAD substrates properly requires multiple
E3 ligases, involved in recognizing different ubiquitination sites
on the substrate or coordinating and stabilizing its ubiquitination
and deubiquitination. In mammalian ERAD pathways, essential
E3 ubiquitin ligases include Hrd1/SYVN1 and gp78/AMFR, with
others showing strong substrate-specific selectivity (Kim et al., 2015;
Bhattacharya et al., 2018; Zhou et al., 2020) (Figure 2).

FIGURE 2
Activation of ERAD pathways and degradation of ubiquitin proteasomes in cells. Following unfolded protein responses in cells, the endoplasmic
reticulum modifies proteins via the ERAD pathway, ultimately degrading misfolded proteins through the ubiquitin proteasome system.
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4 ER-phagy: dual mechanisms of
Macro-ER-phagy and Micro-ER-phagy
in cellular ER quality control

Besides ERAD, mediated by UPR, ER-phagy is a crucial
component of ER quality control, offering complementary
degradation mechanisms (Chino and Mizushima, 2020; Gubas
and Dikic, 2022). Some ER-resident and few cytoplasmic proteins
are degraded via the ER-phagy pathway, linking the ER domain to
autophagic processes through receptors. ER-phagy can occur
through autophagosomes (Macro-ER-phagy) or non-
autophagosomes (Micro-ER-phagy) (Ferro-Novick et al., 2021).
During Macro-ER-phagy, autophagosomes can non-selectively
envelop cellular components, including organelles. However,
studies on ER-phagy receptor functions reveal that Macro-ER-
phagy can selectively target the ER.

ER-phagy adaptor proteins play a crucial role in ensuring
selective autophagy. To date, six mammalian receptor proteins
related to this process have been identified, including FAM134B,
RTN3L, ATL3, SEC62, CCPG1, and TEX264 (Hübner and Dikic,
2020), all containing motifs to interact with LC3 or Atg8 (Ferro-
Novick et al., 2021). Some receptors also interact with autophagy-
initiating complexes like ULK1, ULK2, and FIP200 (Goodwin et al.,
2017). Anchored to the ER, these proteins participate in Macro-ER-
phagy by binding to LC3 via their LIR motif or to autophagy-
initiating complexes (Hübner and Dikic, 2020).

Different receptor proteins serve various functions in ER-phagy.
In mammals, FAM134B, RTN3L, ATL3, and TEX264 mediate
starvation-induced ER-phagy, whereas SEC62 and CCPG1 are
involved during ER stress and recovery (Preetha Rani et al.,
2022). Receptor proteins with an RHD, like FAM134B and
RTN3L, induce ER fragmentation through their short hairpin
transmembrane domains, increasing membrane tension (DEletto
et al., 2020). However, SEC62, CCPG1, and TEX264 lack the
structural domains needed for such ER fragmentation. Instead,
they cause molecular aggregation at ER-autophagic body contact
sites, producing curvature and leading to membrane fragmentation.
Additionally, the autophagic receptor P62 mediates ER-phagy by
interacting with ubiquitin via the UBA domain and targeting
autophagy through the LIR domain. The interaction between
P62 and ubiquitinated TRIM13 has been reported to mediate
ER-phagy. Micro-ER-phagy was first discovered in yeast. Under
dithiothreitol-induced ER stress, ER whorls form and are specifically
targeted byMicro-ER-phagy for vesicular transport and degradation
(Reggiori and Molinari, 2022). Core autophagy factors like
ULK1 and ULK2 are not needed in this process. Specific proteins
like pre-collagen can be degraded via Micro-ER-phagy, differing
fromMacro-ER-phagy. However, the role of ATG family proteins in
this process is still unclear (Ferro-Novick et al., 2021; Gubas and
Dikic, 2022).

As research into micro-autophagy progresses, it is found that
micro-autophagy of endosomes rapidly degrades adaptor proteins
like P62 and NDP52, relying on the ATG family binding system.
This binding system might be linked to lysosomal membrane
recognition, but its relationship with LC3, present on the ER in
SEC62-mediated Micro-ER-phagy, remains uncertain (Gubas and
Dikic, 2022). In summary, Micro-ER-phagy degrades targeted
proteins within the ER without needing core autophagy factors

such as ULK1 and ULK2. However, the role of ATG family proteins
in this process is still unclear. Endosomal micro-autophagy degrades
adaptor proteins via the ATG binding system, yet its relation to
LC3 in ER-phagy needs further exploration (Figure 3).

5 Puzzle of cisplatin resistance in
cancer therapy: mechanisms and
strategies

Cisplatin is a common chemotherapy drug widely used for
treating solid tumors (Ghosh, 2019; Romani, 2022). Despite its
effectiveness against malignancies, the widespread use of cisplatin
highlights the ongoing challenge of drug resistance in cancer therapy
(Galluzzi et al., 2012; Galluzzi et al., 2014; Ashrafizadeh et al., 2020).
Understanding the potential mechanisms of tumor resistance to
cisplatin is crucial for developing new strategies to overcome
this challenge.

Cisplatin resistance mainly stems from the reduced
accumulation of cytotoxic compounds in cancer cells’ cytoplasm,
protecting them from the activation of chemotherapy-induced DNA
damagemechanisms (Dasari and Tchounwou, 2014). Like resistance
development to other chemotherapeutic agents, cisplatin-resistant
tumor cells gain additional genetic or epigenetic alterations, giving
them a growth advantage like increased proliferative capacity
(Ferreira et al., 2016). The cytotoxic effect of cisplatin involves a
complex process from the drug’s entry into the cell to apoptosis
induction, involving intricate mechanisms. Interfering with any
stage of this process suppresses tumor cell apoptosis and leads to
resistance. Resistance mechanisms arise from changes in
intracellular molecules and pathways, leading to reduced
interaction between cisplatin and DNA, interference with DNA
damage signal activation, or both. Thus, cisplatin resistance involves
various factors and is categorized into pre-target, on-target, post-
target, and off-target resistance, based on mechanism of action
(Galluzzi et al., 2012; Lugones et al., 2022) (Figure 4).

5.1 Pre-target

Pre-target resistance to cisplatin is linked to reduced cisplatin
entry into tumor cells or increased cisplatin exclusion. The decrease
in cisplatin accumulation is a key mechanism in the development of
tumor cell resistance. Cisplatin entry into cells is influenced by
sodium-potassium ion concentrations, pH, and the coordinated
action of transport proteins and channels. Resistant tumor cells
reduce copper and organic cation transporter protein expression on
the cell membrane, lowering intracellular drug concentrations.

Copper transporter 1 (CTR1), widely expressed in tissues, is
crucial for high-affinity copper uptake. CTR1 is thought to transport
cisplatin, oxaliplatin, and carboplatin. Deleting the yeast CTR1 gene
reduces cisplatin accumulation in cells and leads to resistance.
Conversely, CTR1 overexpression makes small cell lung cancer
cells sensitive to cisplatin, carboplatin, and oxaliplatin. The
proteasome inhibitor bortezomib and the natural compound β-
elemene prevent CTR1 degradation. However, contradictory
conclusions have emerged about the impact of regulating
CTR1 levels on sensitivity to platinum drugs. CRISPR-Cas9
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FIGURE 3
Changes in endoplasmic reticulum-phagy related pathways in cells. ER-phagy is classified intoMacroER-phagy andMicroER-phagy, each degrading
different protein types. The figure illustrates their differences.

FIGURE 4
The mechanism of cisplatin resistance in cells. The resistance mechanisms to cisplatin in cells, based on its action pathways, are categorized into
pre-target, on-target, and off-target resistance. The figure illustrates the core pathways of some resistance mechanisms in tumor cells.
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genome editing to knock out CTR1, CTR2, ATOX1, and CCS had
minimal impact on cisplatin sensitivity in HEK-293T and
OVCAR8 cells. Another study showed that CTR1 overexpression
did not increase platinum accumulation or affect cisplatin sensitivity
in DLD-1 cells. The clinical relevance of CTR1 in platinum
chemotherapy is also under question.

Copper transporter 2 (CTR2), a low-affinity copper transporter,
is mainly found in late endosomes and lysosomes. The mRNA and
protein levels of CTR2 significantly correlate with cisplatin
sensitivity. CTR2 may affect cisplatin accumulation by
influencing macropinocytosis, not by changing drug efflux or
lysosomal storage. Additionally, CTR2 can interact with the
CTR1 extracellular domain, stimulating CTR1 and reducing
cisplatin accumulation in cells.

The Solute Carrier (SLC) superfamily includes over
300 members and 65 subfamilies, such as organic anion transport
peptides, proteins, and organic cation transport proteins (OCTs).
Cisplatin serves as a substrate for hOCT1 (SLC22A1), hOCT2
(SLC22A2), and hMATE1 (SLC47A1). Downregulation,
mislocalization, or inhibited transport activity of OCTs can lower
intracellular platinum levels. Omeprazole reportedly lowers
OCT2 protein levels, leading to decreased cisplatin accumulation
in cells. However, changes in SLC expression or distribution due to
disease or drug interactions significantly affect the cellular uptake of
therapeutic drugs, leading to suboptimal outcomes.

Early research on drug efflux processes and cell resistance was
overlooked until studies on the multidrug resistance-associated
protein (MRP) family revealed that several ABC membrane
proteins are closely related to drug efflux from tumor cells.
MRP2 plays a crucial role in cisplatin resistance, with an
observed increase in MRP2 transporter proteins in resistant
tumor cells.

Transport proteins like ATP7A and ATP7B, involved in
cisplatin efflux, reduce cisplatin accumulation in tumor cells by
enhancing functionality (Lukanović et al., 2020; Arnesano and
Natile, 2021). After entering cells, cisplatin can bind to ATP7A/
B’s CXXC motif, and this complex translocates to vesicles with
Atox1 in an ATP-dependent manner. Tumor cells transfected with
ATP7B show significantly increased resistance to cisplatin,
suggesting downregulation of ATP7A/B as a potential method to
overcome resistance.

Reduced glutathione (GSH) and metallothionein (MT) are
crucial in cellular redox states, scavenging free radicals,
protecting cells from external substances, and maintaining
protein thiol groups. The active SH group of GSH has a high
affinity for platinum, making it a simple, non-DNA-related target
(Jamali et al., 2015; Sun et al., 2021; Luo et al., 2022). Upon entering
the cytoplasm, GSH forms complexes with cisplatin, rendering it
inactive in tumor cells. Lower intracellular chloride levels (<4 mmol/
L) facilitate hydration reactions, allowing cisplatin to react with
abundant GSH and metallothionein, reducing its accumulation in
cells. Preventing resistance to the GSH pathway can be achieved with
competitive inhibitors of GSH or by interfering with its synthesis.
Gamma-glutamyltransferase (γ-GT), overexpressed in cisplatin-
resistant tumor cells, catalyzes the production of cysteinylglycine
from GSH, ten times more reactive with cisplatin than GSH itself.
Excessive production of γ-GT may thus contribute to GSH-
mediated cisplatin resistance in tumor cells. Similarly, MT’s

richness in cysteine residues makes it a prime target for platinum
chelation. Elevated MT levels are observed in both tumor tissues and
the serum of cancer patients. RNA interference effectively inhibits
MT overexpression, reversing platinum resistance. Thus, regardless
of the pathway, reduced cisplatin accumulation in tumor cells leads
to resistance.

5.2 On-target

DNA adduct formation is pivotal in the cytotoxicity of
platinum-based antitumor drugs. Platinum-DNA complexes
change the DNA structure, inhibiting replication, transcription,
and inducing DNA double-strand breaks, thereby initiating repair
mechanisms. If DNA repair fails or is overwhelmed by excessive
damage, cell death follows. In on-target resistance, cells can survive
cisplatin binding to DNA by activating repair mechanisms or
tolerating genetic damage. In resistant tumor cells, accelerated
recognition and repair of DNA adducts reduce apoptosis signal
generation following DNA damage. Most intrastrand crosslinks
are removed by the Nucleotide excision repair (NER) system,
which excises damaged nucleotides and synthesizes DNA to
restore genetic integrity; other damages are repaired through
complex mechanisms.

NER plays a critical role in excising damaged nucleotides from
DNA and restoring genetic integrity through DNA synthesis.
ERCC1 and XPF proteins form the ERCC1-XPF complex, crucial
for acting as an endonuclease in late-stage NER and homologous
recombination repair (HRR) (Arora et al., 2010; Heyza et al., 2018).
Additionally, increased tolerance to cisplatin is linked to the loss of
function in the MMR pathway (Ray Chaudhuri et al., 2016). The
MMR system corrects base errors occurring during DNA replication
and recombination. During MMR, damage is detected through
DNA intrastrand adduct recognition and apoptotic signal
transmission. Downregulating key proteins MSH2 and
MLH1 inhibits apoptosis in cisplatin-exposed tumor cells.
NSCLC patients with high MSH2 expression after tumor
resection have a better prognosis than those with low expression,
reflecting differences in untreated tumors (Samimi et al., 2000; Ting
et al., 2013). Tumors with high DNA repair capabilities may be less
prone to recurrence in some settings but may also hinder the
effectiveness of DNA damage-related chemotherapy. Cisplatin-
induced interstrand adducts can cause double-strand breaks
during the S phase or through DNA repair via homologous
recombination. The HR system’s key proteins, BRCA1 and
BRCA2, often mutated in breast and ovarian cancers, make
tumors with HR defects more sensitive to platinum drugs. Like
the MMR pathway, BRCA1-defective ovarian cancer, more prone to
internal metastasis than sporadic cases, shows increased sensitivity
to platinum drugs and better post-chemotherapy prognosis. The
tumor’s DNA repair ability varies or even inversely correlates with
malignancy and chemoresistance. Targeted therapy against these
targets must be comprehensively and carefully considered to avoid
diminished efficacy. Besides ERCC and BRCA, components like
FANCD2, PCNA, XRCC1, and RAD51 play varied roles in DNA
repair pathways. Understanding the DNA repair regulatory network
will offer more accurate guidance for platinum-based
chemotherapy.
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5.3 Post-target

The development of resistance mechanisms to platinum-
based drugs involves complex pathway alterations, especially
in apoptotic signaling pathways triggered after DNA damage.
Currently, two main apoptosis pathways are recognized: extrinsic
and intrinsic. The extrinsic pathway activates when TNF family
receptors bind to tumor necrosis factor receptors, initiating
caspase-8 activation. The intrinsic pathway involves a balance
shift between pro-apoptotic (e.g., BAX, BAK) and anti-apoptotic
proteins (e.g., BCL-2, BCL-XL, BCL-w). Upon activation, pro-
apoptotic signals lead to mitochondrial outer membrane
permeabilization and cytochrome c release, triggering caspase
cascade reactions.

Unrepaired DNA damage activates signals promoting
apoptosis, linking gene and protein functionality to tumor
resistance to platinum drugs. Platinum-resistant tumor cells
have higher apoptosis thresholds, mainly from anti-apoptotic
protein overexpression or mitochondrial signal transduction
defects. Various factors, including survival signaling pathways,
contribute to these adverse phenomena. TP53 gene inactivation
prevents apoptosis induction via molecules like Bax, causing loss
of apoptotic pathway activity and resistance in tumor cells.
Ovarian cancer patients with wild-type TP53 genes respond
better to platinum chemotherapy. Tetraploid tumor cells
tolerate platinum drugs better than diploid cells, a
phenomenon reversible by inhibiting or depleting TP53.
Cisplatin induces apoptosis by activating MAPK1 and c-JUN
N-terminal kinase, mediating FAS/FASL pathway signal
transduction, unresponsive in resistant cells, reducing
apoptosis and protecting tumor cells. The pro-apoptotic
BCL2 family is closely linked to cisplatin sensitivity. Clinical
trials are ongoing for combining BCL2 small molecule inhibitors
(like ABT-263, ABT-737) with platinum drugs for tumor
treatment. Caspase inactivation in apoptosis is also linked to
tumor cisplatin resistance. Direct or indirect overactivation of
pathways, such as the NFκB pathway, contributes to tumor cell
resistance to platinum drugs (Xu J. et al., 2020; Abadi et al., 2022).

The tumor microenvironment (TME) plays a crucial role in
cisplatin-resistant tumor cell survival, with mutual and dynamic
interactions between TME and cancer cells. Evidence suggests that
cancer-associated fibroblasts (CAFs) can induce tumor
proliferation, metastasis, and chemotherapy resistance. CAFs
secrete cytokines, proteins, or exosomal miRNAs activating anti-
apoptotic pathways like PI3K/Akt, ANXA3/JNK, and IL-11/IL-11R/
STAT3, providing resistance to tumor cells. CAFs also cause
abnormal reshaping of extracellular substances, changes in tumor
physical properties, or release cysteine and GSH, limiting
intracellular platinum concentrations.

As mentioned earlier, the occurrence and development of ER
stress in tumor cells can influence cell apoptosis, including the
activation of Caspase family-related proteins, NF-κB and c-JUN
related inflammatory pathways. In the context of cisplatin post-
target resistance, ER quality control can regulate apoptosis signals.
The ER links quality control-related proteins with cisplatin
resistance by modulating apoptosis-related pathways. Thus,
understanding ER quality control is crucial in studying cisplatin
target resistance.

5.4 Off-target

Off-target resistance often involves changes in signaling
pathways not directly related to cisplatin, yet influencing
cisplatin-induced apoptosis. For instance, autophagy activation
often induces cisplatin resistance, while inhibiting autophagy can
restore tumor cell sensitivity to cisplatin, as observed in many tumor
cell lines.

Autophagy, a “self-digestion” process, occurs in all eukaryotic
organisms. It is essential for nutrient regulation, intracellular quality
control, and homeostasis, recycling macromolecules as alternative
energy sources in a defensive strategy. However, persistent or
excessive autophagy can lead to cell death. Autophagy plays
contradictory roles in tumor initiation and progression. It can
promote either cell death or survival, depending on the cancer
stage. After platinum therapy, an increase in drug-induced and basal
autophagy is observed in platinum-resistant cells. Using agents such
as 3-methyladenine or chloroquine to inhibit autophagy can
enhance platinum-mediated cytotoxicity (Gąsiorkiewicz et al.,
2021; Xu and Gewirtz, 2022).

Another aspect related to autophagy involves cancer stem cells
(CSCs). CSCs, a subset of cancer cells in tumors, possess self-renewal
and differentiation abilities. CSCs are considered significant
contributors to drug resistance and recurrence. Autophagy
regulates CSCs by protecting them and aiding in stem cell
differentiation, somatic cell reprogramming, and self-renewal.
Autophagy helps maintain stemness and chemotherapy resistance
by regulating the expression of markers such as CD44, ABCB1,
and ADAM17.

The autophagy process is closely related to the occurrence of ER
stress and is a crucial component of ER quality control, contributing
to off-target resistance to cisplatin. Consequently, the relationship
between ER quality control and cisplatin resistance can be explored
from the perspective of autophagy. This topic is currently a hot area
of research in the field of drug resistance. A comprehensive
understanding of ER quality control and cisplatin resistance will
offer more precise insights and directions for effective drug
resistance research.

6 Navigating cisplatin-induced ER
stress: a dualistic pathway in tumor
apoptosis and resistance

The ER is a crucial hub for regulating cellular homeostasis,
vulnerable to various physiological and pathological changes that
lead to ER stress. Recent findings show that tumor cells resistant to
chemotherapy can also prevent ER stress-induced apoptosis (Haeri
and Knox, 2012; Salaroglio et al., 2017). Given ER stress’s critical role
in transmitting adaptive survival signals in cancer cells, it has
become a focal point in chemotherapy resistance research. In
normal cells, ATF6, IRE1, and PERK modulate ER stress (Kim
et al., 2008); however, in cancer, oncogene activation and tumor
suppressor loss lead to uncontrolled ER stress, aiding tumor cell
survival under high protein synthesis and metabolic stress (Wang
and Kaufman, 2014).

ER stress promotes cell survival by activating PERK, which
phosphorylates eIF2α and Nrf2, causing cytosolic Nrf2 to dissociate
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from Keap1 (Cullinan et al., 2003; Del Vecchio et al., 2014).
Nrf2 activation initiates the cytochrome P450 system and
glutathione-S-transferases, reducing ROS and preventing tumor
cell apoptosis under chemotherapy (Rodriguez-Antona and
Ingelman-Sundberg, 2006; Lau et al., 2008). The PERK-Nrf2
pathway upregulates MRP1 through antioxidant enzymes (HO-1,
SOD, catalase, etc.), neutralizing ROS and enhancing drug efflux
(Healy et al., 2009). In chemotherapy-resistant HT29 cells, PERK
upregulates MRP1 via Nrf2, protecting cells from chemotherapy by
reducing ROS and increasing drug efflux, suggesting targeting this
pathway could sensitize resistant cells to chemotherapy.

A strong positive correlation exists between Nrf2 levels and
resistance to drugs like cisplatin, doxorubicin, and etoposide in
various cancer cell lines (Ramos-Gomez et al., 2003). Stabilizing
Nrf2 with antioxidative enzymes increases the Bcl-2/Bax ratio,
reducing apoptosis and enhancing cell survival by modulating
Topo II, p53, and p21 (Rotblat et al., 2012). Nrf2 is a potential
cancer therapy target; for example, ML385, an Nrf2 inhibitor,
selectively affects chemoresistance in NSCLC with
Keap1 deficiency (Singh et al., 2016).

The Bcl-2 to Bax protein ratio significantly affects cell death and
survival regulation. In H2S-treated mice, Nrf2 shows a protective
effect by increasing Bcl-2 levels, protecting A549 cells from drug or
radiation-induced DNA fragmentation and apoptosis (Calvert et al.,
2009). After etoposide treatment, Bcl-2 overexpression is linked to
increased apoptosis resistance. In both SCLC and NSCLC, etoposide
treatment induces apoptosis and reduces Bcl-2 expression (Oizumi
et al., 2002).

IRE1 recruits TRAF2 and activates ASK1, thus activating JNK
and enhancing AP-1’s transcriptional activity, crucial for controlling
apoptosis during stress. This increase in AP-1 DNA binding
significantly boosts MCF-7 cell chemoresistance (Lewis-Wambi
and Jordan, 2009). The role of ATF6α in creating
chemoresistance via PDIA5 during ER stress has been identified,
with PDIA5/ATF6α inhibition potentially restoring
chemosensitivity (Morris et al., 1997).

Cisplatin can induce cell apoptosis through a non-nuclear DNA
damage pathway. Research studies have demonstrated that cisplatin
can elevate intracellular calcium levels and activate calcium
protease-dependent Caspase 12, which in turn induces apoptosis
in cells lacking a nucleus. Caspase 12 is closely associated with the
ER (Mandic et al., 2003; Yu et al., 2007). Consequently, the ERmight
serve as an independent target for cisplatin-induced apoptosis by
disrupting its protein folding function, thus inducing ER stress.
Subsequent pathways, like the UPR or autophagy-related
degradation, may play roles in preserving ER stability.

Inhibiting ER-specific Caspase 12 activity significantly reduces
cisplatin-induced apoptosis, underscoring ER stress’s protective
role. The upregulation of GRP78 after cisplatin treatment is
noteworthy. Notably, this upregulation might not be closely
related to ROS, as NAC (N-acetylcysteine) does not inhibit
GRP78 upregulation or apoptosis after cisplatin treatment
(Mandic et al., 2003; Yu et al., 2008). In various tumors,
GRP78 acts as a protective protein, inhibiting apoptosis in
response to cisplatin through different mechanisms. For example,
in human melanoma cells, GRP78 reduces apoptosis by modulating
the Caspase 4/Caspase 8 pathway. In breast and endometrial cancer,
GRP78 enhances tumor cell resistance to cisplatin via the PARP1/

Caspase 3/JNK pathway. In colorectal cancer, GRP78 lowers the
apoptotic rate under cisplatin treatment via the Xbox1 pathway.
Similarly, in HNSCC, nasopharyngeal carcinoma, and non-small-
cell lung cancer, GRP78 mediates a reduction in apoptosis rate upon
cisplatin exposure.

However, the compensatory capacity of ER stress is limited.
When exposed to excessive detrimental stimuli, cells can undergo
apoptosis due to overactivated ER stress, primarily mediated by
CHOP. Cisplatin can induce excessive ER stress, upregulating the
PERK/eIF2α/ATF4 pathway and promoting CHOP expression,
thereby facilitating tumor cell apoptosis. This pathway has been
confirmed in various tumor types, including non-small cell lung
cancer (Tang et al., 2022), malignant pleural mesothelioma (Xu
et al., 2018), neuroblastoma (Chen et al., 2013), and head and neck
squamous-cell carcinoma (Mosca et al., 2019), among others.
Inhibiting autophagy with 3-MA or CQ, or knocking out P62,
intensifies cisplatin-induced ER stress, increasing the apoptotic
rate of tumor cells during cisplatin treatment. Therefore,
deficiency or impairment in UPR and autophagy can lead to
excessive ER stress-induced apoptosis in cells treated with cisplatin.

Regarding cisplatin resistance, various tumor cells show either
survival or apoptosis induction via the ER-stress pathway. The
outcomes and pathway activations triggered by varying levels of
ER stress are not uniform, highlighting ER stress’s complex and dual
nature. Therefore, when developing anti-tumor therapies targeting
ER stress, considering its dual effects and intricacies is vital. This is
necessary to ensure the drugs’ functionality is not compromised or
excessively altered.

7 Complex role of UPR in tumor
microenvironment: from
chemoresistance to apoptosis
modulation

Certain tumor cells can facilitate tumor growth and
chemoresistance in a stressful microenvironment by activating
the UPR. UPR signaling molecules interact with oncogenes and
tumor suppressor gene networks, regulating their functions in
cancer development. Understanding the specific molecular
mechanisms involved is crucial to comprehend UPR’s role. It is
important to note that excessive ER stress-induced UPR can lead to
cell death, introducing complexity and duality in designing drugs
targeting UPR.

UPR plays a protective role in drug resistance, especially in
tumor cells with enhanced cisplatin resistance. In hepatocellular
carcinoma, UPR inhibits cisplatin-induced apoptosis, potentially
involving Hsp27. Hsp27 activation can suppress cell death in HCC
cells by promoting autophagy (Chen et al., 2011). Similarly, GRP78-
mediated UPR reduces cisplatin-induced apoptosis in
hypopharyngeal carcinoma (Pi et al., 2014) and glioblastomas
(Hussein et al., 2022), promoting tumor cell survival. In
pancreatic cancer, UPR mitigates cisplatin-induced cell death
through ER dilation and intracellular Ca2+ modulation, which
Bortezomib can inhibit (Nawrocki et al., 2005). UPR can directly
or indirectly attenuate apoptosis in response to cisplatin
chemotherapy in certain tumor types. For example, in
osteosarcoma, UPR suppresses apoptosis by modulating the NF-
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κB pathway (Yan et al., 2015). In malignant melanoma, EF24-
mediated UPR inhibits apoptosis (He et al., 2021). Similarly, in
hypopharyngeal carcinoma, hypoxia-induced UPR reduces the
apoptosis rate (Pi et al., 2014).

In the KB-3 human epidermoid carcinoma cell line, cisplatin
resistance may link to mutations in the ERAD system. It is proposed
that cisplatin-resistant cells show elevated levels of M8.1, a high-
mannose-type glycan (Nakagawa et al., 2008). Moreover, UPR can
enhance the cytotoxic effects of cisplatin in certain tumors, mainly
through ER stress-mediated mechanisms. In malignant pleural
mesothelioma (Xu et al., 2018) and mesothelioma (Zhang et al.,
2010), UPR induces apoptosis in response to cisplatin via the PERK/
eIF2α/ATF4 and GRP78 pathways. In ovarian carcinoma cells,
ONC201-triggered UPR promotes apoptosis through the ER
stress pathway involving ATF3 and ATF4. Furthermore, UPR
can directly mediate apoptosis. In lung cancer, UPR induces
apoptosis by engaging caspase 2 and DNA repair mechanisms,
with HSF1’s participation (Gaddameedhi and Chatterjee, 2009;
Zhang et al., 2023).

8 Autophagy in chemotherapy
resistance: dual role in survival and
sensitization of cancer cells

Autophagy, crucial for degrading and recycling cellular
components, has emerged as a key contributor to chemotherapy
resistance (Ishaq et al., 2020). Although primarily maintaining
cellular homeostasis and promoting survival during stress,
autophagy’s role in chemotherapy-treated cancer cells is complex
(Smith and Macleod, 2019; Zamame Ramirez et al., 2021). In some
cases, autophagy acts as a protective mechanism, enabling cancer
cells to adapt to chemotherapy-induced stress and fostering
resistance (Sui et al., 2013; Ferreira et al., 2021). By eliminating
damaged cellular components and providing energy, autophagy can
support cancer cell survival even with cytotoxic drugs present.
Cisplatin therapy often promotes autophagy, with the link to
cisplatin resistance identified as early as 2010. In lung
adenocarcinoma A549, cisplatin-resistant cell lines show
increased autophagy (Ren et al., 2010). Autophagy inhibition is
common in cisplatin-sensitive cells, whereas it is activated in
cisplatin-resistant tumor cells. Thus, inhibiting autophagy has
become an effective strategy to reduce cisplatin resistance in
tumor cells.

Autophagy activation occurs in both cisplatin-sensitive and
-resistant cells after treatment. Thus, cisplatin resistance may not
solely result from autophagy. As is well known, autophagy can
participate in cell survival (protective autophagy) and cell death
(cytotoxic autophagy) (Yu and Klionsky, 2022). Detecting the type
of autophagy induced after cisplatin treatment is crucial, but
currently, no reliable method exists to distinguish between
autophagy types. Therefore, cisplatin induced autophagy can
participate in both the promotion of tumor cell survival and the
killing of tumor cells. However, the link between autophagy and
chemotherapy resistance is not universally consistent (Huang et al.,
2018; Xu Z. et al., 2020; Zhang and Liu, 2021). In certain scenarios,
excessive autophagy may lead to cell death. Researchers are
exploring the molecular mechanisms behind autophagy’s dual

role and strategies to modulate its activity to enhance
chemotherapy sensitivity in cancer cells. Understanding how
autophagy contributes to chemotherapy resistance is crucial for
developing more effective treatments against resistant cancers.

In addition, Cisplatin resistance may relate to changes in
mitophagy. Cisplatin activates DRP1, leading to mitochondrial
division. Dysfunctional mitochondria are removed via mitophagy,
a process linked to cisplatin resistance. Mdivi-1 enhanced cisplatin
sensitivity in hepatocellular carcinoma by inhibiting mitophagy via
DRP1 (Ma et al., 2020). In cisplatin-resistant ovarian cancer,
mitochondria become more fragmented, and BNIP3 expression
increases. Silencing BNIP3 increases cisplatin sensitivity in drug-
resistant cells. Mitochondrial morphology and function are closely
related to cisplatin resistance (Vianello et al., 2022). While various
factors influence mitochondria, mitophagy plays a significant role.

Although no current research proves the relationship between
ER-phagy and cisplatin resistance, increasing studies on ER-phagy
junction proteins highlight ER-phagy’s significant role in
chemotherapy resistance. For instance, METTL3-mediated m6A
modification upregulates the ER-phagy protein Sec62 via β-
Catenin, enhancing Wnt signaling and promoting stemness and
chemotherapy resistance in colorectal cancer (Liu et al., 2021).
Additionally, recent studies link FAM134B mutations to tumor
drug resistance, with evidence showing that lysosomal
degradation of FAM134B contributes to tumor cell survival
(Chipurupalli et al., 2022). With growing scientific interest in
ER-phagy, further research is expected to unveil its correlation
with chemotherapy resistance.

9 Discussion

The ER is crucial in coordinating cellular functions like protein
folding, transportation, and modification (Oakes and Papa, 2015;
Urra et al., 2016). The following discussion provides a
comprehensive view on these interconnected processes and their
implications for developing effective cancer treatment strategies.
Cisplatin, a key chemotherapy agent, has a dual nature. While
effectively triggering DNA damage responses and apoptosis,
prolonged use often leads to chemoresistance (Gentilin et al.,
2019). Delineating cisplatin resistance categories from pre-target
to off-target offers avenues for tailored therapeutic approaches
against resistance. However, the novel perspective lies in the link
between cisplatin and ER stress. Once cisplatin enters tumor cells,
activated ER-stress serves both as a sword to destroy tumor cells and
a shield against cisplatin’s lethal effects. This dual role of ER-stress
exemplifies its complex nature in chemotherapy resistance.
Consequently, researching ER-stress is considered a challenging
yet intriguing aspect of studying chemotherapy resistance.
Combining cisplatin-induced ER stress with chemotherapy
resistance introduces a new dimension to resistance, emphasizing
the need for ER stress modulation in therapy strategies.

This review explores the complex mechanics of ERAD and its
interplay with ER stress and cisplatin resistance. ERAD’s role in
reducing ER stress through targeted protein degradation, along with
its protective function in tumor cells, provides insight into tumor
adaptation. The understanding that ERAD and ER stress direct
tumor cell responses to cisplatin reaffirms their crucial role in
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driving cancer progression and resistance. The ERAD pathway,
crucial for clearing misfolded proteins in the endoplasmic
reticulum, significantly contributes to maintaining intracellular
protein homeostasis. The capacity to synthesize and utilize basic
proteins allows cells to enter a dormant or low-consumption
survival state under the intense stress of chemotherapy. This
cellular state can gradually revert post-chemotherapy, potentially
leading to the failure of tumor treatment. Thus, regulating the ERAD
process in tumor cells during chemotherapy is crucial for the
treatment’s success or failure.

Autophagy emerges as a significant yet complex factor in
chemotherapy resistance. Its dual role in maintaining tumor cell
survival during stress and potentially driving apoptosis creates a
nuanced balance. Understanding the complex relationship between
autophagy and chemotherapy resistance opens avenues to target
autophagy therapeutically, to either enhance resistance or sensitize
cells to chemotherapy stress. Particularly, the section on ER-phagy
in our paper is anticipated to become a focal area in future
chemotherapy resistance research. Firstly, autophagy influences
this mechanism’s functional regulation, indirectly maintaining
endoplasmic reticulum homeostasis. The combined use of drugs
in this process may yield unexpected benefits. Additionally, varying
ER-phagy capabilities across tumor cells might explain the
differential responses to autophagy inhibitors. Therefore, it is
crucial to assess and understand endoplasmic reticulum
homeostasis-related pathways while regulating autophagy to
prevent counterproductive effects.

Looking forward, a holistic understanding of ER stress, cisplatin
resistance, and their interplay with ERAD and autophagy guides us
towards innovative treatment paradigms. Developing strategies to
modulate ER stress responses, utilize ERADmachinery, and leverage
autophagy’s dual nature could overcome chemotherapy resistance
and improve treatment efficacy. By understanding these pathways,
we can swiftly identify chemotherapy-resistant tumors’ resistance
mechanisms and target them with specific medications. The
complex aspects of these processes call for future research to
uncover finer details, paving the way for personalized therapies
that could transform cancer treatment outcomes.
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